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ABSTRACT
How-To queries answer fundamental data analysis questions of the
form: “How should the input change in order to achieve the desired
output”. As a Reverse Data Management problem, the evaluation
of how-to queries is harder than their “forward” counterpart: hypo-
thetical, or what-if queries.

In this paper, we present Tiresias, the first system that provides
support for how-to queries, allowing the definition and integrated
evaluation of a large set of constrained optimization problems, specif-
ically Mixed Integer Programming problems, on top of a relational
database system. Tiresias generates the problem variables, con-
straints and objectives by issuing standard SQL statements, allow-
ing for its integration with any RDBMS. The contributions of this
work are the following: (a) we define how-to queries using possi-
ble world semantics, and propose the specification language TiQL
(for Tiresias Query Language) based on simple extensions to stan-
dard Datalog. (b) We define translation rules that generate a Mixed
Integer Program (MIP) from TiQL specifications, which can be
solved using existing tools. (c) Tiresias implements powerful “data-
aware” optimizations that are beyond the capabilities of modern
MIP solvers, dramatically improving the system performance. (d)
Finally, an extensive performance evaluation on the TPC-H dataset
demonstrates the effectiveness of these optimizations, particularly
highlighting the ability to apply divide-and-conquer methods to
break MIP problems into smaller instances.

Categories and Subject Descriptors. G.1.6 [Numerical Analy-
sis]: Optimization – Constrained Optimization; H.2.3 [Database
Management]: Languages
General Terms. Languages, Algorithms
Keywords. Constrained optimization, Tiresias, TiQL, data-driven
optimization

1. INTRODUCTION
A How-To query [21] computes hypothetical updates to the data-

base that achieve a desired effect on one or several indicators, while
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satisfying some global constraints. Key Performance Indicators
(KPI), or simply indicators, is an industry term for a measure that
evaluates the company’s performance according to some metric [8].
For example, a shipping company fills in orders by contracting with
several suppliers. One KPI is the total quantity per order and sup-
plier: the smaller the indicator, the lesser the company’s exposure
to order delays due to delivery delays from the suppliers. The KPIs
can be computed using standard SQL queries on the relational data-
base. However, company planners are constantly looking for ways
to improve these indicators. In What-if queries [18, 6] the user de-
scribes hypothetical changes to the database, and the system com-
putes the effect on the KPIs. This scenario requires the decision
maker to specify the hypothetical change, and the query will com-
pute the effect on the indicator. How-to queries are the opposite:
the decision maker specifies the desired effect on the indicators,
and the system proposes some hypothetical updates to the database
that achieve that effect. How-to queries are important in business
modeling and strategic planning, and are computationally very ex-
pensive. For example, how do I reduce the total quantity per order
and supplier to be at most 50?: to answer this query, the system
needs to propose major updates to the database of outstanding or-
ders, and present it to the user.

How-to queries are a special case of constrained optimization,
in particular Linear Programming, and Integer Programming [11].
Several mature LP/IP tools exists, and are used extensively in many
applications. However, mapping a how-to query to a linear or inte-
ger program is a non-trivial task. The program needs to model the
data in terms of integer and/or real variables, and the constraints
(both database constraints and constraints on the KPI’s) as inequali-
ties. There exists a semantic gap between the relational data model,
where the data is stored, and the linear algebra model of the LP
tools. For that reason, strategic planning in enterprises today is
done outside of, and separate from the operational databases that
supports that planning.

In this paper, we present TIRESIAS, the first how-to query en-
gine, which integrates relational database systems with a linear pro-
gramming engine. In TIRESIAS, users write a declarative query in
the TIRESIAS query language (TiQL), which is a datalog-based
language for how-to queries. The key concept in TiQL is that of
hypothetical tables, which form a hypothetical database, HDB. The
rules in TiQL are like datalog rules, but have a non-deterministic
semantics, and express the actions the system has to consider while
answering the how-to query, as well as the constraints that the sys-
tem needs to meet. Possible actions expressible in TiQL include
modifying quantity values, removing tuples, creating new tuples,
computing aggregates. Constraints can represent business rules or
desired outcomes on KPI’s. TiQL’s non-deterministic semantics
consists of the collection of all possible worlds on the HDB that
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satisfy all constraints. TIRESIAS chooses one possible world that
optimizes a specified objective function. While users write TiQL
programs, they are only exposed to the relational data model and
to familiar query constructs, such as selections, joins, aggregates,
etc. However, TiQL was designed such that everything it can ex-
press can be mapped into an linear program, or, more precisely,
into a mixed integer program, MIP, which has both real and integer
variables. We describe TiQL in Sect. 3.

The translation of TiQL into MIP is quite non-trivial, and is an
important technical contribution of this paper. At a high level, the
translation proceeds by mapping each tuple in a hypothetical rela-
tion to one or several integer variables, and mapping each unknown
attribute in a tuple of a hypothetical relation to a real variable. The
translation needs to take into account the lineage (provenance) of
each tuple, and first represent it as a Boolean expression over the
Boolean variables that encode the non-deterministic choices made
by TiQL, then covert it into integer variables and constraints. Sim-
ilarly, it needs to trace all unknown real variables, and compute ag-
gregates correspondingly. Dealing with duplicate elimination and
with key constraints further add to the complexity of the translation.
To overcome these challenges we use provenance semi-rings [16],
and the recently introduced semi-modules for aggregation prove-
nance [4]. The number of integer and real variables created by the
translation is large, and needs to be managed inside the relational
database system. We describe the translation in Sect. 4.

As expected, even robust MIP solvers cannot scale to typical
database sizes. Another key contribution of this paper is a suite
of optimizations that reduce the MIP problem sufficiently in order
to be within reach of today’s standard MIP solvers; these optimiza-
tions enabled us to scale TIRESIAS up to 1M tuples. The most
powerful optimization is a technique that splits the input problem
into several independent problems. Partitioning splits one TiQL
query into several, relatively small MIP problems, which can be
solved independently by the MIP solver. This results in huge per-
formance improvements, allowing TIRESIAS to scale to up to 1M
tuples. We also implemented other optimizations, like variable or
matrix elimination: while some of these are also done by the MIP
solver, we found that by performing them early (at the TiQL query
level as opposed to the MIP level), each such optimization results
in a ten-fold performance increase. We describe optimizations in
Sect. 5.

Finally, we report experimental evaluation of TIRESIAS on TPC-
H data in Sect. 6.

Tiresias was a mythical prophet from Thebes, in ancient Greece.
He was so wise, that the gods blinded him for accessing and re-
vealing their secrets. The TIRESIAS system is an oracle on top of a
database, allowing users to discover how to make major updates to
the database in order to improve key performance indicators.

The main contributions of this work are as follows:
• We describe the TIRESIAS system architecture for formulat-

ing and evaluating how-to queries over relational databases,
by using an MIP solver (Sect. 2).

• We introduce a new, simple declarative language, TiQL, which
can express complex how-to queries, in a datalog-like nota-
tion (Sect. 3).

• We describe a method for translating TiQL programs in MIP
programs (Sect. 4).

• We describe several optimization techniques for reducing the
size of the resulting MIP program, and improve overall exe-
cution time Sect. 5.

• Finally, we perform extensive performance evaluation of the
TIRESIAS system over the TPC-H dataset (Sect. 6).

2. ARCHITECTURE OF TIRESIAS
The architecture of TIRESIAS is shown in Fig. 1. Users write

how-to queries in TiQL(Sect. 3). This query is parsed, then trans-
lated into a Mixed Integer Program (MIP). The translation is non-
trivial, and we explain its logic in Sect. 4. From the system’s per-
spective, the translation has three parts. First, generate the set of
Core tables, whose tuples are used as templates for the variables
and inequalities in MIP (Sect. 4.2). Second, generate partition-
ing information: after a static analysis of the TiQL program, the
system decides how to partition the MIP into smaller fragments
that can be handled by the solver (Sect. 5.1). Both the core tables
and the partition information are stored in the relational database.
Third, the MIP constructor reads the core tables and the partition
information, and generates a separate problem file for each MIP
subproblem (Sect. 5.2). The MIP solver is a black-box module that
processes subproblems one at a time, and produces a solution for
each.

Finally, the results are read by a separate module (Solution Pro-
cessor), which presents the solution to the user and interacts with
her. This module is not presented in the paper.

3. TiQL
After a brief background on datalog, we illustrate TiQL by ex-

amples, then define it formally.

3.1 Background on Datalog
We denote a relational schema R = (R1, . . . ,Rm), where Ri is a

relation name (aka predicate name). We assume that each relation
name has at least one key; if no explicit key is given, then the set of
all its attributes always form a key. A database instance is denoted
I, and consists of m relations, one for each relation symbol, I =
(RI

1, . . . ,R
I
m).

We briefly review non-recursive datalog with negation [22, 23].
In datalog, predicate names are partitioned into EDBs, and IDBs
(extensional and intensional database). A single datalog rule is:

P(x̄) :- body

where P(x̄) is called the head of the rule, P is an IDB predicate,
x̄ are called head variables, and body is a conjunction of positive
or negated predicates, or arithmetic comparisons (e.g. x < y). We
will allow only EDB’s to occur under negation. The rule must be
safe, meaning that every variable must occur in a positive relational
atom on the body. Using a simple extension, see e.g. [12], we also
allow aggregate operators in the rule’s head, for example the data-
log rule

SuppSum(city,sum(qnt)) :- Supp(sk,city)

& LineItem(ok,pk,sk,qnt)

computes for each city the total quantity on all line items with sup-
pliers in that city. We only consider sum and count in this paper.
A datalog program, Q, is a list of rules. In this work, we consider
only non-recursive datalog programs, which means that the rules
can be stratified, i.e. the IDBs can be ordered (P1, . . . ,Pn) such that
any rule having Pk in the head may have only the IDBs P1, . . . ,Pk−1
in the body (in addition to any EDB predicates). Evaluation of a
stratified datalog program proceeds in a sequence of steps, one for
each stratum. Denote Qk the set of rules in stratum k, i.e. that
have the predicate Pk in the head. Given an EDB instance I, denote
Jk = (RI

1, . . . ,R
I
m,PJ

1 , . . . ,PJ
k ): that is, Jk consists of the EDBs and

the IDBs up to stratum k. Then the program computes the sequence
J1 = I,J2, . . . ,Jn, where PJ

k = Qk(Jk−1), k = 1,n. The last instance,
Jn, consists of the entire EDB and IDB instance.
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Figure 1: The TIRESIAS system architecture. Both the database and the MIP solver as treated as black box components, so TIRESIAS
can be integrated with different DBMSs and MIP tools.

3.2 TiQL by Examples
A shipping company keeps records of open order requests in a

TPC-H inspired schema [2]. Each order consists of several line
items, stored in a relation LineItem(ok,pk,sk,quant) with key
(ok,pk,sk): a record means that order ok contains a line item
where part pk will be delivered from supplier sk. Due to a change
in corporate policies, the company decides to limit the total quan-
tity per order and supplier to at most 50. The total quantity per
order and supplier is a very simple example of a KPI, and can be
computed as:

OrderSum(ok,sk,sum(qnt)) :- LineItem(ok,pk,sk,qnt)

The problem is: how should we modify the database such that all
values c in OrderSum(ok,sk,c) are <= 50?

Our first TiQL example in Fig. 2 is very simple (we will show a
more realistic program in a moment): it keeps the same line items
per order, but decreases their quantities, to ensure [c <= 50]. The
main output is a hypothetical table, called HLineItem(ok,pk,sk,q?),
which is simply a copy of LineItem but with updated quantities.
Note that the quantity attribute has a trailing question mark, q?;
such an attribute is called unknown, and it means that it needs to
be computed by TIRESIAS. We explain now the rules in Fig. 2.
The first rule copies LineItem to HLineItem, choosing q? non-
deterministically; next, a constraint asserts that quantities can only
decrease [q? <= qnt]; finally, the program computes the indicator
HOrderSum(ok,sk,c?) and asserts that [c? <= 50]. Intuitively,
this program makes a nondeterministic choice for the new quanti-
ties q?, while satisfying all constraints. There are many possible
solutions: the objective function on the last line gives a criteria for
choosing one solution, namely a solution that minimizes the sum
of all quantity differences.

A variant on this program is shown in Fig. 3, and is also very
simple: instead of decreasing the quantities, this programs keeps
the quantities unchanged but drops LineItems altogether, until [c
<= 50]. The TiQL rule

HLineItem(ok,pk,sk,qnt) :< LineItem(ok,pk,sk,qnt)

is called a reduction rule and it means that HLineItem is a non-
deterministically chosen subset of LineItem.

Finally, we show a much more realistic TiQL program in Fig. 4.
Here we will ensure that the database changes such that each or-
der keeps the same total quantity. The previous two programs re-
duced the total quantity per order, which may not be acceptable

HTABLES:

HLineItem(ok,pk,sk,q?) KEY:(ok,pk,sk)

HS(ok,pk,sk,qnt,q?) KEY:(ok,pk,sk)

HOrderSum(ok,sk,c?) KEY:(ok,sk)

RULES:

HLineItem(ok,pk,sk,q?) :- LineItem(ok,pk,sk,qnt)

HS(ok,pk,sk,qnt,q?) :- HLineItem(ok,pk,sk,q?)

& LineItem(ok,pk,sk,qnt)

[q? <= qnt] <- HLineItem(ok,pk,sk,q?)

& LineItem(ok,pk,sk,qnt)

HOrderSum(ok,sk,sum(q?)) :- HLineItem(ok,pk,sk,q?)

[c? <= 50] <- HOrderSum(ok,sk, c?)

MINIMIZE(sum(qnt-q?)) :- HS(ok,pk,sk,qnt,q?)

Figure 2: Example query Q1: A TiQL program that decreases
quantities in order to achieve a desired KPI.

in practice. To satisfy the KPI, the program changes the suppliers
in some items, while keeping everything else unchanged. The hy-
pothetical table HChooseS(ok,pk,sk,sk’) selects a new supplier
sk’ to replace sk. The rule computing HChooseS checks that the
new supplier sk’ supplies the product pk, so that we can fill in the
order from the new supplier. Notice that HChooseS has two dif-
ferent keys: the first key (ok,pk,sk) says that only one new sup-
plier sk’ is chosen for each line item; the second key ensures that
(ok,pk,sk’) will be a key for HLineItem (otherwise it would not
be a valid hypothetical change for LineItem). Finally, the objective
function requires that the total number of replacements of a sup-
plier sk with another supplier sk’ be minimized: this is equivalent
to maximizing the number of tuples that keep the same supplier,
so the objective is to maximize the number of tuples in HChooseS
where sk=sk’.

In summary, a how-to query is written in TiQL using a set of
rules that define a collection of hypothetical tables, which together
form the Hypothetical Database, HDB. The rules that populate
these tables have a non-deterministic semantics, and may involve
inserting or deleting tuples, updating attribute values, or any combi-
nation thereof. All these hypothetical changes are described declar-
atively. Constraints are specified on attributes, or on aggregates. In
addition, the user specifies an objective function that the system
needs to optimize (minimize or maximize).
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HTABLES:

HLineItem(ok,pk,sk,q) KEY:(ok,pk,sk)

HOrderSum(ok,sk,q?) KEY:(ok,pk)

RULES:

HLineItem(ok,pk,sk,qnt) :< LineItem(ok,pk,sk,qnt)

HOrderSum(ok,sk,sum(qnt)) :- HLineItem(ok,pk,sk,qnt)

[c? <= 50] <- HOrderSum(ok,sk,c?)

MAXIMIZE(count(*)) :- HLineItem(ok,pk,sk,qnt)

Figure 3: Example query Q2: A TiQL program that deletes
line items in order to achieve a desired KPI.

HTABLES:

HChooseS(ok,pk,sk,sk’) KEY:(ok,pk,sk),(ok,pk,sk’)

HLineItem(ok,pk,sk,q) KEY:(ok,pk,sk)

HOrderSum(ok,sk,q?) KEY:(ok,pk)

RULES:

HChooseS(ok,pk,sk,sk’) :- PartSupp(pk,sk’)

& LineItem(ok,pk,sk,qnt)

HLineItem(ok,pk,sk’,qnt) :- HChooseS(ok,pk,sk,sk’)

& LineItem(ok,pk,sk,qnt)

HOrderSum(ok,sk,sum(qnt)) :- HLineItem(ok,pk,sk,qnt)

[c? <= 50] <- HOrderSum(ok,sk,c?)

MAXIMIZE(count(*)) :- HChooseS(ok,pk,sk,sk)

Figure 4: Example query Q3: A TiQL program that chooses
new suppliers in order to achieve a desired KPI.

3.3 Formal Definition of TiQL
We now define formally TiQL’s syntax and semantics. A TiQL

program, T, has three parts: the HTable declarations; the rules; and
the objective function. We denote R1, . . . ,Rm the EDB predicates.

The HTable declaration lists the HDB predicates HP1, . . . ,HPn,
and for each HPk gives its attributes and its keys. The first key is
called the primary key. Each attribute is either known or unknown:
the latter are identified by a trailing ?, and may not be used in a key.
By convention, all attributes of an EDB relation are known.

A rule has one of the following forms:

HP(x̄) :- body (Deduction Rule)

HP(x̄) :< body (Reduction Rule)

[arithm-pred] <- body (Constraint Rule)

The rules are similar to datalog rules (Sect. 3.1), with the follow-
ing differences. The rule’s head is either some HPk, or an arith-
metic predicate of the form [var1 <= var2] or [var <= const]
or [const <= var] etc, where var1,var2,var are variables, and
const is a constant. To each constraint rule we associate a fresh
HDB symbol HP, whose attributes are all variables occurring in
the rule, and with no explicit key1. For example, for the con-
straint [q? <= qnt] <- HS(ok,pk,sk,qnt,q?) we create the
new HDB symbol HC(ok,pk,sk,qnt,q?): intuitively, this predi-
cate is first populated, then the constraint checked in each row.

We require the program to be stratified, in the sense that a rule
having HPk in the head may only have the HDB’s HPi with i < k
in the body; HDB predicate may not be negated in the body. We
denote Tk the set of rules in stratum k, i.e. where the head predicate

1Thus, the key is the set of all attributes.

is HPk. All rules in Tk must be of the same type, either all are de-
duction rules, or all are reduction rules, or Tk consists of only one
constraint rule; consequently, we call HPk a deductive, or a reduc-
tive, or a constraint predicate; HLineItem is deductive in Fig. 2,
and is reductive in Fig. 3, while HC introduced above is a constraint
predicate.

In every rule, variables are labeled as either known or unknown,
the latter having a trailing ?. A known variable may only occur in
positions of known attributes, and an unknown variable may only
occur in positions of an unknown attributes. By definition, an ag-
gregate is unknown, hence the attribute where it occurs must be
unknown. Intuitively, known variables are always bound to some
values from the EDB, while unknown variables will have some
non-deterministically chosen values. In every rule, the known vari-
ables must be safe: every known variable must occur in a positive
relational predicate in the body. Let HPk be the predicate in the
rule’s head. We call an attribute in the head safe if it contains a
safe variable (known or unknown); otherwise we call the attribute
unsafe; intuitively, the value of an unsafe attribute must be chosen
non-deterministically, while that of a safe attribute comes from the
rule’s body. For example, consider the rules for HLineItem and for
HS of query Q1 in Fig. 2. In both predicates the attribute q? is un-
known. However, in the first rule the attribute is unsafe, because q?
does not occur in the body, while in the second it is safe. What that
means is that the first rule must choose q? non-deterministically;
the second rule will simply copy it from the body. If multiple rules
have HPk in the head position, then we require an attribute to have
the same status, safe or unsafe, in all rules, and we denote Sk the
set of safe attributes of HPk.

Finally, the objective function is a deduction rule where the head
predicate is either MINIMIZE or MAXIMIZE, with a single attribute.
By convention, we consider the last HDB predicate, HPn, to be the
objective function, i.e. either MINIMIZE or MAXIMIZE; its key is the
empty set of attributes, (), in other words, this relation may have a
single value.

We now define the semantics of a TiQL program T. Let I =
(RI

1, . . . ,R
I
m) be an EDB instance, and J = (HPJ

1, . . . ,HP
J
n) be an

HDB instance. The semantics is a set of possible worlds J. De-
note Jk = (RI

1, . . . ,R
I
m,HPJ

1, . . . ,HP
J
k), for k = 1, . . . ,n. We compute

the sequence J0(= I),J1,J2, . . . ,Jn, where each Jk is obtained, non-
deterministically, from Jk−1 by computing the new relation, HPJ

k .
Drop all unsafe attributes from the head predicates of Tk, denoting
Ts

k the resulting rules; all rules in Ts
k have the same head predicate,

and its attributes are Sk. Thus, Ts
k(Jk−1) means “the result of apply-

ing the datalog rules Ts
k to the instance Jk−1”. We do the following,

for k = 1, . . . ,n:
• If HPk is a reduction predicate, then HPJ

k is chosen nonde-
terministically such that (a) it satisfies the key constraints,
and (b) ΠSk (HP

J
k) ⊆ Ts

k(Jk−1). In other words, compute the
datalog rules Ts

k, remove tuples non-deterministically to sat-
isfy the key constraints, and for each remaining tuple fill in
non-deterministically some values in the unsafe attributes. In
example Q2 of Fig. 3, the rule HLineItem(ok,pk,sk,qnt)
:<LineItem(ok,pk,sk,q) is evaluated by removing non-
deterministically tuples from LineItem(ok,pk,sk,q) (pos-
sibly all tuples).

• If HPk is a deduction predicate, then HPJ
k is chosen nondeter-

ministically such that it satisfies (a) and (b) above, and fur-
thermore: (c) if A is the primary key of HPk, then ΠA(HPJ

k) =
ΠA(Tk(Jk−1)). In other words, as we remove tuples non-
deterministically we must ensure that every value of the pri-
mary key is kept in the table. In example Q3 (Fig. 4), the rule
HChooseS(ok,pk,sk,sk’) :- ... is evaluated by choos-
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ing a subset such that every value (ok,pk,sk) is kept in the
output, while also ensuring that all values (ok,pk,sk’) are
unique.

• If HPk is a constraint predicate, then we simply compute HPJ
k =

Tk(Jk−1).
Finally, once we finish computing an instance J we check all

constraints, by iterating over all tuples of a constraint predicate HPk
and checking if it satisfies the corresponding [arithm-pred]. If
yes, then we call J a possible world; if not, then we reject J.

Recall that HPn is the objective function, and that HPJ
n has a single

value: we denote the latter with val(J).

DEFINITION 1. An instance J returned by the non-deterministic
algorithm above is called a possible world. WT denotes the set of
possible worlds. The answer to the TiQL program T is a possi-
ble world J for which val(J) is minimized (or, maximized, respec-
tively).

We illustrate some (fragments of) possible worlds for HLineItem
for the three example queries, and the values of their objective func-
tion in Fig. 5.

3.4 Discussion
Several formalisms exist whose semantics is based on possible

worlds. For example disjunctive datalog (DL) is a powerful exten-
sion of datalog used for knowledge representation and reasoning;
DLV is an advanced implementation of disjunctive datalog [19].
For example, key constraints can be represented in DL. Another
line of research is on incomplete databases [17]; a recent system,
ISQL [6], has a key repair construct as a primitive. For example,
consider the following TiQL program:

HTABLE S(x,y) KEY (x)

RULE S(x,y) :- R(x,y)

which selects a subset of R by enforcing the first attribute to be
a key. This program can be expressed as the following “shifted”
normal datalog program:

S(x,y) :- R(x,y), not NS(x,y)

NS(x,y) :- R(x,y), S(x,z), y != z

One can check that the stable models of this program (called an-
swer sets in [19]) are precisely the possible worlds of the TiQL
program. Similarly, it can be expressed in ISQL [6] as2:

S(x,y) :- R(x,y) REPAIR BY KEY x

Their expressive power is not the same, however. DLV expresses all
problems in ΣP

2 , while TiQL is in NP (as follows from the next sec-
tion). The evaluation problem in ISQL is also NP-hard, but TiQL
is strictly more expressive, for example ISQL doesn’t seem to be
able to express two key constraints as in:

HTABLE S(x,y) KEY (x) (y)

RULE S(x,y) :- R(x,y)

Here S computes a 1-1 matching between the x values and the y
values that is total on the x values.

In addition, TiQL can represent unknown values, which are es-
sential in how-to queries, because of their need to modify numerical
quantities; neither DL nor ISQL do that.

The most important difference between TiQL and previous for-
malisms, however, is the fact that TiQL returns one possible world,
2We adapted the ISQL syntax to a datalog notation.

while all other formalisms compute the certain answers, or possible
answers (called cautious reasoning or brave reasoning in DL [19]).
Thus, in TiQL we want to find one hypothetical database, in con-
trast to finding which tuple belongs to all. This semantics is what
is needed for how-to queries. In order to compute such a possible
world, TiQL translates the problem into a Mixed Integer Program,
as we describe next.

4. MAPPING TiQL TO MIP
TIRESIAS evaluates a TiQL program by converting it into one,

or several, Mixed Integer Programs (MIP), then invoking a MIP
solver. This translation is non-trivial, because TiQL is a declarative
language, with set semantics, while a MIP consists of linear equa-
tions over real and integer variables, and there is a large semantic
gap between the two formalisms. We describe here the translation
at the conceptual level, then present several optimizations in the
next section. The translation proceeds in three steps. First, it cre-
ates the core tables, and several integer and real variables for tuples
in the core tables. Second, it computes provenance expressions us-
ing semi-rings and semi-modules and creates combined constraints
(involving both Boolean and numerical variables). Third, it lin-
earizes all combined constraints to obtain only linear constraints.
Before presenting the translation, we give a brief overview of semi-
rings, semi-modules, and illustrate the main idea in using these to
produce the linear program.

4.1 Background: Semi-Rings and Semi-Modules
Semi-rings for provenance expressions were introduced in [16].

Recently, Amsterdamer et al. [4] extended them to semi-modules
to express the provenance of aggregate operators. A semi-module
consists of a commutative semi-ring, whose elements are called
scalars, a commutative monoid whose elements are called vectors
and a multiplication-by-scalars operation that takes a scalar x and
a vector u and returns a vector x⊗ u. We use two semi-rings in
our translation: the Boolean semi-ring (B,∨,∧,0,1), and the natu-
ral numbers semi-ring (N,+, ·,0,1): we need the former to capture
the provenance of tuples in the HDB (since TiQL has set seman-
tics) and we need the latter to express aggregate provenance. The
monoid we consider is3 SUM = (R+,+,0). It becomes an N-semi-
module by defining x⊗u = x ·u (standard multiplication).

Notice that SUM cannot be extended to a B semi-module (this was
proven formally in [4]); if we tried, then the following distributivity
law of semi-module fails: x⊗ u = (x∨ x)⊗ u 6= x⊗ u + x⊗ u. In
database terms, one cannot do duplicate elimination before aggre-
gation. Therefore, in TiQL we need both semi-rings B and N: the
first to compute the tuple provenance under set semantics, and the
second to compute the provenance of aggregate expressions.

Assume for now that each tuple t j in the database instance I is
annotated with a Boolean variable X j, and with a natural number
x j (later we will use annotations for only some tuples and values):
the two variables have the same value, X j = x j = 0/1, and mean
that the tuple is absent/present. Furthermore, each attribute A of
each the t j is annotated with a real variable v j,A. Let Q be a query
given as a datalog rule, and let t ∈ Q(I) be an output tuple. We
need the following concepts from the theory of provenance: The
set provenance expression for the output tuple t is an expression in
the Boolean semiring B over the variables X j; its value is 0/1, signi-
fying whether t is present in the output; we denote set provenance
with Φt . The bag provenance expression of t is an expression in the
semiring N over the variables xi; its value is a number representing

3We currently restrict the unknown values to be non-negative num-
bers.
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Database:
LineItem
ok pk sk quant
1 P15 S10 22
1 P24 S10 30
1 P22 S55 24
2 P15 S43 45
3 P24 S50 14
3 P22 S43 11

PartSupp
pk sk

P15 S10
P15 S13
P15 S43
P24 S10
P24 S50
P24 S55
P22 S55
P22 S43

[Q1] Possible worlds:
HLineItem-1 [13]
ok pk sk quant
1 P15 S10 22
1 P24 S10 20
1 P22 S55 24
2 P15 S43 42
3 P24 S50 14
3 P22 S43 11

HLineItem-2 [2]
ok pk sk quant
1 P15 S10 20
1 P24 S10 30
1 P22 S55 24
2 P15 S43 45
3 P24 S50 14
3 P22 S43 11

HLineItem-3 [2]
ok pk sk quant
1 P15 S10 21
1 P24 S10 29
1 P22 S55 24
2 P15 S43 45
3 P24 S50 14
3 P22 S43 11

HLineItem-4 [7]
ok pk sk quant
1 P15 S10 22
1 P24 S10 28
1 P22 S55 24
2 P15 S43 40
3 P24 S50 14
3 P22 S43 11

...

[Q2] Possible worlds:
HLineItem-1 [4]
ok pk sk quant
1 P15 S10 22
1 P22 S55 24
2 P15 S43 45
3 P22 S43 11

HLineItem-2 [5]
ok pk sk quant
1 P24 S10 30
1 P22 S55 24
2 P15 S43 45
3 P24 S50 14
3 P22 S43 11

HLineItem-3 [3]
ok pk sk quant
1 P24 S10 30
3 P24 S50 14
3 P22 S43 11

HLineItem-4 [2]
ok pk sk quant
1 P15 S10 22
1 P22 S55 24
2 P15 S43 45
3 P24 S50 14

...

[Q3] Possible worlds:
HLineItem-1 [4]
ok pk sk quant
1 P15 S13 22
1 P24 S10 30
1 P22 S55 24
2 P15 S43 45
3 P24 S50 14
3 P22 S55 11

HLineItem-2 [4]
ok pk sk quant
1 P15 S10 22
1 P24 S55 30
1 P22 S43 24
2 P15 S43 45
3 P24 S50 14
3 P22 S43 11

HLineItem-3 [5]
ok pk sk quant
1 P15 S10 22
1 P24 S50 30
1 P22 S55 24
2 P15 S43 45
3 P24 S50 14
3 P22 S43 11

HLineItem-4 [4]
ok pk sk quant
1 P15 S10 22
1 P24 S55 30
1 P22 S43 24
2 P15 S43 45
3 P24 S50 14
3 P22 S43 11

...

(a) (b)

Figure 5: An example EDB instance and some possible worlds for example queries Q1, Q2, and Q3. Each possible world is annotated
on the top right with the evaluation of the corresponding objective function.

the multiplicity of t in the output; we denote the bag provenance
ϕt . Finally, for each aggregate expression sum(A) or count(*) in
the head of the query Q, the aggregation provenance of that value
is an expression in the semi-module, using variables xi and ui,B for
some attribute B; it denotes the value of the aggregate; we denote
αt,A for the aggregation provenance. We omit the formal definitions
of Φt ,ϕt ,αt,A (they can be found in [16, 4]) and illustrate with an
example instead.

Consider the following database instance:

R A B C
a1 b1 c1 x1
a1 b2 c1 x2
a1 b3 c2 x3

S C D
c1 10 (= v1,D) y1
c2 20 (= v2,D) y2

and the query:
Q(x,sum(u),count(*)) :- R(x,y,z) & S(z,u)

Then the result has a single tuple, t = (a1,10 + 10 + 20,3) =
(a1,40,3), and we denote its attributes with A,D,E; we have:

Φt =X1Y1∨X2Y1∨X3Y3

ϕt =x1 · y1 + x2 · y1 + x3 · y3

αt,D =x1y1⊗ v1,D + x2y1⊗ v1,D + x3y2⊗ v2,D

αt,E =x1y1⊗1+ x2y1⊗1+ x3y2⊗1

(⊗ is regular multiplication; we prefer to use ⊗ to indicate that
it is the semi-module multiplication by scalars.) Φt is the set-
provenance, ϕt is the bag-provenance, and αt,D, αt,E are the ag-
gregation provenances. Here Xi,Y j represent the Boolean counter-
parts of the integer variables xi,y j. If all Boolean variables are
set to 1, then the set provenance is Φt = 1; the bag-provenance is
ϕt = 3 (it computes the multiplicity of the tuple); and the aggrega-
tion provenances are αt,D = 40, αt,E = 3. The three formulas keep
track, concisely, of how the output would change if we modify the
input (replace it with a different possible world); for example, if
we set x2 = 0 (remove the second R-tuple) and set v1,D = 5, then

αt,D = 5 + 0 + 20 = 25 and αt,E = 1 + 0 + 1 = 2. Note that ϕt
is not a linear expression, since it contains products of variables
x1 · y1: this is why we cannot use the semiring N to translate TiQL
programs to MIP. Instead, we use B, and will show how the set
provenance Φt can be linearized. The aggregation provenance ex-
pressions αt,D and αt,E are not linear either. To linearize them, we
first rewrite the query by separating the join from the aggregations:

T(x,y,z,u) :- R(x,y,z) & S(z,u)

Q(x,sum(u),count(*)) :- T(x,y,z,u)

The intermediate table T is:

T A B C D
a1 b1 c1 10 Z1
a1 b2 c1 10 Z2
a1 b3 c2 20 Z3

The Boolean provenance variables Z1,Z2,Z3 are:
Z1 = X1Y1 Z2 = X2Y1 Z3 = X3Y2

Now the aggregation provenance expressions become:
αt,D =z1⊗ v1,D + z2⊗ v1,D + z3⊗ v2,D (1)
αt,E =z1⊗1+ z2⊗1+ z3⊗1

Here zi represent the integer counterparts of Zi. We will show how
expressions like these can be linearized.

4.2 Core Tables
The first step of the translation is to compute core tables. For

each HDB predicate HPk we construct a core table CORE_HPk, k =
1, . . . ,n. Its attributes are all the known attributes of HPk (i.e. those
without ?) and no key constraints. We create a dalalog program
to compute the core tables, as follows: For each TiQL rule whose
head predicate is HPk we create a datalog rule where the head pred-
icate is CORE_HPk, and where every HDB predicate in the body is
replaced with the corresponding core table. For example, the core
tables for Fig. 4 are computed as follows:
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CORE_HChooseS(ok,pk,sk,sk’)

:- PartSupp(pk,sk’)

& LineItem(ok,pk,sk,qnt)

CORE_HLineItem(ok,pk,sk’,qnt)

:- CORE_HChooseS(ok,pk,sk,sk’)

& LineItem(ok,pk,sk,qnt)

CORE_HOrderSum(ok,sk) :- CORE_HLineItem(ok,pk,sk,qnt)

CORE_HC(ok,sk) :- HOrderSum(ok,sk,c?)

Note that the unknown attribute q? has been dropped from table
CORE_HOrderSum(ok,sk). The last core predicate, CORE_HC, is
for the constraint predicate HC, which we introduced for the con-
straint [c? <= 50] <-. . .. These queries are translated into SQL
in a straightforward way, and executed in the RDBMS; their results
are stored in new tables in the database.

LEMMA 2. Let A denote the known attributes of the HDB HPk.
Then, for every possible world J ∈WT, ΠA(HPJ

k)⊆ CORE_HPk.

PROOF. A tuple t ∈ ΠA(HPJ
k) is produced by rule Tk, when we

evaluate the TiQL program on world J. Also, all HDBs are non-
negated, hence the inclusion of a core tuple does not cause the ex-
clusion of any other core tuple, which means that t ∈ CORE_HPk.

In general, the converse does not hold. Constraints like key con-
straints or TiQL constraint rules may make it impossible for some
core table tuples to belong to any possible world.

4.3 Provenance
The next step is to compute provenance expressions for all core

tuples and their unknown attribute values, and to generate a set of
constraints. These constraints contain Boolean constraints, linear
(in)equality constraints, and (in)equality constraints over SUM semi-
module expressions. We call them combined constraints, or CC;
the next step will be to linearize them.

We start by creating the following variables:

• For each tuple ti in a core relation, create two variables: a
Boolean Xi and a binary integer variable xi. Their meaning
is: if Xi = xi = 1 then ti is present from the possible world,
if Xi = xi = 0 then ti is absent. During linearization we will
eliminate the Boolean variable Xi, but for now we will use
both. The system adds the following key CC’s (both are lin-
ear constraints):

0≤ xi ≤ 1 ∀k j : ∑
i,key(xi)=k j

xi ≤ 1

In the last line, k j ranges over key values in the core tables:
the constraint says that at most one tuple with a given key
may be selected. Let xHChooseS(ok,pk,sk,sk′) denote the binary integer
variable associated to a tuple HChooseS(ok,ps,sk,sk’) in
Fig. 4. Then we have the following two constraints:

∀ok, pk,sk : ∑
sk′

xHChooseSok,pk,sk,sk′ ≤ 1

∀ok, pk,sk′ : ∑
sk

xHChooseSok,pk,sk,sk′ ≤ 1

• For each tuple ti in a core relation and each unknown attribute
A of the corresponding HDB create a real valued variable
ui,A. The system adds the constraint ui,A ≥ 0. TIRESIAS cur-
rently does not support negative unknown values.

Next, the system generates the following provenance expressions
for each HDB predicate HPk, and each tuple ti in CORE_HPk. Below
we assume that the provenance annotation of EDB tuples is 1 (i.e.
the tuple is always present), and the value provenance of any known
attribute is a constant.
Boolean Provenance Compute the set-provenance expression Φi

for ti (Sect. 4.1).
Value Provenance For each safe, unknown attribute A of HPk cre-

ate a value-provenance expression αi,A, as follows. If A is copied
from some other attribute B of some core tuple t j, then αi,A =
u j,B; if A is an aggregate sum(B) or count(*), then αi,A is the
aggregation provenance (Sect. 4.1).
Finally, we add the following CC’s:

Value CC For each safe, unknown attribute A of HPk, add the fol-
lowing CC:

ui,A = αt,A

It simply says how the value in that attribute position was ob-
tained. For example, referring to Fig. 2, we have the following
CCs, for all values ok, pk,sk:

uHS(ok,pk,sk),q = uHLineItem(ok,pk,sk),q

uHOrderSum(ok,pk,sk),s = α(ok,pk,sk)

The first says that q? is copied from HLineItem to HS; the sec-
ond says that s? in HOrderSum is an aggregate (here α(ok,pk,sk)
is the aggregation provenance expression for sum(q?), derived
from the rule in Fig. 2).

Boolean CC For each reduction and deduction predicate HPk add
the CC:

Xi ⇒Φti (2)

It says that tuple ti can only exist if its provenance expression is
true. Notice that ti does not need to exist if Φti is true, because
HPk is defined by a reduction rule, thus any subset of tuples re-
turned by the query may be chosen for inclusion in HPk.
For deduction predicates only, add the following CC, for every
value pk of the primary key:_

pkey(ti)=pk

Φti ⇒
_

pkey(ti)=pk

Xi (3)

It says that every value of the primary key must be included.
Referring again to Q3 (Fig. 4), we have:

XHChooseS
ok,pk,sk,sk′ ⇒ 1

1⇒
_
sk′

XHChooseS
ok,pk,sk,sk′

The first CC is vacuous, because HChooseS is defined directly
in terms of EDB tables, and therefore the provenance expression
for every tuple in HChooseS is 1: the CC says that we can choose
any set of tuples. The second rule says that we must choose at
least one tuple (ok, pk,sk,sk′) for every value of (ok, pk,sk).

Constraint Rule CC If HPk is a constraint HDB predicate, then let
the corresponding contraint rule be [arithm-pred] <- body.
The [arithm-pred] is an inequality predicate: assume it is A
<= B, where we used A,B to refer to attributes in HPk or are con-
stants. Then add the following CC:

Φti ⇒(ui,A ≤ ui,B) (4)

Here ui,A,ui,B are either variables, or constants. For example,
consider the constraint rule [c? <= 50] <-. . . in Q3 of Fig. 4,
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to which we associated the HDB predicate HC(ok,sk,c?). Then
we create the CC:

Φ(ok,sk) ⇒ (vHC(ok,sk) ≤ 50)

Here Φ(ok,sk) is the set-provenance formula for a tuple in HC, and
is equal to XHLineItem

(ok,pk,sk) (see the rule defining the constraint [c?
<= 50] in Fig. 4).

4.4 Linearization
The last step is to convert the set of Combined Constraints in-

troduced in the previous section into an equivalent set of Linear
Inequality Constraints. Our task is to replace the constraints Eq. 2,
Eq. 3, Eq. 4 with linear constrains, and also to linearize the prove-
nance expression for aggregation, illustrated in Eq. 1. We proceed
in several steps.

First, we make the following transformation on all Boolean for-
mulas. We create a fresh Boolean variable for each subformula,
and add new equality constraints such that each Boolean formula
involves either only ∧, or only ∨. For example, suppose Φ =
(X1 ∧Y1)∨ (X2 ∧Y1)∨ (X3 ∧Y2) is a formula occurring in one of
the CC’s. Then we replace it with a new Boolean variable U , and
add the constraints:

U = Z1∨Z2∨Z3

Z1 = X1∧Y1 Z2 = X2∧Y1 Z3 = X3∧Y2

As a consequence, the CC’s Eq. 2 and Eq. 3 will now be of the
form X ⇒ Y , where X and Y are Boolean variables. The CC Eq. 4
has the form X ⇒ (u ≤ v) where u,v are real variables, or constant
expressions.

Second, we replace each Boolean variable Xi with its binary in-
teger counterpart xi. Every implication X ⇒ Y becomes a simple
linear inequality constraint x ≤ y. Equality constraints are handled
as follows.

Disjunction: If Y = X1∨X2∨ . . .∨Xn
Then we create the following linear constraints:

(a) ∀i, y≥ xi

(b) y≤∑
i

xi

Conjunction: If Y = X1∧X2∧ . . .∧Xn
Then we create the following linear constraints:

(a) ∀i, y≤ xi

(b) y≥∑
i

xi− (n−1)

Each CC of the form X ⇒ (u≤ v) is replaced with x⊗u≤ x⊗v.
Finally, we show how to linearize provenance expressions for

aggregations. For that we adapt a method from [11]. Given an
expression:

α =b1⊗u1 +b2⊗u2 + . . .+bk⊗uk

We create a real variable v j for each term b j ⊗ u j, and assume a
number M that is an upper bound on all u j’s. We create the follow-
ing linear constraints for v j:

v j ≤ u j

v j ≤ b jM

v j ≥ u j − (1−b j)M

Then α can be written as the sum of all v j: α = ∑
k
j=1 v j

5. OPTIMIZATIONS
In the previous section, we showed how to use the provenance

expressions of the HDB tuples in order to create linear constraints.
These comprise a complete mixed integer program that can be solved
with dedicated solvers. Even though these modern tools have evolved
through many years of research and have become increasingly more
efficient, constrained optimization remains in general a hard prob-
lem, and even modern solvers will “choke” when data grows very
large. However, TIRESIAS can exploit DB specific information in
order to improve the system performance. We will describe in this
section two separate optimizer modules, both of which result in
significant performance improvements.

5.1 Pre-processing Optimizer
Optimization problems are often comprised by independent com-

ponents that do not share variables. Assume the following simple
linear program:

max ∑
i

xi

s.t : x1 + x2 ≤ 50
x3 + x4 ≤ 50

Variables x1 and x2 do not share any constraints with variables x3
and x4, and due to the linearity of the objective function, the above
LP is equivalent to the two below:

max ∑
i

xi max ∑
i

xi

s.t : x1 + x2 ≤ 50 s.t : x3 + x4 ≤ 50

The two problems can be solved independently, and their solutions
can be combined to form the solution for the first problem. The pre-
processing optimizer takes advantage of this divide-and-conquer
technique to split very large problems into several smaller ones.

5.1.1 Partitioning
TIRESIAS’s first optimizer module analyzes the TiQL program

directly to identify possible horizontal partitionings of the data that
can be treated independently in the optimization problem. It does
so by identifying consistent partitioning attributes across the EDBs
and HDBs of the TiQL program. If a set of attributes is chosen as
a partitioning set for a relation, then the relation is horizontally par-
titioned according to the different values of the attribute set. Note
that the partitioning is not physically enforced, but rather a list of
the distinct partitioning values is stored so the MIP mapper can
later retrieve one at a time. For example, the LineItem table of
Fig. 5 can be divided in 3 partitions on attribute ok: ok=1, ok=2,
and ok=3. Out of the possible options, the optimizer will select
the one with the finest granularity, i.e. the one that leads to more
partitions. For example, between the options to partition on ok or
(ok,sk), the optimizer will select the second.

We present the pseudocode of our partitioning algorithm in al-
gorithm 1. The algorithm keeps updating the partitioning of each
relation while iterating through the TiQL program, until a stable
solution is reached. The runtime of the algorithm is not relevant
to data complexity, as the input is a TiQL program and not a data
instance. For every TiQL rule, the algorithm ensures that the fol-
lowing conditions hold:

• The head HDB and the body subgoals should have the same
partitioning set: Let A(x,y) :- B(x,y,z) be a TiQL rule. If
B is partitioned on x and A is partitioned on (x,y), we set
the partitioning of both to x. If B is partitioned on x but A
is partitioned on y (due to other rules), then there is no valid
partitioning and the algorithm will return false.
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Algorithm: Finds a maximal partitioning
Input: a TiQL program
Output: false is partitioning is impossible

1 Set the partitioning of each relation to be the union of its keys
2 Remove any aggregates from the partitioning
3 //Repeat until there is no more change
4 while something changed do
5 forall TiQL rules do
6 S = set of all subgoals and head HDB
7 P = S[0].partitioning
8 for i=1 to S.length do
9 //S(P)= attributes of S[i] that correspond to P

10 S[i].partitioning = S[i].partitioning ∩ S(P)
11 if S.partitioning = /0 AND S[i] is HDB then
12 return false

13 if S[i] is HDB then
14 P = S[i].partitioning

15 if S.partitioning changed then
16 i = 0

17 send partitioning to DB
18 return true

Algorithm 1 Finds a set of partitioning attributes if one exists,
based on the TiQL rules.

• An aggregated attribute cannot be part of a partitioning, be-
cause then the calculated value would be incorrect. For ex-
ample, if HLineItem from Fig. 3 was partitioned on qnt,
then the sum in HOrderSum would be incorrect within a par-
tition.

Queries Q1 and Q2 from the examples in Sect. 3.2 can be parti-
tioned on (ok,sk). That simply means that two tuples with differ-
ent (ok,sk) values will never appear in the same constraint, and
thus can be separated into different problems. The algorithm only
removes attributes from a partitioning when those are not shared
among all the relations in a rule. Therefore, if a partitioning set be-
comes empty, the partitioning fails. The algorithm executes on ex-
ample query Q3 roughly as follows: HLineItem can be partitioned
on ok,sk’ due to the 3rd rule, and the partitioning is propagated to
HChooseS due to the 2nd rule. From the set (ok,sk’), HChooseS
shares attribute ok with LineItem, and sk’ with PartSupp, but no
attribute is shared with both. If these were HDBs, the partition-
ing would fail, but EDBs are not required to be partitioned: their
variables are deterministic, so it is ok if they are repeated across
subproblems.

Partition grouping. Our experiments in Sect. 6 demonstrate
that partitioning results in radical improvements in query execu-
tion time, and TIRESIAS is even shown to handle MIP problems
that modern solvers to handle. Large data sizes quickly render the
solvers useless, but if a partitioning does exist, size restrictions are
entirely eliminated.

However, “extreme” partitioning can have disadvantages. Split-
ting large problems into the smallest subdivisions makes the system
I/O bound (writing and reading the MIP problem and solution files).
This effect can be alleviated by partition grouping: instead of gen-
erating a MIP problem for each partition, we can group multiple
together. We study the effect of this parameter in the experimental
section.

5.2 MIP Optimizer
The MIP mapper within the MIP constructor component applies

the mapping rules presented in Sect. 4 to generate an MIP problem

from the set of TiQL statements. This initial model is then pro-
cessed by the MIP optimizer, which can reduce the problem size.
Modern solver to an extend already perform some of these opti-
mizations, but it is much more efficient for TIRESIAS to handle
them, as is verified by our experimental results.

Elimination of Key Related Constraints. This optimization
checks whether a key CC can be eliminated. The optimizer ana-
lyzes the TiQL program and the present functional dependencies,
and determines whether key constraints are automatically satisfied
and therefore can be dropped from the MIP model. In example Q2,
the following constraint is always satisfied and can be removed:

∀ok, pk,sk : ∑
qnt

xHLineItemok,pk,sk,qnt ≤ 1

Variable Elimination. Variable elimination identifies variables
that are not necessary because they always evaluate to a specific
value, or are just equal to another attribute. Even though modern
solvers apply this optimization as well, they are at a disadvantage:
they need to analyze the entire, possibly very large, MIP problem.
In contrast, TIRESIAS can easily determine unnecessary variables
from the provenance, which is significantly faster.

Matrix Elimination. Assume the TiQL rule A(x) :- B(x,y).
Then, the provenance of each head tuple ai is ai = bi1 ∨bi2 ∨ . . .∨
biki . This lineage expression will generate the constraints ∀i,∀ j ∈
[1,ki],ai ≥ bi j. To represent these provenance constraints, Tire-
sias uses adjacency matrices that maintain the provenance informa-
tion. Let P be the n×m “adjacency” matrix over relations A and B,
with sizes n and m respectively. Pi j = 1 iff b j is in the provenance
of ai. Then the provenance constraints are written compactly as
ai ≥ Pi jb j. This is a standard format for modeling MIP constraints,
supported by the MathProg modeling language [20].

The adjacency matrix grows quadratically to the data size, and
it can become a bottleneck in the MIP processing. However, if the
TiQL rule imposes an 1-1 relationship between head and body sub-
goal, the adjacency is a simple identity matrix (possibly permuted),
and therefore unnecessary. The MIP optimizer can easily detect
whether this is the case by checking FDs and key constraints. The
optimizer also identifies (with the same tools) whether the relation-
ship is many-to-one (due to joins in the body), in which case the
adjacency matrix can be replaced by a simple vector.

6. EXPERIMENTAL EVALUATION
The first version of TIRESIAS has been implemented in Java,

and interfaces with PostgreSQL and the GNU Linear Programming
Kit (GLPK) [1] as the external MIP solver. It takes user input in
TiQL and constructs the corresponding MIP problem files, which
are then handled by the GLPK solver. The solver produces solu-
tion output files which are then parsed and linked to the CORE
tables that reside in Postgres to produce the HDB instances. Our
current version is running on single double-core machine; most of
TIRESIAS’s components are fully parallelizable, but that is part of
future work. We evaluated our system on TPC-H generated data
[2]. The TPC-H benchmark makes it easy to vary the datasize in
a meaningful way, which was essential in the evaluation of all our
parameters. We experimented with the 3 example queries presented
in Sect. 3. We modified Q1 and Q2 to make them more challenging
for performance, by leaving only ok as the group by attribute in
the HDB HOrderSum: now partitioning is possible on ok instead of
(ok,sk’), resulting in bigger problem sizes. Most of the presented
graphs analyze the results of Q1, and at the end of the section we
compare its performance with Q2 and Q3. We valuate the perfor-
mance of different parts of the system, by measuring the follow-
ing runtimes: TiQL to MIP transformation measures the total time
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(a) TiQL to MIP translation
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Figure 6: Evaluation of the options of the MIP optimizer over example query Q1. MIP optimization does not add significant overhead
to the TiQL to MIP translation time, but each optimization individually results in significant gains in the MIP solver execution times,
and consequently the total TIRESIAS runtime. The MIP solver crashes on the 5k instance when any optimization is turned off, hence
the absence of those points.

of parsing and processing the TiQL input up to the generation of
all MIP problem files. The MIP solver time measures the time the
solver takes to solve all problem files generated by one query input,
unless it is given as time per partition, in which case we measure
the time the solver takes to process a single subproblem. The MIP
construction time measures the time the MIP constructor takes to
generate a single problem file, and finally, the total Tiresias query
time is the execution time of a TiQL query from start to finish.
This is equal to the sum of the TiQL to MIP transformation plus
the total MIP solver time. All runtimes are measured in seconds.

6.1 MIP Optimizer
The MIP optimizer reduces the size of the produced problem

files with optimizations that are to some extend already incorpo-
rated in modern solvers (e.g. elimination of variables and con-
straints). Our first set of experiments explores whether there is a
benefit in performing these optimizations outside the MIP solver.
For this part, we have disabled the pre-processing optimizer, so
TIRESIAS always produces a single problem file. Fig. 6a and Fig. 6b
present the execution times of the TiQL to MIP translation, and the
MIP solver respectively, while Fig. 6c is their sum (total runtime).
We measure the performance of query Q1 when all MIP optimiza-
tions are activated in the MIP optimizer (all ON), for different sizes
of the LineItem table, ranging from 500 to 5k tuples. We then de-
activate each optimization in turn, and examine whether the MIP
solver can achieve better performance. The answer is decisively
no: removing any one of the 3 optimizations increases the execu-
tion time of the MIP solver by an order of magnitude in most cases,
which is also reflected in the total runtime. The TiQL to MIP trans-
lation is also faster with the optimizations turned on.

There are two main reasons for these observations. First, the
TiQL to MIP translation time is improved, because the optimizer
produces smaller problem files that lead to noticeable gains in I/O
cost. The second and most important reason is that TIRESIAS has a
significant advantage: it can use DB specific information like fun-
ctional dependencies to determine redundancies, whereas the MIP
solver needs to analyze the whole program in order to achieve the
same thing. Consequently, the MIP solver is much less efficient
and often unsuccessful.

6.2 Partitioning
Our next experiments study the overall system performance and

the pre-processing optimizer module. We ask the questions: how
well does TIRESIAS scale in terms of runtime performance, and

how does grouping partitions affect performance. We measure ex-
ecution times for query Q1 for various specifications of partition
grouping size and dataset size. The results are presented in Fig. 7.
Larger group sizes means that multiple partitions are grouped into a
single subproblem. This results in larger MIP problem sizes, caus-
ing the MIP solver to dominate the total query runtime. Smaller
groups result in smaller but more problem files, causing the system
to become I/O bound. The graphs indicate that the choice of group
size results in significant differences in runtime, and the ideal group
size becomes larger, the larger the dataset. In its current implemen-
tation, TIRESIAS does not pick the group size automatically, but
this will be an essential step in future work.

Figure 7 demonstrates significant improvements compared to the
results of Fig. 6, where partitioning was deactivated. As seen in
Fig. 7f, TIRESIAS can create and solve a constrained optimiza-
tion problem over 1M tuples in about 2.5 hours. Figure 8 offers
additional insight on the system scalability. The bars display the
average time taken by the MIP constructor and the MIP solver to
work on a single subproblem, when the group size is fixed to 150
partitions. We observe that the average time the solver spends on
one problem remains fairly constant (around 1sec) for datasets of
5k to 1M tuples. This is intuitive as the average size of the gen-
erated subproblems is expected to be the same across the different
datasets, as long as the underlying statistical properties of the data
do not change. Of course the number of files generated will grow
proportionally to the data size, so overall, the MIP solver runtime
will scale linearly.

The per-problem runtime of the MIP constructor time on the
other hand does not remain constant, but increases with the data
size. This is because the MIP constructor retrieves all the data
needed to generate a subproblem by issuing several database queries
(8 in the case of Q1), which become slower as the dataset grows
larger. This still means though that the MIP construction time
grows at a constant pace in relation to how regular database queries
scale. This is an important observation, as it means that the per-
formance of the TIRESIAS MIP constructor is on par with DBMS
performance. 4

Finally, the line graphs of Fig. 8 refer to the logscale y-axis on the
right, and represent the total TIRESIAS execution time for the same
settings, along with the average elapsed time until the first results
become available, which is about 3min for the largest dataset.

4This holds in the case of problems that can be partitioned.
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(a) 5,000 tuples
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(b) 10,000 tuples
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(c) 50,000 tuples
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(d) 100,000 tuples
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(e) 500,000 tuples
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(f) 1,000,000 tuples
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Figure 7: Evaluation of the partitioning optimization. TIRESIAS is shown to scale to optimization problems of very large sizes. The
effect of group size in performance is significant, which pushes for a smart algorithm for its selection.
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Figure 8: The bars demonstrate average execution time per
partition for TIRESIAS and the GLPK solver, when we set
group size equal to 150. These runtimes map to the left y-axis.
The right y-axis is in log scale and demonstrates the total exe-
cution time of the how-to query, and the projected elapsed time
to first results.

6.3 Query Comparisons
Our final set of experiments compares the runtimes of our 3 ex-

ample queries Q1, Q2, and Q3 across different data sizes, and for
two settings of the group size parameter. The results are presented
in Fig. 9. The results do not include any big surprises. Query Q2
has the fastest TiQL to MIP runtime because it has fewer variables
and constraints, so generating the problem files can be done faster
than Q1. Q3 is the most complicated of the 3, as it includes a join
with the PartSupp table, which makes the generated MIP problems
much bigger. Note that the data sizes are indicated in terms of the

number of tuples in the LineItem relation, but since Q3 involves a
second EDB, the number of actual tuples that are involved is much
larger. The most important take-away from these observations is
that even more complicated queries, with a lot of integer variables
can be handled by the system.

7. RELATED WORK
Provenance work. The lineage of tuples in query answers was

studied in [13], in the context of data warehouses. Provenance
semirings were introduced as a formal foundation for lineage in [16],
and extended to semi-modules for aggregation provenance in [4];
we use that formalism in our translation from TiQL to MIP. Lin-
eage expressions are routinely used in probabilistic databases [3,
14, 5].

Incomplete Databases and Stable Models. The highly influ-
ential work on incomplete databases [17] introduced the notion
of possible worlds and the concept of c-tables, which are essen-
tially relations where tuples are annotated with lineage expressions.
Recent work [6] introduced ISQL, an extension of SQL for writ-
ing what-if queries. Stable models are a principled way to define
semantics for datalog with negation; when extended to disjunc-
tive datalog (which extends datalog with negation) stable models
are called answer sets [19]. Both incomplete databases and stable
model semantics ask two kinds of questions: is a tuple present in all
possible worlds, or is a tuple present in some possible worlds, called
the possible answers, and the certain answers respectively. TiQL
borrows the idea of possible worlds from incomplete databases and
from stable models, but it’s semantics is different, in that it chooses
one particular possible world.

Other RDM problems. How-to queries are related to Reverse
Query Processing [9] and Reverse Data Management (RDM) [21],
which consider the “reverse” direction of data transformations given
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(a) Comparison of query runtimes (group size = 1)
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(b) Comparison of query runtimes (group size = 10)
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Figure 9: Performance comparison of the example queries over datasets of varying size. Queries Q2 and Q3 contain only integer vari-
ables, and are generally harder for the solvers to handle. Due to the partitioning optimization, TIRESIAS achieves great performance
on all 3 queries. Without partitioning, MIP solvers need multiple hours to solve an instance of Q3 on the smallest dataset.

a desired output, find corresponding changes to the input. Other ex-
amples of tasks that fall under this paradigm are view updates [10],
data generation [7], data exchange [15]. RDM problems are in gen-
eral harder than their “forward” counterparts, because the inverse
of a function is not always a function, leading to significant chal-
lenges in their definition and implementation.

Synthetic data generation and reverse query processing. The
goal of synthetic data generation is to generate a databases with
some given statistics. It is important in database performance test-
ing. One approach to synthetic data generation is reverse query pro-
cessing [9], which essentially computes the inverse of each query
operator. The approach is much more operational than TiQL, which
treats the query as a whole. A declarative approach to data genera-
tion has been described recently [7]. That approach also translates
the problem into a Linear Program and uses an LP solver to com-
pute a solution. Synthetic data generation is different from how-to
queries, because there is no input database: the input consists only
of a set of numbers, the desired statistics.

8. CONCLUSIONS
We have described TIRESIAS, a system for computing how-to

queries on relational databases. How-to queries are important in
strategic enterprise planning today, because they allow users to ex-
plore what hypothetical change to make to the database in order
to improve Key Performance Indicators for the enterprise. Queries
are written in a declarative language, TiQL, which is based on dat-
alog syntax. Query evaluation consists of translating the query into
a Mixed Integer Program, then using a standard MIP solver. The
translation is non-trivial, and is based on provenance semi-rings,
and on semi-modules for aggregate provenance. A naive translation
does not scale to large databases: we describe several optimizations
that allowed TIRESIAS to scale to one million tuples. Future work
includes parallelization, and an extension of the user interface with
the hypothetical tables.
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