
Bringing Provenance to its Full Potential using Causal Reasoning

Alexandra Meliou Wolfgang Gatterbauer
Department of Computer Science and Engineering,

University of Washington, Seattle, WA, USA
{ameli,gatter,suciu}@cs.washington.edu

Dan Suciu

Abstract

Provenance information is often used to explain query
results and outcomes, exploit results of prior reasoning,
and establish trust in data. The generality of the notion
makes it applicable in a variety of domains, including
data warehousing [7], curated databases [4], and various
scientific applications. The recent introduction of causal
reasoning in a database setting exploits provenance in
ways that expand its applicability to more complex prob-
lems, and establish new directions, making a step to-
wards achieving provenance’s full potential. In this paper
we explore through a variety of examples how causality
improves on provenance information, discuss the chal-
lenges of building causality able systems, and propose
some new directions.

1 Introduction

Understanding provenance ([9, 5, 11]) can lead to in-
teresting facts, insights, or errors, but the task becomes
harder as the data grows larger. In many cases, like sen-
sor derived data ([16]), raw provenance is simply not
adequate to provide explanations for surprising observa-
tions and errors without further analytical reasoning.

Causality is related to provenance, yet it is a more re-
fined notion that can provide reasons and explanations
for wrong or surprising results, by ranking provenance
based on the notion of responsibility. It has been dis-
cussed in relation to data provenance [15, 16, 17, 8],
and even workflow provenance [20, 19]. In this paper,
we overview the improvements that causality offers over
raw provenance, discuss through various examples sev-
eral applications that can benefit from this type of reason-
ing, and deliberate over challenges and new directions.

2 Causality Preliminaries

Causality in databases [16, 17] came as an adaptation of
established notions of causality from the AI and philoso-
phy literature [21, 14, 12]. We briefly review here some
basic notions of causality that map to database concepts.

Exogenous/endogenous. Variables can be partitioned
into an endogenous and exogenous set. Exogenous vari-
ables define the context of the problem, and are consid-
ered as external factors that are not of interest to the cur-
rent problem statement, whereas endogenous variables
are judged on their effect to the outcome. This parti-
tioning is a first step in filtering lineage: tuples, tables,
and various parts of the transformations may be deemed
irrelevant to a given provenance problem for various rea-
sons. For example, data originating from trusted sources,
or data that a user has no control over, and has no abil-
ity to change, can be regarded as exogenous, defining a
context for the problem, but not being a part of inter-
esting/relevant solutions. Thus the relevant parts of data
lineage can be drastically reduced.

Counterfactuals. Counterfactuals express a strong
dependency relationship between cause and effect, one
that is defined by a counterfactual statement: “X is a
counterfactual cause for Y, if Y would not have happened
in the absence of X”. The notion of counterfactuals can
be generalized with the use of contingencies: a tuple is a
cause, if there exists a hypothetical setting (contingency)
that makes it counterfactual.

Responsibility. A notion first defined in [10], respon-
sibility quantifies the causal relevance of a variable to
an output, based on the size of the smallest contingency
set. The responsibility ρt of a tuple t is a score in the
range [0, 1], with 1 representing counterfactual causes.
The smaller the contingency set (empty for counterfac-
tual causes), the higher the responsibility score. By con-
vention, if t is not a cause, its responsibility is 0. Re-
sponsibility is a very useful notion for provenance, as it
can quantify the contribution of tuples to a result.



3 Causality and Provenance

The notions of contingencies, responsibility, and the par-
titioning into exogenous and endogenous variables can
enrich the raw provenance information, extending its ap-
plicability to a variety of applications. Note that contin-
gencies and responsibility do not require extra informa-
tion or input, but can be computed using the base lin-
eage expressions. The exogenous/endogenous partition-
ing may be part of the user input, database or system
specifications.

In this section, we present various examples that show-
case the benefits that causality brings to provenance, and
discuss their challenges and possible new directions.

3.1 Provenance Ranking
Using causality for explaining query answers [16, 17] re-
lies on two components: discovering causes within the
endogenous tuples, and ranking those causes based on
the responsibility of the tuples in the lineage of a result.
This responsibility-based ranking is one of the most im-
portant contributions of causality to lineage, and is rele-
vant to any application, beyond explanations, that needs
to quantify contributions of variables (e.g error detec-
tion/correction). Having such a metric is crucial when
the lineage of results is large, and it becomes tedious and
impractical to manually examine it.

We will discuss an example that demonstrates how
this ranking aids in explanations of surprising results,
and error discovery. The example is based on the pub-
licly available Never Ending Language Learning (NELL)
dataset [6, 1]. The dataset contains information extracted
automatically from various online sources, and is com-
prised of one large relation (nell) with the following
attributes: entity, relation, value, iteration, probability,
source, candidate source, entity literal strings, value lit-
eral strings. For specifications on all the fields the reader
can see [1]. For our example we can focus on the first
three fields, which specify for various diverse entities,
their value under a specific context (relation). Due to
the nature of its construction, the NELL dataset contains
quite a few errors and dirty data. Figure 1 gives some
example entries from the nell table.

EXAMPLE 3.1 (NELL DATASET). A user has
downloaded the NELL dataset [6, 1], and issues various
exploratory queries. She wants to find a list of all
languages that serve as an official language to at least
one country that has multiple official languages. For ex-
ample, Belgium has both French and German as official
languages (Fig. 1), so both French and German should
appear in the query result. She issues the following
query over the nell relation:

select distinct n1.value

entity relation value

brett johnson generalizations athlete

tim burton directordirectedmovie beetlejuice

mark zuckerberg ceoof facebook

barak obama politicianholdsoffice president

belgium countrylanguage french

belgium countrylanguage german

greece countrylanguage greek

greece countrycities chania

Figure 1: Some sample tuples from the NELL database.
The actual tuple data is abbreviated for presentation pur-
poses (e.g. athlete instead of concept:athlete).

from nell n1, nell n2

where n1.relation = ‘countrylanguage’

and n2.relation = n1.relation

and n2.entity = n1.entity

and n1.value <> n2.value;

and gets the following languages in the result:
afrikaans french persian

arabic german polish

cantonese greek portuguese

english mandarin spanish

The user is surprised to see Greek and Persian in the
result set, as she believes these languages to be only spo-
ken as the single official language in Greece and Iran
respectively. The user wants to understand the reason
for this outcome, and correct any possible errors.

The responsibility ranking can provide the user with a
meaningful measure of the importance of various tuples
in a result, which can translate in more meaningful ex-
planations, or error likelihood. This is important when
the provenance of a tuple becomes large, and impractical
to manually explore. Even for the simple query of Ex-
ample 3.1, the suspicious results map to 30 base tuples.
We explain the resulting ranking in more detail only for
greek, whose provenance is much smaller.

EXAMPLE 3.2 (EXAMPLE 3.1 CONTINUED). The
user issues a causality query on the result greek, and
receives the responsibility ranking of Fig. 2. As expected
by the user, the tuple (greece, greek) (we omit the
relation value for brevity) appears as a top result in the
ranking, as it is an expected fact. However, the user
can also easily notice that a second language (English)
is also listed as an official language of the country.
Even though many Greeks do speak English, the tuple is
factually wrong. Moreover, the fact that the tuple is not
counterfactual (ρt < 1) means that there are additional
errors: apparently Greek is also listed as an official
language for Egypt, which is also a mistake. Note
that the tuple (egypt, greek) is ranked higher than
(egypt, arabic) and (egypt, persian). This is
important, as the other languages spoken in Egypt are
not as relevant to this result (only the fact that there is at
least on of them).

2



ρt tuple

0.5 (greece, countrylanguage, greek)

0.5 (greece, countrylanguage, english)

0.5 (egypt, countrylanguage, greek)

0.3 (egypt, countrylanguage, arabic)

0.3 (egypt, countrylanguage, persian)

Figure 2: Responsibility ranking for the result greek.

The responsibility ranking successfully identifies a rel-
evant fact (first tuple), and two errors (second and third
tuples). The details on how responsibility is computed,
as well as complexity results, can be found in [16]. Note
that the last tuple (egypt, persian) also happens to
be wrong, but the error is not relevant to this particular
causality query (“why is greek in the result?”).

Responsibility is a meaningful metric for explanations
in the presence of few errors. For example, if there were
multiple wrong entries for Greece, their individual re-
sponsibility would be lower. This is a natural behavior,
as we cannot assume the system to have any knowledge
of the actual semantics of the data. If the number of er-
rors overwhelms the correct tuples in a dataset, causality
as well as any scheme that does not use any other addi-
tional semantics should be expected to fare more poorly.

3.1.1 System Challenges

To support causal queries, we need to establish appro-
priate language constructs, possibly in the form of SQL
extensions. We need to be able to handle three things:
(a) specifying the output of interest (surprising or erro-
neous result), (b) the query that generated it, and (c) the
exogenous and endogenous parts of the provenance.

The last one is probably the most challenging and
interesting part of the system. The specification can be
done at the schema level (entire relations are character-
ized as endogenous/exogenous), or at the tuple level,
preferably in a declarative way. It is possible that some
specifications can be done on an administrative level, for
example if the validity of some relations or sources has
been verified, the corresponding tuples can be labeled
as exogenous. However, it is necessary that the user has
the capability to personalize her specifications, based
on the data/sources that she trusts, or provide further
specifications on a per-query basis.

Extensions. Endogenous and exogenous data is cur-
rently defined in a binary way (a tuple is either exoge-
nous or endogenous). However, some problems would
benefit from an endogenous score which quantifies an
initial scale of relevance for the base data. Instead of
specifying for example that relation R is exogenous and
S endogenous, meaning that the user is only interested
in causes in S, the user may prefer to specify a priority
score between the two tables, which would affect the fi-
nal responsibility ranking.

Accelerometer 

Cell Tower 

GPS 

Light 

Is Indoor? 

M(¬h, i < Ii)

Audio 

Periodicity p

HasSignal? h

Rate of Change r

Avg. Intensity i

Speed s

Avg. Strength a

Zero crossing rate z

Spectral roll-off c

Is Driving? 

M(p < Pd, r > Rd, h, s > Sd)

Is Walking? 

M(p > Pw, Rs < r < Rw,¬h ∨ (s < Sw))

Alone? 
(A2 ≥ a > A1) ∨ ((a > A2) ∧ (z > Z)) ∨

((a > A3) ∧ (z < Z) ∧ (c > C))

Is Meeting? 

M(¬h, i < Im, a > Am, z > Zm)

Figure 3: Structure of the classifier system used in [18].

3.2 Post-factum Cleaning
In some problem settings, dirty data cannot be detected
with traditional cleaning techniques. [18] showcases
a sensor-based context-aware recommendation engine
(CARE) that uses view-conditioned causality to trace
errors in sensory input. Errors in sensor data can go
undetected, even by an expert user, as the data lacks
context. For example, a series of values of the sensor
features (p, h, s, t, r, c, z, a, i) of Fig. 3 can resemble the
following:

(0.016,True,0.067,0,0.4,0.004,0.86,0.036,10)

(0.0009,False,0,0,0.2,0.0039,0.81,0.034,68)

(0.005,True,0.19,0,0.3,0.003,0.75,0.033,17)

(0.0008,True,0.003,0,0.1,0.003,0.8,0.038,18)

It is not clear what the context of this data is, and
whether there are errors. Even assuming that the sensors
are not faulty, it is not possible to know just by looking at
the data whether a sensor is inhibited or recording some-
thing out of context. For example, the light sensor may
be producing out-of-context readings if the user stores
his cell phone in the car’s glove compartment.

However, the presence of errors may become obvious
after the data undergoes transformations. CARE [18]
uses the extracted sensor features in a classification sys-
tem to infer the user’s current activities (e.g. walking,
driving, in a business meeting etc.), and serves him with
appropriate recommendations. Using the user’s direct
feedback or subsequent actions, the system can deter-
mine if some classifications were right or wrong. We
can use causality to perform post-factum data cleaning:
while in standard cleaning errors are corrected before the
data is transformed and integrated, in this setting the er-
rors are detected only after the transformation. In this
case we have a much richer context based on multiple
correct and incorrect results. View-Conditioned Causal-
ity conditions on the full known context of the output
result, and is better suited for error tracing problems.

3.2.1 System Challenges

In addition to the system challenges of simple causal-
ity, view-conditioned causality further requires that the

3



user be able to specify as much of the output context as
is available, labeling all known correct and incorrect re-
sults as such. This may be done on a per-tuple basis, or
declaratively in some cases. It is possible that some er-
rors can be automatically detected, e.g. the driving and
walking classifications (Fig. 3) cannot be true together.
The user should be able to specify assertion-like rules
that identify such cases, e.g. if d and w denote the driving
and walking classifications respectively, the rule could be
¬d ∨ ¬w =true. The system can then alert the user of
the existence of some error, or even attempt to automati-
cally determine the output that is most likely wrong.

Extensions. In post-factum cleaning the data under-
goes transformation before it becomes possible to detect
problems. It is possible however that some errors can still
go undetected, if they don’t happen to produce obvious
mistakes in the transformed data. In the example of [18]
the error tracing is performed “on demand”, whenever
a mistake is detected in the classification. An interest-
ing problem would be to perform post-factum cleaning
proactively. Is it possible to construct transformations
that can guarantee error detection?

3.3 Satisfying Aggregate Specifications

In some problem settings, requested changes may not
be a matter of errors, but rather desired modifications.
What-if or hypothetical queries [13, 3] attempt to address
questions of the form “How would the output change for
a proposed change in the input?”. Their stronger moti-
vation comes from the domain of business intelligence,
where they are used for strategy evaluations and deci-
sions. In an example from [3], an analyst from a bro-
kerage company wants to investigate what would be the
effect in the returns and volatility of the customer port-
folios, if during the last 3 years the company had recom-
mended buying Intel stock instead of Motorola.

As a “mirror” problem, a reverse what-if query or how-
to query would ask “How could I have achieved 10%
more return to all portfolios with the minimum num-
ber of trades”. In essence, this problem relates to find-
ing causes for aggregates. More specifically, we want to
change a specific aggregate from value A to value B, and
we need to find a contingency set in the provenance of
the aggregate that achieves that change, under some op-
timality criterion. These contingency sets would then be
counterfactual causes for changing the aggregate value
from A to B. The problem statement may actually spec-
ify multiple aggregate requirements, and possibly con-
straints that the solution should satisfy (e.g. “the total
investment amount should not exceed the current total”).
Relevant to aggregate specifications is also recent work
on the provenance of aggregates [2].

3.3.1 System Challenges

Aggregate specifications pose many interesting chal-
lenges, but due to space constraints we only discuss
here the system’s basic functionality. Our system should
have language constructs to support the following
specifications:
(a) Objective functions defining the optimization crite-

rion. A sample language construct could be:
CREATE OBJECTIVE <obj name> AS <sql expr>

(b) Multiple constraints over the solutions. An example
could be:
CREATE CONSTRAINTS <constr name> AS <sql expr>

(c) Aggregate specifications of the form:
HOW TO <aggr1> op <value1>, ...

MAX/MIN <obj name> SUBJECT TO <constr name>

If an objective function is not provided, the system can
present the user with a set of possible solutions.

4 Conclusions

In this paper, we presented a variety of provenance re-
lated problems (ranking, error-tracing, aggregate modifi-
cations) that causal reasoning can handle cleanly and ef-
fectively, and proposed new directions and various chal-
lenges related to building a causality enabled system. In
its various flavors, causality enriches provenance with
a layer of analytical reasoning, that allows us to tackle
many complex and interesting problems, making better
use of provenance’s underutilized potential.

Acknowledgements. This work was partially sup-
ported by NSF grants IIS-0915054 and IIS-0911036,
and was performed in the context of the Causality in
Databases project (http://db.cs.washington.edu/
causality/).

References
[1] NELL: Never Ending Language Learning.

http://rtw.ml.cmu.edu/rtw/.

[2] Y. Amsterdamer, D. Deutch, and V. Tannen. Provenance for ag-
gregate queries. CoRR, abs/1101.1110, 2011.

[3] A. Balmin, T. Papadimitriou, and Y. Papakonstantinou. Hypo-
thetical queries in an olap environment. In VLDB, pages 220–231,
2000.

[4] P. Buneman, J. Cheney, W. C. Tan, and S. Vansummeren. Curated
databases. In PODS, pages 1–12, 2008.

[5] P. Buneman, S. Khanna, and W. C. Tan. Why and where: A
characterization of data provenance. In ICDT, pages 316–330,
2001.

[6] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. H. Jr., and
T. M. Mitchell. Toward an architecture for never-ending language
learning. In AAAI, 2010.

[7] S. Chaudhuri and U. Dayal. Data warehousing and olap for deci-
sion support (tutorial). In SIGMOD, pages 507–508, 1997.

4

http://db.cs.washington.edu/causality/
http://db.cs.washington.edu/causality/


[8] J. Cheney. Causality and the semantics of provenance. In DCM,
pages 63–74, 2010.

[9] J. Cheney, L. Chiticariu, and W. C. Tan. Provenance in databases:
Why, how, and where. Foundations and Trends in Databases,
1(4):379–474, 2009.

[10] H. Chockler and J. Y. Halpern. Responsibility and blame: A
structural-model approach. J. Artif. Intell. Res. (JAIR), 22:93–
115, 2004.

[11] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semir-
ings. In PODS, pages 31–40, 2007.

[12] J. Y. Halpern and J. Pearl. Causes and explanations: A structural-
model approach. Part I: Causes. Brit. J. Phil. Sci., 56:843–887,
2005. (Conference version in UAI, 2001).

[13] L. V. S. Lakshmanan, A. Russakovsky, and V. Sashikanth. What-
if olap queries with changing dimensions. In ICDE, pages 1334–
1336, 2008.

[14] D. Lewis. Causation. The Journal of Philosophy, 70(17):556–
567, 1973.

[15] A. Meliou, W. Gatterbauer, J. Y. Halpern, C. Koch, K. F. Moore,
and D. Suciu. Causality in databases. IEEE Data Eng. Bull.,
33(3):59–67, 2010.

[16] A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu. The com-
plexity of causality and responsibility for query answers and non-
answers. PVLDB, 4(1):34–45, 2010.

[17] A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu. Why so?
or Why no? Functional causality for explaining query answers.
In MUD, 2010.

[18] A. Meliou, W. Gatterbauer, S. Nath, and D. Suciu. Tracing data
errors with view-conditioned causality. In SIGMOD, 2011.

[19] S. Miles, P. T. Groth, S. Munroe, S. Jiang, T. Assandri, and
L. Moreau. Extracting causal graphs from an open provenance
data model. Concurrency and Computation: Practice and Expe-
rience, 20(5):577–586, 2008.

[20] K.-K. Muniswamy-Reddy and D. A. Holland. Causality-based
versioning. TOS, 5(4), 2009.

[21] J. Pearl. Causality: models, reasoning, and inference. Cambridge
University Press, Cambridge, U.K., 2000.

5


	1 Introduction
	2 Causality Preliminaries
	3 Causality and Provenance
	3.1 Provenance Ranking
	3.1.1 System Challenges

	3.2 Post-factum Cleaning
	3.2.1 System Challenges

	3.3 Satisfying Aggregate Specifications
	3.3.1 System Challenges


	4 Conclusions

