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Minority homebuyers face widespread statistical lending
discrimination, study finds

By Laura

Face-to-face meetings between mortgage officers and homebuyers have been rapidly replaced by online
and , but lending di hasn't gone away. b

A new University of Callforia, Berkeley study has found that both online and face-to-face lenders charge

higher interest rates to African American and Latino borrowers, earning 11 to 17 percent higher profits on
such loans. All told, those homebuyers pay up to half a billion dollars more in interest every year than white
with credit scores do, found.

The findings raise legal questions about the rise of statistical discrimination in the fintech era, and point to
potentially widespread violations of U.S. fair lending laws, the researchers say. While lending discrimination !
has historically been caused by human prejudice, pricing disparities are increasingly the result of algorithms
that use machine learning to target applicants who might shop around less for higher-priced loans.

“The mode of lending discrimination has shifted from human bias to algorithmic bias,” said study co-author
Adalr Morse, a finance professor at UC Berkeley's Haas School of Business. "Even if the le writing the
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Machine Bias

Software can make bad decisions.
Software can discriminate!
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Rachael Tatman, “Gender and Dialect Bias in YouTube's Automatic Captions” in 2017 Workshop on Ethics in Natural Language Processing
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Rachael Tatman, “Gender and Dialect Bias in YouTube's Automatic Captions” in 2017 Workshop on Ethics in Natural Language Processing
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ow I'm fighting bias in algorithms

Joy Buolam:

how people want to use vision software



https://www.ted.com/talks/joy_buolamwini_how_i_m_fighting_bias_in_algorithms

how people want to use vision software
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Design alone is not enough

today's goals

Define software discrimination.

Operationalize measuring discrimination
through causal software testing.

Provide provable fairness guarantees.

possible causes

implementation unintended interactions and
bugs mismatched components

Design software to be fair

Typically machine learning systems:
® Balance training sets

® Introduce training noise
® Constrain regression’s loss function
® Split criteria on sensitive inputs

Let’s talk about

what it means for
systems to discriminate
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Zafar et al. Fairness constraints: Mechanisms for fair classification. AISTATS 2017.

Fairness: Disparate Treatment
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Latanya Sweeney, Arrested?

1) Enter Name and State. 2) Access Full Background b
Checks Instantly.

www.instantcheckmate.com/

Ineffective because of data correlation.

[Latanya Sweeney. Discrimination in online ad delivery. CACM 2013]

= BUSINESS INSIDER TECH NEWS

Amazon just showed us that 'unbiased'
algorithms can be inadvertently racist
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Amazon just showed us that 'unbiased'
algorithms can be inadvertently racist

"

Amazon built an Al tool to hire people but had to shut it down
because it was discriminating against women

It Asra o

Amazon tried building an artificial-intelligence tool to help with
recruiting, but it showed a bias against women, Reuters reports.

Engineers reportedly found the Al was unfavorable toward
female candidates because it had combed through male-
dominated résumés to accrue its data.

‘Amazon reportedly abandoned the project at the beginning of
2017

https://w i insi built-ai-to-hire-people-discrimil gainst: 2018-10



https://www.bloomberg.com/graphics/2016-amazon-same-day/

Fairness: Demographic Parity

Compare subpopulation proportions
(nePROVER )

often called group discrimination

Fails to identify discrimination against individuals.

Dwork et al. Fairness through awareness. ITCS 2012
Calders and Verwer. Three naive Bayes for ion. DMKD 2010.

How group discrimination can fail
Asia

X

Europe
i

#

approve loans to all deny
loans to all applicants

approve loans to all deny
loans to all applicants

European and Asian discriminations cancel each other out,
and the group discrimination measure can be 0.

Fairness: Disparate Impact

Prohibits using a facially neutral practice

that has an unjustified adverse impact on
members of a protected class.

80% rule: Employer’s hiring rates for protected
groups may not differ by more than 80%.

Zafar et al. Fairness const

traints: Mechanisms for fair classification. AISTATS 2017.

Fairness: Delayed Impact

Making seemingly fair decisions can
(but shouldn’t), in the long term,
produce unfair consequences

Liu et al., Delayed impact of fair m;

Fairness: Predictive Equalit

False positive rates should not differ

ts. FATML 2016
ness. KDD 2017

Chouldechova. Fair predlnwmdp t\mp lAldy Ibasn
t-Davies. Algorithmic deci

Fairness: Equal Opportunity

False negative rates should not differ

Hardt et al IEq ny IOpp n (y s uperised Learning. NIPS 2016
Chouldechova. Fair prediction with disparate impact: A stud icton instruments FATML 2016

Berk et al. Fai
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Fairness: Correlation

correlation(race,l APPROVED i) =0.8

mutual information(race,‘ APPROVED ]) =0.6

Correlation does not measure causation

Atlidakis et al. FairTest: Di in data-driven EuroS&P 2017

What is fairness?

Sensitive inputs should not affect
software behavior.

We want to measure causality!

Judea Pearl. Causal inference in statistics: An overview. Statistics Surveys 2009

causal testing

Sensitive inputs should not affect

software behavior.
hypc.

testing: *n’?

Galhotra, Brun, and Meliou, Fairness Testing: Testing Software for Discrimination. ESEC/FSE 2017

causal testing

No neeéfbr an oracle!
P

causal testing




Themis

How much does my software
discriminate with respect to ...?

Does my software discriminate
more than 10% of the time, and against

Themis generates a test suite or can use a manually written one

Evaluation

Eight open-source decision systems trained on two public data sets

discrimination-aware logistic regression [88]

discrimination-aware decision tree « Census income dataset:

) ! ; financial data
discrimination-aware naive Bayes [18] 45K people
il ?
discrimination-aware decision tree [91] income > $50K?
* Statlog German credit dataset:
scikit- 1K people
learn

credit data
decision tree
i i “good” or “bad” credit?
logistic regression

SVM

discrimination measures

{ causal discrimination

LOAN(T) < LoAN ()

{ ~ group discrimination

(RePROVER)
15%

~

findings

Group discrimination is not enough.

More than 11% of the individuals had the output
flipped just by altering the individual’s gender.

Decision tree trained not to group discriminate against
gender causal discriminated against gender: 0.11.

apparent discrimination

customers customers

my customers
poor
green

discriminating
customers /

my customers
rich purple

Software may discriminate, Fair software may appear to
but not for a given set of discriminate
customers (e.g., Amazon same-day delivery)

* Apparent discrimination can be group or causal,
measured on a given test suite or operational profile.

findings

Trying to avoid group discrimination

Training a decision tree not to discriminate against gender
made it discriminate against race 38.4% of the time.
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Debugging

Automated Directed Fairness Testing

ion Falsely Matched 28
Mugshe

Fair computer vision

fairkit-learn

Falrkit, Falrkit, on the Wall, Who's the Fairest of Them All?
Supporting Data Scientists in Training Fair Models

How do you flip the race
of a photo?

generate a face
so that a classifier says
the race is different

iminate generated faces
from real ones

generative adversarial machine learning

Amazon’s Face Recognition Falsely Matched 28
Members of Congress With Mugshots

berties Attorney, ACLU of Noetheen California

“The false matches were disproportionately of people of color, including six members of the
Congressional Black Caucus, among them civil rights legend Rep. John Lewis (D-Ga.).”



https://thispersondoesnotexist.com/

What are we doing now?

Fair computer vision

Fair natural
language processing
applied

But what’s the holy grail?

Provably fair machine learning:

Provide (high-probability)
guarantees that the classifier
is fair on unseen data.
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Demographic Parity
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Equal Opportunity

Equalized Odds

Classification —— Standard —— Fairlearn —— Fairness Constraints

Predictive Equality




Contributions

definition and method for measuring
software fairness

Themis, an for
fairness testing

Evaluation on real-world software, demonstrating software
is biased and

on fairness in machine learning
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