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Abstract

The Semantic Web is the next step of the current Web where information will become
more machine-understandable to support effective data discovery and integration. Hierar-
chical schemas, either in the form of tree-like structures (e.g., DTDs, XML schemas), or in
the form of hierarchies on a category/subcategory basis (e.g., thematic hierarchies of portal
catalogs), play an important role in this task. They are used to enrich semantically the
available information. Up to now, hierarchical schemas have been treated rather as sets of
individual elements, acting as semantic guides for browsing or querying data. Under that
view, queries like “find the part of a portal catalog which is not present in another catalog”
can be answered only in a procedural way, specifying which nodes to select and how to get
them. For this reason, we argue that hierarchical schemas should be treated as full-fledged
objects so as to allow for their manipulation. This work proposes models and operators to
manipulate the structural information of hierarchies, considering them as first-class citizens.
First, we explore the algebraic properties of trees representing hierarchies, and define a lattice
algebraic structure on them. Then, turning this structure into a boolean algebra, we present
the operators S-union, S-intersection and S-difference to support structural manipulation of
hierarchies. These operators have certain algebraic properties to provide clear semantics and
assist the transformation, simplification and optimization of sequences of operations using
laws similar to those of set theory. Also, we identify the conditions under which this frame-
work is applicable. Finally, we demonstrate an application of our framework for manipulating
hierarchical schemas on tree-like hierarchies encoded as RDF/s files.

1 Introduction

The Internet is today’s greatest source of information. Huge volumes of data is posted and
retrieved through the Web. Despite this vast exchange of information, there is no consistent
and strict organization of data. This, raises difficulties for data exchange and processing. For
the Web to reach its full potential and become a universally accessible platform, the information
should have well-defined meaning.

Hierarchical schemas play an important role in this task. They are used to enrich semantically
the available information. Examples of such schemas include tree-like structures (e.g., DTDs,
XML schemas), hierarchies on a category/subcategory basis (e.g., thematic hierarchies of portal



catalogs), etc. The importance of hierarchical schemas is even more evident in the context of
Semantic Web. The Semantic Web is the next step of the current Web, where information
should become more machine-understandable to support effective data discovery, automation
and integration.

Up to now, hierarchical schemas (or simply hierarchies from now on) have been treated rather
as sets of individual elements that provide semantic guidance to the users during browsing or
querying data. However, in the Web environment, searching in a knowledge domain usually
requires information processing in more than one sources related to that domain. These sources
may employ different hierarchies to organize their data. New query requirements appear in this
context. For instance, a user may need to “find the part of a portal catalog which is not present
in another catalog”. Under the traditional view of hierarchies as a set of individual nodes, a
query like the one above can be answered only in a procedural way. That is, the user should
explicitly specify which nodes to select and how to retrieve them. For this reason, we argue that
hierarchical schemas should be treated as full-fledged objects, allowing for their manipulation
as a whole. The next section clarifies such a motivation.

1.1 Motivating Example

Adorama, B&H and RitzCamera1 are three e-market catalogs for photo equipment. Figure
1 shows parts of their hierarchy. Notice that a schema matching pre-processing identifies all
matching categories (nodes) from both catalogs. Where matching is not straightforward due to
different naming, we provide the necessary information giving the matching categories in Figures
1, 2 and 3.

One can think of various query operations on data provided by those catalogs. For example,
browsing the hierarchies to find 35mm SLR cameras in all catalogs or posing path expression
queries like /Filters/UV/“price<40”, that is find ultra-violet filters with price less than 40euros.
However, looking at the three e-marketplaces as a set of similar hierarchies with resources
relevant to photo equipment, there is a need to complement such kind of querying with operations
that manipulate structural information from hierarchies. Some examples follow:

(Q1) Find the integrated hierarchy provided by Adorama’s and B&H’ hierarchies: Such a query
has a ‘union’ flavor. Its answer should include structural information present either in
Adorama or in B&H (i.e., merging Adorama with B&H).

(Q2) Find the common part of Adorama’s and B&H’s hierarchies: Such a query has an ‘intersection’
flavor. Its answer should include structural information present in both Adorama and
B&H.

(Q3) Find the part of Adorama’s hierarchy which is not present in B&H’s hierarchy: Such a query has
a ‘difference’ flavor. Its answer should include structural information present in Adorama
but not in B&H.

(Q4) Find the integrated structural information provided by (a) the common part of Adorama’s and
B&H hierarchies, and (b) RitzCamera’s hierarchy.

Under the traditional view of hierarchies as a set of individual nodes, queries like Q1, Q2, Q3, Q4

can be answered only in a procedural way. That is, the user should specify which nodes to select
1www.adorama.com, www.bhphotovideo.com, www.ritzcamera.com
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Figure 1: Part of Adorama’s, B&H’s and RitzCamera’s hierarchy.

and how to retrieve them. In query Q2 for instance, she should explicitly retrieve all common
nodes and then construct a new hierarchy in such a way that the structural relationships are
preserved. For this reason, we argue that answering such queries requires treating hierarchies as
entities rather than set of individual nodes, and introducing a set of operators applied on hier-
archies as a whole. Looking back at the first three example queries Q1, Q2, Q3, we can identify
three operators with union, intersection and difference semantics, respectively:

• Figure 2 presents the answer to the union query Q1: a merged hierarchy from Adorama’s
and B&H hierarchies. In this new hierarchy, one can find all categories from Adorama’s
and B&H’s. In Figure 3, the hierarchy shown is produced by merging the hierarchy in
Figure 2 with RitzCameras’ hierarchy.

• Figure 4 presents the answer to the intersection query Q2: the common part of Adorama’s
and B&H hierarchies. In this new hierarchy, one can find categories common in Adorama
and B&H. For example, the new hierarchy has APS and lenses for photo, a categorization
which is applicable in both Adorama’s (just below cameras & lenses, the matching category
of photo) and B&H’s hierarchy (following the path from photo down to the leaves).

• Figure 5 presents the part of Adorama’s hierarchy not present in B&H’s hierarchy, which
is the answer to the difference query Q3. For example, the new hierarchy has negative,
slide and b&w for film, a categorization found only in Adorama.

• Finally, Figure 6 shows the answer of Q4, which is a more complex query. Notice that Q4

is actually an intersection query, followed by a union query.
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Figure 2: Merging Adorama’s and B&H’s hierarchies.

We consider such kind of query requirements as part of the generic model management frame-
work, presented in [20]. According to this framework, models are manipulated as abstractions
rather than sets of individual elements, using model-at-a-time and mapping-at-a-time operators.
However, these operators are rather high-level operators without certain algebraic properties.
There are several cases where such properties are required:

1. When applying an operator on a set of hierarchies, the result should be the same regardless
the sequence of the operations.

2. The required operators have union, intersection and difference semantics. Given that laws
similar to those of set theory hold, one should be able to transform, simplify and optimize
sequences of operations. For example, given the merged hierarchy of RitzCameras and
Adorama, and the merged hierarchy of RitzCameras and B&H’s, one could answer query
Q4 by just finding their common part, given that a kind of a distributive law holds.

3. Finally, there are several cases where we need to check whether these operations are appli-
cable in the presence of structural inconsistencies. Having for example the hierarchy H1

in Figure 1 and a similar hierarchy, but with camera to be the parent of digital, we cannot
get a merged hierarchy unless we decide what will be the new relationship between camera
and digital.

In our case, we aim to manipulate hierarchies with low-level, set-like query operators applied
on trees. We emphasize on studying their algebraic properties and providing clear semantics.
These properties can assist the transformation, simplification and optimization of sequences of
operations on hierarchies.

1.2 Contribution

The main contribution of this work is a set of low-level, query operators with set-like semantics
applied on hierarchical schemas as full-fledged objects. Specifically:
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1. We study the algebraic properties of trees representing hierarchies, based on the assump-
tion that a global tree is given. We introduce the S-subset tree relation, and we define a
partial order for hierarchies based on that relation.

2. We define the S-union and S-intersection operators to manipulate the structure of hier-
archies. Both operators are binary. Given two hierarchies, the S-union operator produces
the merged hierarchy. The S-intersection operator extracts the common part of two hier-
archies.

3. Then, we prove that the S-union and the S-intersection operators are actually the least
upper bound and the greatest lower bound of the trees involved, respectively. Using this
result, we turn the proposed partial order into a lattice.

4. We define the notion of complement trees, and we turn the lattice into a boolean lattice,
getting all properties of a boolean algebra. Also, using complements, we define the S-
difference operator. Given two hierarchies, the S-difference operator extracts the part of
the first hierarchy which is not present in the second hierarchy.

5. We give the laws that hold for these operators so that one can transform, simplify and
optimize sequences of operators. The laws are similar to those in set theory.
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6. We define a framework to ensure that similar algebraic properties and laws hold, in the
absence of a global tree. We present the conditions under which such a tree can be
constructed using the available trees.

7. We demonstrate our framework for manipulating hierarchical schemas on tree-like hier-
archies encoded as RDF/s files, using a prototype system that implements the S-union,
S-intersection and S-difference operators.

1.3 Related Work

Related issues have been considered in research areas like schema merging and integration,
ontology construction, semistructured data management and complex object management.

Schema merging and information integration is a major subject in the area of Database
Systems. Much work has been done on building an integrated schema from heterogeneous sources
using a common data model, especially using some variant of the ER model [16, 13, 18, 11, 17, 25,
12, 31]. Theoretical aspects of schema merging have been discussed in [6, 21]. Finding similarities
between objects of different schemas and dealing with semantic conflicts to support schema
matching is crucial for schema merging and information integration. For example, [10] introduces
a method to detect semantically related classes in object-oriented multidatabase systems. For
a detailed survey on schema matching issues one can see [26, 9]. Most recent research focuses
on (a) ontologies [28, 27, 12, 5, 29], where methods for ontology composition and merging are
presented (see [23] for a survey), and (b) XML schemas trees [19, 4, 7], where methods to unify
and integrate trees representing XML data are discussed. Also, in [30], the authors present
schema matching techniques for XML data using a similarity measure and relaxation labeling.
However, the presented related work is focused on the detection and resolving of semantic
conflicts to support the schema integration task in the presence of strict typed and semantically
rich schemas. Integration of schemas is considered as the task which produces a global schema
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to cover all those schemas. Our work, on the other hand, supports the construction of integrated
schemas (hierarchies), using operations with union, intersection and difference semantics. These
operations are applied on schemas as a whole, and not as a set of individual elements.

In this sense, prior research on complex object management is closely related to our work.
Complex objects propose nested relations against normalized ones in the attempt to overcome
the restrictions imposed by flat relations. A calculus for complex objects is presented in [3].
A lattice structure is defined on nested objects and operators on these objects are introduced.
However, the operators provide an extension of Horn clauses as a calculus to define formally
a path-expression query language on structures. Neither complements are suggested nor a
difference operator is defined. Operation and implementation issues for complex objects are
presented in [15]. Again the target is to modify and query the configuration of a complex
object. A join operator is introduced, similar to the relational join, but neither union, nor
intersection, nor difference operators are used. In [22], an extension of the relational algebra
is suggested to capture complex objects. Other works, like [24], model complex objects with
object-oriented schemas, and introduce class union using attribute merging, class intersection
using attribute matching and class difference using missing attributes. Generally, the main focus
of the related work in complex objects is on how to select and reconstruct substructures of the
original structures, as one can see in [1], and not on supporting structural manipulation on
structures as a whole.

1.4 Outline

Section 2 discusses modeling issues for hierarchies, studies the algebraic properties of trees
representing hierarchies, and introduces the S-union and S-intersection operators. Section 3
defines a lattice algebraic structure on these trees, and turns this structure into a boolean
algebra. Then, the section introduces the S-difference operator, and presents a set of laws hold.
Section 4 presents a framework to ensure that similar algebraic properties and laws hold in the
absence of a global tree. Section 5 demonstrates a case study for manipulating hierarchical
schemas on tree-like hierarchies encoded as RDF/s files. Finally, Section 6 concludes this paper.

2 Modeling Issues and Algebraic Properties of Hierarchies

Data on the Web are semistructured data [2], in the sense that they are schemaless and self-
describing pieces of information. Hierarchical schemas are used to semantically enrich data on
the Web. Examples of such schemas are usually tree-like structures with syntactic constraints
and type information (e.g., DTDs, XML schemas, etc), thematic hierarchies, etc. Portal catalogs
are examples that exploit thematic hierarchies to organize data, and they will be used as test
cases throughout this work.

Figure 7 shows the hierarchies S1 and S2 of two portal catalogs for photo equipment. Global
hierarchies for certain domains usually help portal administrators to build their own (local)
hierarchies. A local hierarchy is actually a part of a global hierarchy, having only the categories
needed according to the application requirements. This prevents the existence of structural
inconsistencies in local hierarchies. Figure 8 presents an example of a global hierarchy S for
photo equipment. The hierarchies S1 and S2 (Figure 7) are parts of S. Simple name mismatches
can be easily resolved using some schema matching tool (see related work). For example, Single
Reflex and ultra violet in S1 are matched to SLR and uv in S2, respectively. On the other hand,
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if such a global hierarchy is not available, structural inconsistencies may occur. See for example
the catalog S1 in Figure 7. The author of another catalog similar to S1 might prefer having the
categorization new and second hand as a top level choice during browsing.

Next, we study the algebraic properties of trees representing hierarchies. Initially, we assume
that there is a global hierarchy available for the specific application domain or community. In
Section 4, we relax this assumption.

2.1 Hierarchies as Tree-like Structures

We consider hierarchies as tree-like structures. Figures 7 and 8 show examples of such trees that
we will use throughout this work as presentation examples. We note that similar labels are used
for nodes in one hierarchy that match nodes of another hierarchy.

Definition 2.1. A tree, T is (a) a root node r or (b) a root node r and a set E of edges,
E = {e1, e2, . . . , ek}, with e1 : r → r1, e2 : r → r2, . . . ek : r → rk, where r1, r2, . . . rk are root
nodes of k (sub)trees.

A function label(n) assigns a string label as the identifier for every node n of T . Especially
for r, label(r) =root. The tree that has root r as its only node is denoted as T0. Node A is
the parent of node B, denoted as p(A,B), if there is a direct edge from A to B. Node A is an
ancestor of node B, denoted as a(A,B), if there is a direct path of k edges, k > 1, from A to B.
A tree T with nodes N = {n1, n2, . . . , nk} and root r can be represented as a relation P on the
set {r} ∪N , denoted as 〈{r} ∪N,P〉: xPy holds if p(x, y) holds, that is node x is the parent of
node y, with x, y ∈ {r} ∪N .
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Figure 7: Catalogs S1, S2 and their representative trees T1 and T2.
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Two trees are equal if they have the same nodes and the same structural relationships among
them, as the following definition shows.

Definition 2.2. Ti = Tj, iff Ni = Nj and ∀x, y ∈ {r} ∪Ni with xPiy then xPjy.

Ptr denotes the transitive closure of P, that is xPtry holds if for any elements x, y ∈ {r}∪N
there exist c0, c1, . . . , cn with c0 = x, cn = y and cpPcp+1 for all 0 ≤ p < n.

We now define the S-subset (⊆s) relation for 2 trees. Intuitively, when T1 ⊆s T2, all nodes
of T1 exist in T2. Also, by deleting all nodes of T2 not present in T1 and moving their children
in higher levels we will obtain T1.

Definition 2.3. A tree Ti = 〈{r}∪Ni,Pi〉 is an S-subset of a tree Tj = 〈{r}∪Nj ,Pj〉, denoted
as Ti ⊆s Tj, if ∀x, y ∈ {r} ∪Ni with xPiy then xPtr

j y and if ∀x, y ∈ {r} ∪Ni with xPtr
j y then

xPtr
i y. Especially for T0, T0 ⊆s T for any T = 〈{r} ∪N,P〉.
For example, in Figure 9, T1 ⊆s T3. T1 can be constructed by deleting nodes D and C from

T3 and moving E and F up in a higher level. T2 *s T3 since p(E, C) holds in T2 but not in T3.
Also, T2 *s T4 since p(root, C) in T4 but a(root, C) in T2. This latter example is a case where
the second requirement of Definition 2.3 is neccessary. Note that by examining only the first
requirement would give T4 ⊆s T2.

We next present two lemmas needed for subsequent theorems. According to the first one,
two trees are equal if they have the same number of nodes and are related with an S-subset
relation. According to the second one, the node set of a tree is a subset of the node set of
another one if these two trees are related with an S-subset relation.

Lemma 2.1. Let Ti = 〈{r} ∪ Ni,Pi〉 and Tj = 〈{r} ∪ Nj ,Pj〉 be two trees. If Ni = Nj and
Ti ⊆s Tj then Ti = Tj.

Proof. Directly from Definitions 2.3 and 2.2.
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Lemma 2.2. Let Ti = 〈{r}∪Ni,Pi〉 and Tj = 〈{r}∪Nj ,Pj〉 be two trees where Ti ⊆s Tj. Then,
Ni ⊆ Nj.

Proof. Directly from Definition 2.3.

Let TG = 〈{r} ∪NG,PG〉 be a tree which we call global tree and SG = {Ti : Ti ⊆s TG}, that
is all trees which are S-subsets of TG. Figure 8 shows an example of a global tree TG and Figure
7 shows trees T1 and T2, with T1 ⊆s TG and T2 ⊆s TG. Note that SG includes T0, which is the
tree with only one node (its root), and TG. Based on the following Theorem 2.1, we claim that
the set SG equipped with the relation ⊆s, 〈SG,⊆s〉, is a partial order.

Theorem 2.1. The ⊆s relation on SG, 〈SG,⊆s〉, is reflexive (Ti ⊆s Ti), antisymmetric (Ti ⊆s Tj

and Tj ⊆s Ti imply Ti = Tj), and transitive (Ti ⊆s Tj and Tj ⊆s Tk imply Ti ⊆s Tk).

Proof. Reflexivity holds (directly from Definition 2.3). Antisymmetry holds: if Ti ⊆s Tj and
Tj ⊆s Ti, then Ni ⊆ Nj and Nj ⊆ Ni, and, thus, Ni = Nj . Given Ti ⊆s Tj and Ni = Nj , Ti = Tj

holds (Lemma 2.1). Transitivity holds, too. If Ti ⊆s Tj and Tj ⊆s Tk, then

∀x, y ∈ {r} ∪Ni with xPiy ⇒ xPtr
j y (1)

∀x, y ∈ {r} ∪Ni with xPtr
j y ⇒ xPtr

i y (2)

∀x, y ∈ {r} ∪Nj with xPjy ⇒ xPtr
k y (3)

∀x, y ∈ {r} ∪Nj with xPtr
k y ⇒ xPtr

j y (4)

From (1), for all x, y ∈ {r}∪Ni with xPiy, there exist c0 = x, c1, . . . , cn = y with cpPjcp+1 for all
0 ≤ p < n. For n = 1, xPjy holds, and, thus, (3) gives xPtr

k y. For n > 1, xPjc1, c1Pjc2, . . . , cn−1Pjy
hold, thus (from (3))

(for xPjc1) ∃ c1
0 = x, c1

1, . . . , c
1
k1 = c1 so that xPkc

1
1, c

1
1Pkc

1
2 . . . c1

k1−1Pkc1, and
(for c1Pjc2) ∃ c2

0 = c1, c
2
1, . . . , c

2
k2 = c2 so that c1Pkc

2
1, c

2
1Pkc

2
2, . . . , c

2
k2−1Pkc2, and

. . .
(for cn−1Pjy) ∃ cn

0 = cn−1, c
n
1 , . . . , cn

kn = y so that cn−1Pkc
n
1 , cn

1Pkc
n
2 , . . . , cn

kn−1Pky,

that is xPtr
k y holds. So, in any case (n = 1 or n > 1): ∀x, y ∈ {r} ∪ Ni with xPiy,⇒ xPtr

k y,
that is the first requirement of Definition 2.3 is fulfilled. We next explore the second require-
ment of Definition 2.3. Using Lemma 2.2, we get Ni ⊆ Nj , so (4) holds for all x, y ∈ {r}∪Ni, too:
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∀x, y ∈ {r} ∪Ni with xPtr
k y ⇒ xPtr

j y, thus (using (2))
∀x, y ∈ {r} ∪Ni with xPtr

k y ⇒ xPtr
i y,

that is the second requirement of Definition 2.3 is fulfilled, too.

We note that the partial order 〈SG,⊆s〉 has T0 as its bottom element ⊥, and TG as its top
element > (⊥ ⊆s Ti and Ti ⊆s > for all Ti ∈ SG). We next define the first two binary operators
for structural manipulation of trees in SG: S-union and S-intersection.

2.2 S-union (∪s)

Intuitively, the S-union of two trees Ti, Tj ∈ SG, Ti ∪s Tj , is the tree T ∈ SG which provides
integrated structural information from Ti and Tj . Figure 10 presents an example of an S-union
operation on trees T1 and T2, both S-subsets of TG (Figure 8), resulting to the tree T3 = T1∪sT2.
T3 contains all nodes from both trees T1 and T2. The structural relationships in T3 can be
determined as follows. In case of relationships of different type which involve the same pair of
nodes in T1 and T2, only the ancestor ones are preserved in T3. For example, since a(B,D)
exists in T1 and p(B, D) exists in T2, T3 keeps a(B, D). All the other structural relationships in
T1 and T2 are preserved in T3.
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Figure 10: Union operation: T3 = T1 ∪s T2.

A more interesting case is presented in Figure 11, which shows a variation of trees T1 and T2

used in the previous example. Note that the new T1 lacks node H, while T2 lacks node F . T ′3 is
the tree produced by T1 ∪s T2, following the same way to determine the structural relationships
as in the previous example. However, since T ′3 lacks p(F,H) which is present in TG, T ′3 *s TG.
Thus, T1 ∪s T2 should also contain relationships neither present in T1 nor in T2, but imposed
by TG, like for example p(F, H). Taking p(F, H) into consideration, we get T3 (Figure 11). The
formal definition for the S-union operation follows.

Definition 2.4. Let Ti = 〈{r}∪Ni,Pi〉 and Tj = 〈{r}∪Nj ,Pj〉 be two trees in SG. The S-union
of Ti and Tj, Ti ∪s Tj, is the tree T = 〈{r} ∪N,P〉 constructed as follows:

• N = Ni ∪Nj:
T has all nodes from both Ti and Tj.

• xPy if xPGy, with x, y ∈ {r} ∪N :
T keeps all parent structural relationships p(x, y) from TG that involve nodes x, y present
in either Ti or Tj.
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Figure 11: Union operation: T3 = T1 ∪s T2.

• xPy, if ¬xPGy, and xPtr
G y, and all c1, c2, . . . , cn−1 in

xPGc1, c1PGc2, . . . , cn−1PGy, n ≥ 2, are not in N (x, y ∈ {r} ∪N):
T uses as parent relationships all ancestor relationships a(x, y) from TG that involve nodes
x, y present in either Ti or Tj, in the path of which all nodes belong neither to Ti nor to
Tj.

We note that

1. (Ti ∪s Tj) ⊆s TG, thus (Ti ∪s Tj) ∈ SG.

2. (Ti ∪s Tj) is an upper bound of {Ti, Tj} ⊂ SG, i.e. Ti ⊆s (Ti ∪s Tj) and Tj ⊆s (Ti ∪s Tj),
since by the way we construct Ti ∪s Tj , it keeps all parent relationships p(x, y) from TG

that involve nodes x, y present either in Ti or in Tj .

3. We can construct T1∪sT2, with T1 = 〈{r}∪N1,P1〉 and T2 = 〈{r}∪N2,P2〉, by deleting all
nodes of TG not present in N1 ∪N2 and moving their children in higher levels accordingly.
This task can be performed by traversing TG, e.g., using depth-first search, and checking
whether each visited node exists in N1∪N2. Assuming a hash-based check, the cost for the
union operation is O(|V |+ |E|), where |V | is the number of nodes and |E| is the number
of edges in TG.

2.3 S-intersection (∩s)

Intuitively, the S-intersection of two trees Ti, Tj ∈ SG, Ti ∩s Tj , is the tree T ∈ SG which
provides structural information common in Ti and Tj . Figure 12 presents an example of an S-
intersection operation on trees T1 and T2, both S-subsets of TG (Figure 8), resulting to the tree

12



T3 = T1 ∩s T2. T3 contains all common nodes in trees T1 and T2. The structural relationships
in T3 can be determined as follows. In case of relationships of different type which involve the
same pair of nodes in T1 and T2, only the parent ones are preserved in T3. For example, since
a(B,D) in T1 and p(B,D) in T2, T3 keeps p(B, D). An ancestor relation that involves the same
pair (x, y) of nodes in T1 and T2 is preserved in T3 only if the set of nodes after x and before
y in T1 is the same with the set of nodes after x and before y in T2. Otherwise, it becomes a
parent relation in T3. For example, since a(C, H) in T1, a(C, H) in T2 and node F is a common
node in T1 and T2, T3 keeps a(C, H). The definition for the S-intersection operation follows.
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Figure 12: Intersection operation: T3 = T1 ∩s T2.

Definition 2.5. Let Ti = 〈{r} ∪ Ni,Pi〉 and Tj = 〈{r} ∪ Nj ,Pj〉 be two trees in SG. The
S-intersection of Ti and Tj, Ti ∩s Tj, is the tree T = 〈{r} ∪N,P〉 constructed as follows:

• N = Ni ∩Nj:
T has all nodes common in Ti and Tj.

• xPy if xPGy, with x, y ∈ {r} ∪N :
T keeps all parent structural relationships p(x, y) from TG that involve nodes x, y present
in both Ti and Tj.

• xPy, if ¬xPGy, and xPtr
G y, and all c1, c2, . . . , cn−1 in

xPGc1, c1PGc2, . . . , cn−1PGy, n ≥ 2, are not in N (x, y ∈ {r} ∪N):
T uses as parent relationships all ancestor relationships a(x, y) from TG that involve nodes
x, y present in both Ti and Tj, in the path of which all nodes do not belong to the set of
common nodes of Ti and Tj.

We note that

1. (Ti ∩s Tj) ⊆s TG, thus (Ti ∩s Tj) ∈ SG.

2. (Ti∩s Tj) is a lower bound of {Ti, Tj} ⊂ SG, i.e. (Ti∩s Tj) ⊆s Ti and (Ti∩s Tj) ⊆s Tj , since
by the way we construct Ti ∩s Tj , it keeps only the parent structural relationships p(x, y)
from TG that involve nodes x, y present in both Ti and Tj .

3. Similarly to S-union, we can construct T1 ∩s T2, with T1 = 〈{r} ∪ N1,P1〉 and T2 =
〈{r} ∪ N2,P2〉, by deleting all nodes of TG not present in N1 ∩ N2 and moving their
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children in higher levels accordingly.
The cost for the intersection operation is O(|V |+ |E|), where |V | is the number of nodes
and |E| is the number of edges in TG.

3 Hierarchies as Algebraic Structures

This section goes further by using the ∪s and ∩s operators to show that the partial order 〈SG,⊆s〉
is a lattice and keeps the properties of a boolean algebra. In the previous section we showed
that ∪s gives an upper bound, and ∩s gives a lower bound of the two trees from SG involved in
these two operations. As Theorem 3.1 shows, ∪s gives the least upper bound, while ∩s gives the
greatest lower bound.

Theorem 3.1. Let Ti = 〈{r} ∪Ni,Pi〉 and Tj = 〈{r} ∪Nj ,Pj〉 be two trees in SG. The set of
all upper bounds of SG is Su

G = {Tk ∈ SG : Ti ⊆s Tk and Tj ⊆s Tk}. The set of all lower bounds
of SG is S l

G = {Tk ∈ SG : Tk ⊆s Ti and Tk ⊆s Tj}. Then

1. (Ti ∪s Tj) ⊆s Tp, for all Tp in Su
G, that is Ti ∪s Tj gives the least upper bound of Ti and

Tj,

2. Tp ⊆s (Ti ∩s Tj), for all Tp in S l
G, that is Ti ∩s Tj gives the greatest lower bound of Ti and

Tj.

Proof. Let T be a tree for which T ⊆s (Ti ∪s Tj), Ti ⊆s T and Tj ⊆s T . The node set N of T
is a subset of the node set N ′ of Ti ∪s Tj : N ⊆ N ′ (Lemma 2.2). If N ⊂ N ′, neither Ti ⊆s T
nor Tj ⊆s T can hold. If N = N ′, T = Ti ∪s Tj (Lemma 2.1). So there is not such a tree T
other than Ti ∪s Tj . Similarly, we can show that there is not a tree T for which (Ti ∩s Tj) ⊆s T ,
T ⊆s Ti and T ⊆s Tj .

The least upper bound and the greatest lower bound exist for all trees Ti, Tj in the partial
order on SG equipped with the relation ⊆s, 〈SG,⊆s〉. Thus, 〈SG,⊆s〉 is a lattice.

Theorem 3.2. The SG equipped with the relation ⊆s, 〈SG,⊆s〉 is a lattice.

Proof. Directly from Theorems 2.1 and 3.1.

Since 〈SG,⊆s〉 is a lattice, idempotency, commutative, associative and absorption laws
hold [8], as Table 1 shows. We note (see [8]) that for any a, b, c in a lattice 〈L,≥〉, with ∨
denoting the least upper bound and ∧ the greatest lower bound,

a ∧ (b ∨ c) ≥ (a ∧ b) ∨ (a ∧ c) (5)

and
a ∨ (b ∧ c) ≥ (a ∨ b) ∧ (a ∨ c) (6)

that is equality in the distributive laws for lattices does not hold in general. Theorem 3.3 shows
that 〈SG,⊆s〉 is a distributive lattice, that is the distributive laws hold (see Table 1).

Theorem 3.3. The SG equipped with the relation ⊆s, 〈SG,⊆s〉, is a distributive lattice.
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Idempotency laws Ti ∩s Ti = Ti

Ti ∪s Ti = Ti

Commutative laws Ti ∩s Tj = Tj ∩s Ti

Ti ∪s Tj = Tj ∪s Ti

Associative laws Ti ∩s (Tj ∩s Tk) = (Ti ∩s Tj) ∩s Tk

Ti ∩s (Tj ∩s Tk) = (Ti ∩s Tj) ∩s Tk

Absorption laws Ti ∩s (Ti ∪s Tj) = Ti

Ti ∪s (Ti ∩s Tj) = Ti

Distributive laws Ti ∪s (Tj ∩s Tk) = (Ti ∪s Tj) ∩s (Ti ∪s Tk)
Ti ∩s (Tj ∪s Tk) = (Ti ∩s Tj) ∪s (Ti ∩s Tk)

De Morgan’s laws Ti −s (Tj ∪s Tk) = (Ti −s Tj) ∩s (Ti −s Tk)
Ti −s (Tj ∩s Tk) = (Ti −s Tj) ∪s (Ti −s Tk)

Table 1: Laws hold for 〈SG,⊆s〉.

Proof. Let Ti = 〈{r}∪Ni,Pi〉, Tj = 〈{r}∪Nj ,Pj〉, and Tk = 〈{r}∪Nk,Pk〉, all members of SG.
Also, let T1 = Ti∪s (Tj ∩s Tk) = 〈{r}∪N1,P1〉 and T2 = (Ti∪s Tj)∩s (Ti∪s Tk) = 〈{r}∪N2,P2〉.
Using Definitions 2.4 and 2.5, N1 = Ni ∪ (Nj ∩ Nk) and N2 = (Ni ∪ Nj) ∩ (Ni ∪ Nk), thus
N1 = N2.

Recall that the output of an S-union (or S-intersection) operator is the tree constructed
by deleting all nodes of TG not present in the union of nodes in the involved trees (or in the
intersection of nodes in the involved trees) and moving their children in higher levels accordingly.
Thus, since T1 and T2 involve the same nodes from TG, T1 = T2.

We next provide 〈SG,⊆s〉 with additional structure to support complements.

3.1 Complements

Intuitively, the complement of a tree Ti ∈ SG is the tree T ′i ∈ SG which provides structural
information present in TG and not in Ti. Figure 13 presents the complement T ′1 of tree T1 =
〈{r} ∪N1,P1〉 (see Figure 7 for T1 and Figure 8 for TG). T ′1 keeps the root of TG and all of its
nodes not present in T1. We note that given Ti, T ′i in SG, Ti ∩s T ′i = 0 and Ti ∪s T ′i = 1, where

root

N P S

W

K

R

M

V

T

U

T'1

Figure 13: T ′1: the complement of T1.

0 and 1 are two unique trees in SG.

Theorem 3.4. Let Ti = 〈{r} ∪Ni,Pi〉 be a tree in SG, 0 ≡ T0 and 1 ≡ TG = 〈{r} ∪NG,PG〉.
The tree T ′i = 〈{r} ∪N ′

i ,P ′i〉, constructed as follows, is the unique complement of Ti:

• N ′
i = NG −Ni:

T ′i has all nodes present in TG and not in Ti.
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• xP ′iy if xPGy, with x, y ∈ {r} ∪N ′
i :

T ′i keeps all parent structural relationships p(x, y) from TG that involve nodes x, y present
in TG but not in Ti.

• xP ′iy, if ¬xPGy and xPtr
G y and all c1, c2, . . . , cn−1 in

xPGc1, c1PGc2, . . . , cn−1PGy, n ≥ 2, are not in N ′
i (x, y ∈ {r} ∪N ′

i):
T uses as parent relationships all ancestor relationships a(x, y) from TG that involve nodes
x, y present in TG but not in Ti, in the path of which all nodes do not belong to the set
nodes present in TG but not in Ti.

Proof. T ′i ⊆s TG, thus T ′i ∈ SG. The root node r is the only common node of Ti and T ′i , thus
T0 ≡ 0 = Ti ∩s T ′i . (Ti ∪s T ′i ) ⊆s TG and (Ti ∪s T ′i ) has the same number of nodes with TG,
thus Ti ∪s T ′i = TG ≡ 1 (see Lemma 2.1). Finally, since 〈SG,⊆s〉 is a distributive lattice, the
complement found for every tree is unique [8].

We can cosntruct T ′1 by deleting all nodes of TG not present in NG − N1 and moving their
children in higher levels accordingly. The cost for the operation is O(|V |+ |E|), where |V | is the
number of nodes and |E| is the number of edges in TG.

Since 〈SG,⊆s〉 (a) is a distributive lattice, (b) has 0 ≡ T0 and 1 ≡ TG, and (c) each Ti in
SG has a unique complement Ti in SG, it is also a boolean lattice [8], getting all properties of a
boolean algebra.

Theorem 3.5. The SG equipped with the relation ⊆s, 〈SG,⊆s〉 is a boolean lattice.

Proof. Directly from Theorems 3.3 and 3.4.

Exploiting the complements, we next define the last binary operator for structural reasoning
on trees representing hierarchies: S-difference.

3.2 S-difference (−s)

Intuitively, the S-difference of two trees Tj , Ti ∈ SG, Tj−sTi, is the tree which provides structural
information present in Tj and not in Ti. Figure 14 presents an example of an S-difference
operation resulting to the tree T3 = T2 −s T1. T3 can be constructed using complements:
T3 = T2 ∩s T ′1. The definition for the S-difference operation follows.
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Figure 14: Difference operation: T3 = T2 −s T1.
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Definition 3.1. Let Ti = 〈{r} ∪ Ni,Pi〉 and Tj = 〈{r} ∪ Nj ,Pj〉 be two trees in SG. The
S-difference of Tj and Ti, Tj −s Ti, is the tree T = Tj ∩s T ′i .

Since 〈SG,⊆s〉 is a boolean lattice, the De Morgan’s laws hold [8]. Table 1 shows all laws
hold for 〈SG,⊆s〉.

3.3 Motivating Example Revisited

Based on the motivating example of the introduction, we now express the queries mentioned
there (see Figures 1, 2, 4, 5, 6) using the S-union, S-intersection and S-difference operators. For
the presented examples, TG is the tree of Figure 3.

1. Merge Adorama’s and B&H catalogs: H1 ∪s H2.

2. Find the common part of Adorama’s and B&H catalogs: H1 ∩s H2.

3. Find the part of Adorama’s catalog which is not present in B&H’s catalog: H1 −s H2.

4. Merge RitzCamera’s catalog with the common part of Adorama’s and B&H catalogs: H3 ∪s

(H1 ∩s H2).

Two more complicated examples follow:

1. Find the part of Adorama’s catalog which is not present in the merged catalog produced from
B&H’s and RitzCameras catalogs: H1 −s (H2 ∪s H3).
According to Definition 3.1, H1 −s (H2 ∪s H3) = H1 ∩s (H2 ∪s H3)′. The nodes involved
in (H2 ∪s H3)′ are: caps, hoods, Close Up, UV, PL, film, B&W, slide. Figure 15 illustrates
H2 ∪s H3 as well as the final result.

2. Take the part of Adorama’s catalog which is not present in B&H’s catalog and the part of
Adorama’s catalog which is not present in RitzCameras catalog, and find their common part:
(H1 −s H2) ∩s (H1 −s H3).
Figure 16 shows the intermediate results H1−s H2 = H1 ∩s H ′

2 and H1−s H3 = H1 ∩s H ′
3,

as well as the final result.

Notice that the result of the last two queries is the same, since the De Morgan’s laws hold (see
Table 1).

4 Lacking TG

In the previous sections, we studied the algebraic properties of trees representing hierarchies of
portal catalogs, based on the assumption that all of these trees are S-subsets of a tree available for
the specific application domain or community, called global tree. Next, we present a framework
to ensure that similar properties and laws hold in the absence of a global tree. Our target is to
construct such a valid global tree TG based on the available trees in such a way that all trees
are S-subsets of that TG.

The task resembles the S-union operation presented in Section 2.2 in the sense that the
constructed TG should provide integrated structural information from all available trees rep-
resenting hierarchies of portal catalogs. Figure 17 shows trees T1 and T2 and the constructed
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Figure 15: Example 1.

tree TG. TG contains all nodes from both T1 and T2. The structural relationships in T3 are
determined similarly to those determined in an S-union operation. However, contrary to the
S-union operation, the construction of TG is based on the structural relationships coming only
from the available trees. The construction of TG, given two trees Ti and Tj , is formalized as
follows.

Definition 4.1. Let Ti = 〈{r} ∪Ni,Pi〉 and Tj = 〈{r} ∪Nj ,Pj〉 be two trees. The global tree
of Ti and Tj is the tree TG = 〈{r} ∪NG,PG〉, constructed as follows:

• NG = Ni ∪Nj:
TG has all nodes from both Ti and Tj.

• xPGy if xPiy and xPjy, with x, y ∈ {r} ∪NG:
TG keeps all parent relationships p(x, y) common to both Ti and Tj.

• xPGy, if xPiy and ¬xPtr
j y, or if xPjy and ¬xPtr

i y (x, y ∈ {r} ∪NG):
TG keeps all parent relationships p(x, y) from Ti (Tj) that involve nodes x, y related neither
with parent p(x, y) nor with ancestor relationship a(x, y) in Tj (Ti).

Consider now the trees T2 and T5 in Figure 18. During TG construction, how one can handle
p(E, C) and p(F, C) without any information about the structural relationship between E and
F? See also the trees T2 and T3 in Figure 18, where p(E, C) in T2. Nodes E and C are children
of the same node in T2. Should we keep p(E, C) or just consider E, C as children of the root of
TG? To deal with such issues, we introduce the notions of consistency and semantic compatibility
for trees.
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Figure 17: Trees T1 and T2 and the constructed tree TG.

4.1 Consistency

Consistency ensures that the involved trees will not include nodes whose structural relationships
are in conflict. For example, trees T2 and T3 in Figure 18 are not consistent, since p(E, C) in
T1, while E, C are children of the root of T2. First we define consistency on a pair of trees,
and then we expand the definition for a set of trees. The former is not enough for ensuring
the construction of a TG without structural conflicts. See the example of trees T1, T2 and T3 in
Figure 19. Constructing T 23

G from T2 and T3, and then TG from T1 and T 23
G , gives a TG without

structural conflicts. On the other hand, constructing T 12
G from T1 and T2, and then TG from T 12

G

and T3, is vague due to nodes B and C. Intuitively, two trees are consistent if for every pair of
their common nodes, the type of their relationship, regarding Ptr relation, is the same in both
trees. That is if Ptr holds (does not hold) for such a pair in one tree, it should (not) hold in the
other.

Definition 4.2. Two trees Ti = 〈{r}∪Ni,Pi〉 and Tj = 〈{r}∪Nj ,Pj〉 are consistent (or a pair
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of trees is consistent) if

1. ∀x, y ∈ {r} ∪ (Ni ∩Nj)with xPtr
i y then xPtr

j y, and

2. ∀x, y ∈ {r} ∪ (Ni ∩Nj)with xPtr
j y then xPtr

i y

Trees T1 and T2 of Figure 18 have the pairs of nodes (root, D), (root, C) and (D, C) in
common. Since rootPtr

1 D, rootPtr
2 D, rootPtr

1 C, rootPtr
2 C hold, while DPtr

1 C, DPtr
2 C not, T1

and T2 are consistent. Trees T2 and T3 of Figure 18 have the pairs (root, E), (root, C) and
(E,C) in common. Since EPtr

2 C holds but EPtr
3 C not, T2 and T3 are inconsistent. According

to the next proposition, two consistent trees are equal if they have the same nodes.

Proposition 4.1. If two trees Ti = 〈{r} ∪ Ni,Pi〉 and Tj = 〈{r} ∪ Nj ,Pj〉 are consistent and
Ni = Nj then Ti = Tj.

Proof. Suppose that Ti 6= Tj . Then, since Ti, Tj are consistent, there exists a pair (x, y) for
which p(x, y) in Ti and a(x, y) in Tj (results are the same for p(x, y) in Tj and a(x, y) in Ti).
Therefore, there is a node z such that xPtr

j z and zPtr
j y. Since both trees contain the same

nodes, z should be in Ti, too. Ti and Tj are consistent, so both xPtr
i z and zPtr

i y should hold,
but this cannot be the case because p(x, y) in Ti. Thus, there is not a node z between x and y
in Tj . So, for every pair (x, y) with p(x, y) in Ti, p(x, y) in Tj . Therefore, Ti = Tj .

We next introduce the notion of stability for a pair of tree nodes, given a set of trees.
Intuitively, stability ensures that new node relationships produced in the TG will never be in
conflict with already existing ones. Stability is required for the definition of consistency for a
set of trees that will follow later on.
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Definition 4.3. Assume a set S of n trees, every pair of which is consistent, and the pair of
nodes (x, y), with xPtr

i y in one of the trees Ti in S. We choose from S all the trees that contain
exactly one of the nodes of the pair (either x or y but not both), and partition them in two sets:
Gx is the set of trees that contain node x and Gy is the set of trees that contain node y. Iff for
every pair of trees (Tx, Ty) with Tx ∈ Gx and Ty ∈ Gy there is a node z such that xPtr

x z and
zPtr

y y then the pair of nodes (x, y), with xPtr
i y, is called stable in the set S.

We note that:

1. If Gx = ∅ or Gy = ∅ then x, y is stable in S.

2. If a pair of nodes (x, y) is stable in S, then xPtr
G y holds in the TG produced by any two

trees of S.

3. If a pair of nodes (x, y) is not stable in S, then there exists at least one pair of trees in S
for which the produced TG has x, y without xPtr

G y.

4. If a pair of nodes (x, y) is stable in S, then (x, y) is stable in any set S ′ ⊆ S.

Some examples follow:

1. Consider the set S ′ of trees T1, T2, T3 and T4 in Figure 20(a). Every pair of trees in S ′ is
consistent and BPtr

1 D. T2 and T3 both contain node D but not B, therefore GD = {T2, T3}.
T4 contains node B but not D, therefore GB = {T4}. However, there is no node X such
that BPtr

4 X, XPtr
2 D and xPtr

3 D, therefore (B, D) is not stable in S ′.
2. Consider the set S ′′ of trees of trees T1, T2 and T3 in Figure 20(b). Every pair of trees in
S ′′ is consistent and APtr

1 B. We put all trees that contain node A but not B in group GA,
and all trees that contain node B but not A in GB. Therefore, GA = {T2} and GB = {T3}.
Tree T2 in GA has a node C for which APtr

2 C. Tree T3 in GB has the same node C for
which CPtr

3 B. Therefore (A,B) is stable in S ′′.
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Figure 20: Example trees to check stability.

We next define the notion of consistent set of trees, that is pairwise consistent trees (see
Definition 4.2) with only stable node pairs.

Definition 4.4. Let S be a set of n trees and N the set of all nodes of all trees in S. S is
consistent if both the following conditions hold:

1. Every pair of trees in S is consistent.
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2. Every pair of nodes (x, y), with xPtry in some tree in S, is stable in S (x, y ∈ N ).

We note that:

1. Since all trees under consideration have the same root, we omit all pairs containing the
root to check the above condition, since these pairs are stable in any set of trees.

2. A set containing exactly 2 trees is always consistent if the two trees are consistent according
to the definition 4.2.

Some examples follow:

1. Consider the set S = {T1, T2, T3} in Figure 20(a). The set of all nodes isN = {A,B, C, D, E},
and all the pairs of nodes, excluding those containing the root, are: (B, C), (B, D), (B, E),
(C, D), (C, E), (D,E). From all these pairs, only BPtrD and CPtrE hold in some tree in
S. (B,D) and (C,E) are stable in S, thus S is consistent.

2. On the other hand, S ′ = {T1, T2, T3, T4} (the full set of trees in Figure 20(a)) is not
consistent, since (B, D) is not stable.

4.2 Semantic Compatibility

We next define semantic compatibility for a pair of trees. Semantic compatibility ensures that
we will always be able to decide the structural relationship among the involved nodes in the new
tree TG. For example, trees T2 and T5 in Figure 18 are not semantically compatible, since it is
not clear whether p(E, C) or p(F, C) in TG.

Definition 4.5. Let Ti = 〈{r} ∪Ni,Pi〉 and Tj = 〈{r} ∪Nj ,Pj〉 be two trees and N = Ni ∩Nj.
Ti and Tj are semantically compatible if ∀x ∈ N , ∃y with p(y, x) in Ti or Tj with y ∈ N .

In the following section we exploit the notions of tree consistency and tree semantic compat-
ibility to study the validity of TG construction.

4.3 Validity of Global Tree Construction

The construction of a valid TG requires that the involved trees are consistent and every pair
of the trees semantically compatible. We next present a set of theorems to support such an
argument. As the following theorem states, the construction of TG preserves the tree semantic
compatibility in the tree set.

Theorem 4.1. Let S be a set of trees, semantically compatible with each other. The tree
TG = 〈{r}∪NG,PG〉 constructed from any two trees Ti = 〈{r}∪Ni,Pi〉 and Tj = 〈{r}∪Nj ,Pj〉
in S is semantically compatible with all other trees of S.

Proof. Let Tk = 〈{r} ∪ Nk,Pk〉 a tree in S. Since Ti and Tk are semantically compatible,
∀x ∈ Ni∩Nk, ∃y with p(y, x) in Ti or Tk, y ∈ Ni∩Nk. Similarly, since Tj and Tk are semantically
compatible, ∀x ∈ Nj ∩Nk, ∃y with p(y, x) in Tj or Tk, y ∈ Nj ∩Nk. The parent node of a node x
in TG will be the same with the parent node of x in Ti or in Tj . Thus, ∀x ∈ (Ni∩Nk)∪(Nj∩Nk) =
(Ni ∪Nj) ∩Nk =NG ∩Nk, ∃y with p(y, x) in TG or Tk, y ∈ (Ni ∩Nk) ∪ (Nj ∩Nk) =NG ∩Nk,
that is TG is semantically compatible with TK .
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The construction of TG should preserve tree consistency in the tree set. To simplify the proof
of the related theorem, we first present 3 relevant lemmas.

Lemma 4.1. Let S be a consistent set of n trees. The tree TG constructed from any two trees
in S will produce a set S ′ of (n− 1) trees, in which every two trees are consistent.

Proof. Consider the sets S = {T1, T2, T3, . . . , Tn} and S ′ = {TG, T3, . . . , Tn}, where TG is con-
structed from T1 and T2 (results are similar for any other pair of trees). Since S is consistent,
every pair of trees in S is consistent, and every pair of nodes satisfying the Ptr relation in some
tree in S is stable in S. We will show that TG is consistent with every tree in setR = {T3, . . . , Tn}.
Consider a pair of nodes (x, y) in tree TG. We assume that there is at least one tree Ti in R that
contains both x and y. Otherwise, there would be no inconsistency caused by this pair. There
are two possibilities:

1. x, y ∈ T1 (results are similar for x, y ∈ T2): Since T1 is consistent with every tree Ti in R,
the kind of the relationship between x and y (regarding Ptr) in Ti is the same with that
in T1, and, thus, the same with that in TG, since TG is constructed from T1 and T2.

2. x ∈ T1 and y ∈ T2 (results are similar for x ∈ T2 and y ∈ T1):

(a) xPtr
G y holds:

There exists a node z, common in T1 and T2, such that xPtr
1 z and zPtr

2 y.

i. If z ∈ Ti =⇒ xPtr
i z and zPtr

i y (since Ti is consistent with T1 and T2) =⇒ xPtr
i y

ii. If z /∈ Ti: Gx = {Ti, . . .} (since Ti contains x but not z) and Gz = {T2, . . .} (since
T2 contains z but not x). Since S is consistent, (x, z) is stable in S =⇒
∃p : xPtr

i p and pPtr
2 z =⇒ ∃p : xPtr

i p and pPtr
2 y (since zPtr

2 y holds) =⇒
∃p : xPtr

i p and pPtr
i y (since Ti is consistent with T2) =⇒ xPtr

i y.

(b) xPtr
G y does not hold:

Suppose that xPtr
i y. Gx = {T1, . . .} (since T1 contains x but not y) and Gy = {T2, . . .}

(since T2 contains y but not x). (x, y) is stable in S =⇒
∃z : xPtr

1 z and zPtr
2 y =⇒ xPtr

G y holds (since TG is constructed from T1 and T2), but
we assumed otherwise. Therefore xPtr

i y does not hold.

Lemma 4.2. Let S be a set of trees and N the set of all nodes of all trees in S. If S is consistent
then every pair of nodes x, y ∈ N , satisfying the Ptr relation in some tree in S, is stable in the
set S ′ = S ∪ {TG}, where TG is constructed from any two trees of S.

Proof. We consider that TG is constructed from two trees T1, T2 ∈ S (results are similar for any
other pair of trees). Every pair of nodes x, y, satisfying the Ptr relation in some tree in S, is
stable in S, so there exist Gx (the set of trees in S with x but not y) and Gy (the set of trees S
with y but not x). We will check the stability of (x, y) in S ′.

1. If xPtr
G y or x, y /∈ TG, then there is no change in Gx and Gy, thus (x, y) is stable in S ′.

2. If x ∈ TG and y /∈ TG (results are similar for y ∈ TG and x /∈ TG), then G′x = Gx ∪ {TG}
and G′y = Gy. Since x ∈ TG and y /∈ TG, it must be x ∈ T1 and y /∈ T1 (results are similar
for x ∈ T2 and y /∈ T2), thus T1 ∈ G′x. (x, y) is stable in S, so for every pair (T1, Ty),
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Ty ∈ G′y, there exists a node z such that xPtr
1 z and zPtr

y y. Consequently, for every pair
(TG, Ty), Ty ∈ G′y, there exists a node z such that xPtr

G z and zPtr
y y, because TG contains

all structural information of tree T1. Therefore, (x, y) is stable in S ′.
Note also that (x, y) is stable in set S ′′ = S ∪ {TG} − {T1, T2}, because S ′′ ⊂ S ′.
Lemma 4.3. Let S be a consistent set of 4 trees. The tree TG constructed from any two trees
in S results in a set S ′ with 3 trees which is also consistent.

Proof. Consider S = {T1, T2, T3, T4} and S ′ = {TG, T3, T4}, where TG is constructed from T1

and T2 (results are similar for any other pair of trees). Every pair of trees in S is consistent
(Lemma 4.1). Every pair of nodes x, y, satisfying the Ptr relation in some tree in S, is stable
in set S ′ (Lemma 4.2). Therefore, we should check the stability of a pair of nodes x, y, xPtr

G y,
such that xPtry does not hold in some tree in S. xPtr

1 y does not hold, nor xPtr
2 y, so x ∈ T1 and

y ∈ T2 (results are similar for y ∈ T1 and x ∈ T2).
For xPtr

G y to hold, ∃z : xPtr
1 z and zPtr

2 y. If x /∈ T3, T4 or y /∈ T3, T4, than (x, y) is stable in
S ′. We assume that x ∈ T3 and y ∈ T4 (since xPtry does not hold in some tree in S). Checking
the stability of (x, y), with xPtry in some tree of S, in S ′ results2 in: Gx = {T3} and Gy = {T4}.
Only if there is a node p such that xPtr

3 p and pPtr
4 y, will (x, y) will be stable in S ′. We will look

for such a node p.

1. z ∈ T3 and z ∈ T4: p = z

2. z /∈ T3 and z /∈ T4: since (x, z) is stable in S, Gx = {T3} and Gz = {T2}. Thus, ∃w : xPtr
3 w

and wPtr
2 z =⇒ wPtr

2 y (since zPtr
2 y holds).

(a) If w ∈ T4 then p = w.
(b) If w /∈ T4, then, since (w, y) is stable in S, Gw = {T3} and Gy = {T4} (results are

similar if T1 ∈ Gw or T1 ∈ Gy). Thus, ∃f : wPtr
3 f and fPtr

4 y =⇒ ∃f : xPtr
3 f and

fPtr
4 y (since xPtr

3 w holds) =⇒ p = f .

3. z ∈ T3 and z /∈ T4 (results are similar for z ∈ T4 and z /∈ T3): since (z, y) is stable in S,
Gz = {T1, T3} and Gy = {T4}. Thus ∃w : zPtr

3 w and wPtr
4 y =⇒ ∃w : xPtr

3 w and wPtr
4 y

=⇒ p = w.

Therefore, (x, y) is stable in S ′, hence S ′ is consistent.

We next prove that the construction of TG preserves tree consistency in the tree set.

Theorem 4.2. Let S be a consistent set of n trees. The tree TG constructed from any two trees
in S results in a set S ′ with n− 1 trees which is also consistent.

Proof. Theorem holds for n = 4 (Lemma 4.3). Given that it holds for n = k, too, we will
prove that it holds for n = k + 1. Assume the consistent sets Sk = {T1, T2, T3, . . . , Tk} and
S ′k = {TG, T3, . . . , Tk}, where TG is constructed from T1 and T2 (results are similar for any other
pair of trees). Let R = {T3, . . . , Tk}, so Sk = {T1, T2} ∪ R and S ′k = {TG} ∪ R.

Consider now the set Sk+1 = {T1, T2, . . . , Tk, Tk+1} = {T1, T2} ∪ R ∪ {Tk+1}, which is con-
sistent. We construct a global tree using two trees from Sk+1, getting the set S ′k+1. There are
2 options for such a construction:

2According to Definition 4.3, if a pair of nodes x, y is stable in S, then we are able to identify the two sets
Gx,Gy.
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1. S ′k+1 = {TG, Tk+1} ∪ R, where TG is constructed from T1 and T2 (Case 1).

2. S ′k+1 = {T ′G, T2} ∪ R, where T ′G is constructed from T1 and Tk+1 (Case 2).

We will show that S ′k+1 is consistent.
The first condition of definition 4.4 is satisfied for both 1. and 2. (Lemma 4.1). Moreover,

every pair of nodes x, y, with xPtr
y in some tree of Sk+1, is stable in S ′k+1 (Lemma 4.2). There-

fore, we only have to check the stability of (x, y) in S ′k+1, with xPtr
G y (if in Case 1) or xPtr

G′y (if
in Case 2), which does not exist in set Sk+1 but exists in S ′k+1. Let Rx = {T ∈ R, x ∈ T, y /∈ T},
that is the subset of R with trees containing only node x and not y, and Ry = {T ∈ R, y ∈
T, x /∈ T}, that is the subset of R with trees containing only node y and not x.

Case 1 (S ′k+1 = {TG, Tk+1} ∪ R, TG is constructed from T1 and T2)

x, y ∈ TG. Since (x, y) is stable in S ′k, we can identify the sets Gx,Gy (see Definition 4.3):
Gx = Rx and Gy = Ry.

1. If x, y ∈ Tk+1 or (x /∈ Tk+1 and y /∈ Tk+1) then checking the stability of (x, y) in S ′k+1

gives Gx = Rx and Gy = Ry (that is Gx,Gy do not change), thus (x, y) stable in S ′k+1.

2. If x ∈ Tk+1 and y /∈ Tk+1 (results are similar for y ∈ Tk+1 and x /∈ Tk+1), then checking
the stability of (x, y) in S ′k+1 gives Gx = Rx ∪ {Tk+1} and Gy = Ry.

(a) Rx 6= ∅ and Ry 6= ∅
For every pair (Tx, Ty) , Tx ∈ Rx and Ty ∈ Ry, ∃c : xPtr

x c and cPtr
y y, because (x, y)

is stable in S ′k. If Tk+1 contains all these nodes c, then (x, y) is stable in S ′k+1, too. If
there is a node c /∈ Tk+1, then Tk+1 ∈ Gx and R′y ⊆ Gc, where R′y = {T ∈ Ry, c ∈ T}
(that is the subset of Ry that contains c), since (x, c) is stable in Sk+1. Therefore, for
every pair (Tk+1, Ty), Ty ∈ R′y, ∃d : xPtr

k+1d and dPtr
y c =⇒ ∃d : xPtr

k+1d and dPtr
y y

(since cPtr
y y holds). So, (x, y) is stable in S ′k+1.

(b) Ry = ∅ then (x, y) is stable in S ′k+1 (see the notes after Definition 4.3).

(c) Rx = ∅
Since xPtr

G y holds, ∃c : xPtr
1 c and cPtr

2 y. Let R1 = {T : T ∈ Ry and ∈ T} and
R2 = {T : T ∈ Ry c /∈ T}, with Ry = R1 ∪R2.

i. c ∈ Tk+1

Since (c, y) is stable in Sk+1, Gc = {T1, Tk+1} and Gy = R2, thus for every pair
(Tk+1, T ), T ∈ R2, ∃d : cPtr

k+1d and dPtry =⇒ ∃d : xPtr
k+1d and dPtry (since

xPtr
k+1c holds). We also have that xPtr

k+1c and cPtry in every T ∈ R1, therefore
(x, y) is stable in S ′k+1.

ii. c /∈ Tk+1

Since (x, c) is stable in Sk+1, Gx = {Tk+1} and Gc = R1 ∪ {T2} =⇒ for every
pair (Tk+1, T ), T ∈ R1, ∃d : xPtr

k+1d and dPtrc =⇒ ∃d : xPtr
k+1d and dPtry

(since cPtry holds). Given that (c, y) is stable in Sk+1, we have Gc = {T1} and
Gy = R2 =⇒ for every pair (T1, T ), T ∈ R2, ∃e : cPtr

1 e and ePtry =⇒ ∃e : xPtr
1 e

and ePtry (since xPtr
1 c holds).

A. If e ∈ Tk+1 then (x, y) is stable in S ′k+1.
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B. If e /∈ Tk+1, then, since (x, e) is stable in Sk+1, we have Gx = {Tk+1} and
Ge = R2, so for every pair (Tk+1, T ), T ∈ R1, ∃f : xPtr

k+1f and fPtre =⇒
∃f : xPtr

k+1f and fPtry (since ePtry holds).

Therefore, for every pair (Tk+1, T ), with T ∈ Ry, there is a node o (o = d,e or f)
such that xPtr

k+1o and oPtry, so (x, y) is stable in S ′k+1.

3. If y ∈ Tk+1 and x /∈ Tk+1 then the case is symmetrical to the previous one and it is handled
the same way.

Case 2 (S ′k+1 = {T ′G, T2} ∪ R, T ′G is constructed from T1 and Tk+1)

S ′k+1 = {T ′G} ∪ V, where V = R ∪ {T2}, and T ′G is constructed from T1 and Tk+1. Check-
ing the stability of (x, y) in S ′k+1 gives Gx = Vx and Gy = Vy, where Vx is the subset of V
containing node x and not y, and Vy is the subset of V containing node y and not x. If Vx = ∅
or Vy = ∅, then (x, y) is stable in S ′k+1 (see notes after Definition 4.3). If Vx 6= ∅ and Vy 6= ∅, we
can assume that x ∈ T1 and y ∈ Tk+1. Since xPtr

G′y holds, ∃c : xPtr
1 c and cPtr

k+1y. Given that
(c, y) is stable in Sk+1, we have:

1. T1 ∈ Gc and V ′y ∈ Gy, where V ′y is the subset of Vy that does not contain node c, and

2. for every pair (T1, T ), T ∈ V ′y, ∃d : cPtr
1 d and dPtry.

For any T in Vy, xPtr
G y holds in TG constructed from T1 and T .

We have assumed that this theorem holds for Sk, that is the set S ′k produced after the
construction of TG using T1 and T2 of Sk should be consistent. Thus, (x, y) is stable in the
set S ′k = {TG} ∪ R, so we can identify the sets Gx,Gy: Gx = Rx and Gy = Ry. For every pair
(Tx, Ty), Tx ∈ Rx and Ty ∈ Ry, ∃d : xPtr

x d and dPtr
y y. It is Vx = Rx and Vy = Ry ∪ {T2}.

Therefore, if d ∈ T2, then (x, y) is stable in S ′k+1. If d /∈ T2, then, since (d, y) is stable in Sk+1,
we have R′x ⊆ Gd and T2 ∈ Gy, where R′x is the subset of Rx that contains d. Thus, for every
pair (T, T2) where T ∈ R′x, ∃f : dPtrf and fPtr

2 y =⇒ ∃f : xPtrf and fPtr
2 y (since xPtrd holds).

So, for every pair (T, T2), where T ∈ Rx, there exists a node p (p = d or f) such that xPtrp
and pPtr

2 y. Thus, (x, y) is stable in S ′k+1.
In every case (x, y) is stable in S ′k+1, so S ′k+1 is consistent.

There is still the question whether there are non-consistent sets of trees for which the con-
struction of TG makes the set consistent. The next theorem shows that Definition 4.4 for
consistent set of trees covers all tree sets for which TG construction produces consistent tree
sets.

Theorem 4.3. Let S be a set of n trees, every pair of which is consistent. The tree TG con-
structed from any two trees in S results in a set S ′ with n− 1 trees. If every pair of trees in S ′
is consistent, then both S and S ′ are consistent.

Proof. Let N be the set of all nodes of all trees in S. Suppose that S is not consistent. Lack
of stability for (x, y) means that there is no node c such that xPtr

1 c and cPtr
2 y, given two trees

T1, T2 in S with x ∈ T1, y /∈ T1, x /∈ T2 and y ∈ T2. Since the set of x’s descendants in T1

and the set of y’s ancestors in T2 have no nodes in common, then xPtr
G y does not hold in TG

constructed from T1 and T2. Let T3 be a tree in S with xPtr
3 y. T3 also belongs to set S ′ and

T3 is not consistent with TG. So, if S is not consistent, then the pairs of trees in S ′ are not
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consistent. Consequently, if the pairs of trees in S ′ are consistent, then S should be consistent,
and, thus, S ′ should be consistent, too (Theorem 4.2).

The construction of TG according to Definition 4.1 is a binary operation in the sense that
2 trees are used to build TG. Having k trees, k > 2, say {T1, T2, T3, . . . , Tk}, one can build a
T 12

G from T1 and T2, then a T 123
G from T 12

G and T3, . . ., and finally the TG from T
12...(k−1)
G and

Tk. The TG constructed from many trees should be the same regardless the sequence of the
operation. The next theorem ensures that requirement.

Theorem 4.4. Let S be a consistent set of n trees. The tree TG constructed from all trees is of
S is the same, regardless the sequence in which the construction is performed.

Proof. Let N be the set of all nodes of all trees in S. Consider that constructing TG in S in a
certain order produces tree T 1

G, while in a different order produces tree T 2
G. We will show that

T 1
G = T 2

G = TG. S ′ = S ∪ {
T 1

G

}
is consistent because T 1

G is consistent with every tree in S,
and every pair of nodes (x, y), x, y ∈ N , is stable in S ′ (T 1

G contains all nodes of S, so it does
not affect the sets Gx,Gy - see Definition 4.3). Since S ′ is consistent, any TG construction will
result in a consistent set, as shown in Theorem 4.2. Therefore, we can perform repeated TG

constructions in S so that tree T 2
G is produced. After these constructions, S ′ =

{
T 2

G

} ∪ {
T 1

G

}
(still consistent). Since T 1

G and T 2
G are consistent and contain the same set of nodes (which is

the set of all nodes in S), T 1
G = T 2

G (Proposition 4.1).

5 Manipulating Hierarchical Schemas for the Web: a Demon-
stration in the Case of RDF/S Tree-like Hierarchies

We have applied our framework for manipulating hierarchical schemas on tree-like hierarchies
encoded as RDF/s files. We use RDFSculpt [14], a prototype system that support integration
of hierarchies based on union, intersection and difference semantics. The system implements the
S-union, S-intersection and S-difference operators, and provides tools to explore and visualize
hierarchies.

GUI

PostgreSQL

(RDF schemas)

Hierarchy

1

Hierarchy

2

Management tools

Query translatorRQL queries S-Union

S-Intersection, S-Difference

RSSDB

(RDF storage module)

RDFSculptFORTH/RDF Suite

Query-by-example

Result Visualization

Query translator

SQL queries

Figure 21: The architecture of RDFSculpt
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As shown in Figure 21, the system is built on top of the ICS-FORTH RDFSuite3. To this
extend, it exploits all RDF management and query APIs offered by RDFSuite. Results are
visualized using RDFSViz4. Users can issue queries on hierarchies and produce new, integrated
ones, using S-union, S-intersection and S-difference operators. The RDFSculpt assists the user
in queries formulation, offering her query-by-example capabilities.

Assume that the user needs to find the part of Adorama’s (H1) catalog which is not present
in the merged catalog produced from B&H’s (H2) and RitzCameras (H3) catalogs (see Figure
1). The query is expressed as follows:

H1 −s (H2 ∪s H3)

Figure 22 shows how the user can apply the S-union operator for the B&H’s (H2) and Ritz-
Cameras (H3) catalogs, using the querying interface of our system.

Figure 22: Merging B&H’s and RitzCameras catalogs using the S−union operator.

Merging B&H’s and RitzCameras catalogs using the S−union operator results to a catalog
named R1. The user can now apply the S-difference operator for Adorama’s and R1’s catalogs,
as Figure 23 shows. At any time, the user can visualize any intermediate results. The final
result of the query is shown in Figure 24.

6 Conclusions and Further Work

This work presented a framework for the structural manipulation of hierarchies in portal catalogs.
It supports the integration of hierarchies based on union, intersection and difference semantics
provided by a set of operators applied on hierarchies as full-fledged objects and not only as sets
of nodes.

Specifically, we defined three set-like query operators applied on trees representing hierar-
chies: S-union, S-intersection and S-difference. The S-union operator provides an integrated

3http://www.ics.forth.gr/isl/RDF/index.html
4http://www.dfki.uni-kl.de/frodo/RDFSViz/
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Figure 23: Finding the part of Adorama’s catalog not present in R1.

Figure 24: Final result of the first example

form of all structural information present in the involved hierarchies. The S-intersection op-
erator provides the common structural information present in the involved hierarchies. The
S-difference operator provides structural information present in one hierarchy but not in the
other. The operators are based on the upper bound, lower bound and complement, respectively,
of a boolean lattice algebraic structure defined on trees. That structure ensures that the oper-
ators have certain algebraic properties to provide clear semantics and assist the transformation
and optimization of sequences of operations, using laws similar to those in set theory. Our frame-
work was initially developed with the assumption that the involved trees have certain properties
with respect to a given tree called global tree. To ensure that similar algebraic properties and
laws hold in the absence of a global tree, we studied the conditions under which such a tree can
be constructed using the available trees. Finally, we showed examples of using such operators
to manipulate hierarchies of portal catalogs encoded as RDF/s hierarchies.

Our future work is based on three directions. First, we will further explore the algebraic
properties of trees representing hierarchies in the absence of a global tree. Even if there are
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structural inconsistencies in the involved trees during the construction of a global tree, one can
decide to resolve these inconsistencies in such a way that all involved trees are S-subsets of
some global tree. We will study how such an extension affects our framework. Furthermore,
we will study how a similar framework can be established, having graphs instead of trees as
the underline model to capture hierarchies with complex structure. Finally, we plan to employ
schema matching techniques to deal with hierarchies with naming disimilarities (different naming
for semantically similar categories).
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