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ABSTRACT
In this work we present new in-network techniques for com-
munication efficient approximate query processing in wire-
less sensornets. We use a model-based approach that con-
structs and maintains a spanning tree within the network,
rooted at the basestation. The tree maintains compressed sum-
mary information for each link that is used to “stub out”
traversal during query processing. Our work is based on a
formal model of the in-network tree construction task framed
as an optimization problem. We demonstrate hardness results
for that problem, and develop efficient approximation algo-
rithms for subtasks that are too expensive to compute exactly.
We also propose efficient heuristics to accommodate a wider
set of workloads, and empirically evaluate their performance
and sensitivity to model changes.

Categories and Subject Descriptors: G2.2 [Discrete Math-
ematics]: Graph Theory-trees; F2.0 [Analysis of Algorithms
and Problem Complexity]: General; E1 [Data Structures]-
distributed data structures, graphs and networks.
General Terms: Algorithms
Keywords: Sensor Networks, Data Compression, Query Ap-
proximation

1. INTRODUCTION
Query processing has received significant attention in re-

cent research on wireless sensor networks [17]. As is well
known, communication is one of the most expensive oper-
ations in a sensornet [2], so various query processing tech-
niques have been proposed to minimize it. Model-based data
acquisition is a particularly promising approach to address
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this issue [8]. It uses historical information gathered from the
network to predict rough query answers from a probabilistic
model, and decides which data is worth gathering from the
network at query time to augment that model sufficiently to
meet a desired accuracy bound. Given a chosen set of data
to gather, path planning algorithms [20] compute an efficient
distributed strategy to retrieve the data needed to augment the
model. This model-based approach relies upon information
stored at a central location. Centralized models can make ac-
curate predictions – assuming that the centrally maintained
model is accurate – but suffer from unexpected events like
node and link failures. Given the distributed nature of sen-
sornets, a natural advance upon the early model-based work
is to move this processing into the network.

In this model-based setting, the focus is on providing ap-
proximate answers to queries. Approximate queries are well
suited to sensornet settings because perfect accuracy is both
hard to achieve, and typically unnecessary. Physical sensors
provide a spatially discrete and thus approximate view of
the continuous physical phenomena they are used to moni-
tor. Physical sensing also induces measurement errors, due
to device imperfections, calibration problems, and physical
stresses like dirt and heat. As a result, most users of sensornet
applications understand that total accuracy of reported values
is unnecessary. Approximate queries allow some uncertainty
in the reported result, typically characterized by two param-
eters: a window w of accuracy for the answer and a confi-
dence limit δ that is expected to be satisfied. An example
of such a query is the following: “Return the temperature at
each sensor node, within ±1◦C with 95% confidence”. Our
focus will be on these “SELECT *” queries, that return a
reading from each of the sensors in a field.

Our work adopts a model-based approach to approxima-
tion [8], but moves the implementation to an in-network set-
ting, where the models can stay more easily up-to-date, pre-
processing of routing paths at query runtime can be elimi-
nated, and failures on routing paths are no longer crucial. We
propose the use of a carefully designed in-network spanning
tree to minimize the communication required to return a ro-



bust estimate of the value reported by each sensor node. This
tree is rooted at a base station, with Gaussian models stored
at each node in the tree, one per child of the node. Queries
are answered by traversing to a depth in the tree where the
summaries provide sufficient information to answer a query
within a specified window of accuracy.

We break this problem into individual tasks which we dis-
cuss in the corresponding sections. First, we provide a formal
definition of the problem of optimal in-network summaries.
Second, we present an efficient Gaussian-based compression
scheme that is geared towards minimizing erroneous report-
ing of values, which can be optimized based on query work-
load. Third, we present query traversal algorithms that uti-
lize the compression scheme to make routing decisions and
give value estimates with limited communication. Our work
is grounded in formal hardness results for the optimal in-
network summary problem, along with approximation algo-
rithms for a basic query processing scenario. Given this for-
mal basis, we expand the set of scenarios we consider to a
more practical setting, using a set of intuitive heuristics. We
conclude with an experimental evaluation of the sensitivity
of our approach to changes in the data and query workload.

1.1 Related Work
The idea of Semantic Routing Trees was proposed in [16]

as an overlay index in the network, to allow for routing de-
cisions to those leaves relevant to the query. Our in-network
summaries go further, maintaining summaries of the data at
different tree levels to allow for reduction in communication.
The use of summaries for query processing has been exam-
ined in different settings. GHTs ([23]) propose storing and
retrieving network information using Geometric Hash Ta-
bles, and Distributed Quadtrees ([7]) overlay quadtree struc-
tures over WSNs to satisfy distance sensitive spatial queries.

Cristescu et al ([5, 6]) study the relationship between data
representation and data gathering, based on coding strate-
gies. For a gathering task spanning all network locations,
the goal is to minimize communication by optimizing the
tree routing structure for a given coding model. The problem
of jointly optimizing sensor placement and the transmission
structure is further developed in [10].

Our in-network summaries aim on using models distributed
in the network to make query processing more cost efficient.
The same objective was tackled by centralized approaches:
In [8], the BBQ system proposes a model-driven scheme to
provide approximate answers to queries posed in a sensor
network, satisfying some information guarantees. [20, 22]
also focus on a centralized approach, where all the deci-
sions and planning are performed at a basestation node, and
heuristics are given to cope with unexpected network behav-
ior. PRESTO ([15]) is an in-network model-driven scheme,
which is however push based – deviations for the model are
detected locally and in this case data is pushed to the root.

The TinyDB system [18], which is largely used for data

collection in sensor networks, uses spanning trees for the
data retrieval, but does not rely on any other in-network data
to optimize queries. The role of in-network storage is dis-
cussed in [19] as a way to reduce energy consumption in
its role in the trade-off between computation and communi-
cation. Maintaining data in the network is the focus of dis-
tributed storage ([9]). Several different coding schemes are
developed for storing information in the network, but the
goal in this case is to make the data resilient to failures and
not to optimize query execution. A similar tactic is employed
by the SPIN protocol [12, 14], which disseminates data in the
network, so that a user posing a query at different locations
can immediately get back results.

In terms of data gathering, directed diffusion ([13]) sets up
gradients from data sources to the basestation, forming paths
of information flow, which also perform aggregation. Rumor
Routing ([4]), uses long lived agents that create and redirect
paths to events they encounter.

2. OPTIMAL IN-NETWORK SUMMARIES
In this section we focus on the type of data summaries that

we need to maintain to optimize queries in a sensornet setting
and give a definition of optimality for that scheme. We then
define the problem of data compression and treat it from the
standpoint of the query workload.

Our workload consists of “SELECT *” style queries that
request the approximate values of multiple sensors, without
aggregation. The approximation bounds are defined by an
accuracy window w and confidence limit δ specified by a
query Q (Q(w, δ)). The accuracy and confidence parameters
specify the error tolerance that is acceptable in the answer.
So a query with accuracy w, confidence δ and cardinality k,
requires that on expectation δk of the reported values will fall
within ±w of the actual values, i.e. the values that we would
get if we sampled all locations. Depending on the values ofw
and δ, a query can range from being very loose to very strict
in terms of accuracy. The smaller the window, and the higher
the confidence, the stricter the query becomes, demanding
more accurate results.

To answer queries in a sensornet setting using informa-
tion residing in the network, we introduce “in-network sum-
maries”, or “spanning summary trees”. An in-network sum-
mary is a spanning tree of the network, in which every node
stores a model of the data in each of the subtrees it points to.
As the subtrees become smaller in the lower levels of the hi-
erarchy, the models become finer and more precise. A query
using that hierarchy can explore the structure starting at the
root and going only as deep as is necessary to provide an-
swers of good quality. We want to optimize this tree structure
with the objective of minimizing the communication cost of
answering queries. The guarantee we want to achieve is that
for n data nodes the query will produce on expectation δn
answers that are within w distance of their actual value.

DEFINITION 1. An in-network summary (or spanning sum-



mary tree) over a network graph G(V,E) is a spanning tree
T (V,E′), E′ ⊆ E, augmented with models Mv , ∀v ∈ V .
Mv is stored in node p that is the parent of v, i.e., (p, v) ∈ E.

We are given a network graph G(V,E) and a query work-
load W = {Qi(wi, δi)}. We will use Mv to symbolize the
model information kept for node v. Then the optimization
problem of finding the optimal in-network summary can be
defined as follows:

Given: Graph G(V,E), query workload W = {Qi(wi, δi)}
Find: Tree T = G′(V,E′) and models Mv , ∀v ∈ V , such

that the average communication cost required to re-
trieve values to respond to Qi ∈W is minimized

Our requirements for the models in the in-network sum-
maries are that they are compact, informative and accurate. 1

3. MODEL COMPRESSION
In this section we focus on one part of the in-network sum-

mary problem: the construction of models at each node. For
this discussion, we assume temporarily that the structure of
the tree T is given, and we want to pick the best model Mv ,
∀v ∈ T . We will revisit the structure of T in Section 5.

Various models could be maintained in a spanning sum-
mary tree, but in keeping with prior work we assume a gaus-
sian (normal) model. For the modeling of input readings,
gaussian models are typically appropriate, since they suc-
cessfully capture the nature of noisy measurements of physi-
cal phenomena ([3]). Therefore, for all leaves in T the model
Mv will be a gaussian distribution based on observations of
that node’s measurements. Now, when a data summary needs
to represent multiple sensors, a natural extension is to use
gaussian mixtures, which can be of restricted size to comply
with the storage limitations that sensor nodes have. A gaus-
sian k-mixture refers to a mixture of k gaussians.

Assuming for simplicity that T has fixed fanout F , data
resides at the leaves represented by the single gaussian dis-
tributions, and every internal node keeps F pairs of (childptr,
gaussian k-mixture), then our “data structure” closely resem-
bles a database index. Given a specified spanning tree T , we
can imagine “bulk loading” the models Mv with a bottom-
up construction, combining gaussian mixtures as we climb
up the hierarchy. In this approach, mixtures high in the tree
will be quite large. Since we need to keep the size restricted,
we need to have a method for compressing the mixtures, oth-
erwise called “collapsing”.

In the problem of compression, our input is a mixture (set)
of l gaussian distributions, and our output a k-size mixture,
k < l. The parameter k is dictated by the amount of stor-
age space assigned to the model on every node, and is not
required to be the same on each one of them. We will first
address the problem for the case of k = 1, assuming that the
summary hierarchy keeps a single gaussian distribution as a
1Refer to the extended version of this paper [21] for a more crisp
definition.

model of all the sensors in each subtree. In Section 5.5 we
revisit the compression model and explore generalizations to
larger k.

During query execution, the only information that we have
for a certain subtree is its collapsed distribution. In the case
of a single-gaussian compression model (k = 1) the answers
that this summary in the tree can provide is to report the
mean µ of the summary as the answer for all nodes repre-
sented by the subtree. Intuitively, our goal is:
Given: A set of distributions S = {N(µi, σ2

i )}
Find: DistributionN(µ, σ2) that maximizes informativeness

and accuracy over the original set S .
To understand informativeness and accuracy in the above

definition, some intuition is useful. A common approach in
collapsing gaussian mixtures is to minimize some distance
function (e.g. KL divergence) of the collapsed distribution
from the original mixture. While intuitively this might seem
to capture the quality of the compression, such an approach
can actually lead to very bad decisions for our problem.
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In the example of Figure 1 we want to collapse the 2 dis-
tributions depicted by dashed lines into one. With KL diver-
gence as the optimization criterion, the result would be the
solid line in Figure 1. The resulting distribution minimizes
the distance from the original ones, but has the following
pitfall: it falsely reports some significant mass on the interval
[45 − 60] where the original distributions contained almost
none. In our setting this can in some cases lead to false query
results for both of the original sensors involved, and thus loss
of accuracy. A query with a large window may not suffer
from this side effect, but one with a window small enough to
fit in the problematic interval (e.g. width 10) could produce
erroneous results.

The important observation here is that whether the answer
would be wrong – and how wrong – depends on the specific
query. This observation suggests that the collapsing be tar-
geted to a specific query workload. This is the approach we
follow below.

Alternatively, to avoid loss of accuracy, we could adjust
the variance of the collapsed gaussian so that it will not con-
tain any “fake” mass. But such an approach would result
in an extremely wide and flat distribution. Such high uncer-
tainty would be useless in query execution, as this summary
could not produce answer estimates that would fall in a plau-
sible query’s accuracy window. In this case we have loss of
informativeness.



3.1 Simple Collapsing
During compression we want to preserve as much infor-

mation from the original distributions as possible. This means
that the new distribution should contain as much “real mass”
as possible, and this will happen if it is centered at the lo-
cation that contains the most mass from the underlying dis-
tributions. This location however depends on the window in
which we compute the mass. In Figure 1, if the window used
is fairly large, then the location z that maximizes the total
mass will be centered somewhere in between the two original
distributions. On the other hand, if the window is small, then
z would be centered at the narrowest of the original distribu-
tions. Therefore, compression of a given set of distributions
will depend on the window assumed.

This also relates to query answers. In order to better under-
stand the collapsing requirements, we need to look at how
the collapsed distribution will be used to answer a given
query. Assume a collapsed distribution N(µ, σ2). Q(w, δ)
is a query with error allowance inside a window w and con-
fidence requirement δ. We consider that model distribution
N can satisfy Q, if the mass of N in the interval [µ−w, µ+
w] is greater or equal to the confidence requirement δ, i.e.
M[µ−w,µ+w] ≥ δ. In that case the query reports value µ for
both nodes. Note that the definition of query satisfaction is
based on the belief that collapsed distribution N is an accu-
rate representation of the underlying measurements. If N is
a bad model, then any results based on it would simply be
faulty. Based on our definition of query satisfaction, we need
to construct N in such a way so that M[µ−w,µ+w] ≥ δ is true
not only for N , but also for the uncompressed mixture.

As it is obvious from Figure 1, if we choose N as de-
picted by the solid line, then for small values of w the query
may apparently pass the mass test, but the response will be
wrong, as neither of the original nodes has value µ±w with
δ confidence. However, if the window w is large enough,
the distribution N may be sufficient to answer Q without
problems. In order to make sure that that answer will be
correct based on the query requirements we need to make
sure that the mass of the collapsed distribution in the interval
[µ − w, µ + w] is the same as the total mass of the origi-
nal distributions in the same interval. This observation leads
directly to a simple approach for collapsing.

Our two requirements for collapsing are that it should not
introduce “fake mass” (high accuracy), and it should retain
as much “real mass” as possible (high informativeness). This
makes sense for a specific choice of window, and it guaran-
tees that queries of the same window will get accurate re-
sponse. Formally, the problem we want to solve is as follows:
Given: One dimensional function f representing a probabil-

ity distribution (in our case a gaussian mixture)
Find: z s.t. the mass of f in [z − w, z + w] is maximized.

max
z

∫ z+w

z−w
f(x)dx (1)

Once the optimal location for z is chosen, this becomes the
mean of the collapsed distribution. The variance of the new
distribution will be calculated based on the mass of the orig-
inal distributions in the same interval:

∫ µ+w

µ−w N(µ, σ2)dx =∑
i

∫ µ+w

µ−w Ni(µi, σ2
i )dx

The solution to the maximization of equation (1) cannot al-
ways be determined analytically. One approach is to numer-
ically evaluate it through the use of sliding windows: given
window w, “slide” the interval [zi −w, zi +w] across the x-
axis calculating the mass of the distribution for every zi and
pick the one with the maximum value. Another approach is
to use gradient ascent with the means of the original distri-
butions as starting points. Experiments on those approaches
showed that the computationally efficient sliding windows
technique provides accurate results for moderate discretiza-
tion ([21]).

3.2 Tail-aware Collapsing
Even though simple collapsing does guarantee that the mass

inside window w of its mean ([µ − w, µ + w]) is accurate
(i.e. corresponds to real mass from the original distributions),
there is no guarantee for parts of the interval I ⊂ [µ−w, µ+
w], or the tails of the distribution [−∞, µ−w]∪ [µ+w,∞].

Tail-aware collapsing is a more conservative version of
collapsing that disregards the mass in the tails of the distri-
butions in the calculation of the location of maximum mass.
This avoids inaccuracies that could be introduced through
recursive collapsing of distributions, but leads to more con-
servative models ([21]).

4. QUERY TRAVERSAL
In the previous section we discussed optimal compression

of a set of input distributions based on an expected query
workload. Sensor nodes organized in a tree structure can cre-
ate an in-network summary by recursively performing com-
pression bottom up, from leaves to root. In this section, we
focus on the problem of routing queries using an in-network
summary, making routing decisions at each node based on
the local modelMv . First we discuss what the optimal traver-
sal would be for query Q(w, δ) on tree T = G(V,E). A
traversal is a connected component of G that contains the
basestation. Since G is a tree, every connected component
in it is also a tree. The optimal traversal is that of minimum
total cost that satisfies Q on expectation (Def. 2).

DEFINITION 2 (QUERY SATISFACTION). In a network
of n nodes, a response R = {r1 . . . rn} to a query Q(w, δ)
is said to satisfy Q if on expectation the actual values of at
least δn nodes fall in their respective interval [ri−w, ri+w].

Due to linearity of expectations, assuming that the under-
lying distributions are correct, then the query will be satisfied
if

∑
i

∫ ri+w

ri−w fi(x)dx ≥ δn. So the optimal traversal problem
can be defined as follows:

Given: tree T = G(V,E) and node models Mv , ∀v ∈ V



Find: G′(V ′, E′), E′ ⊆ E, such that
∑
eMass(Mu, w) ≥

δn, where e = (u, v) with u ∈ V ′ and v ∈ V \V ′

In the above problem statement, Mass(Mu, w) is the max-
imum mass that can be contained inside window w from
model Mu. If the mixture model is compressed to a single
gaussian, Mass(Mu, w) =

∫ µ+w

µ−w f(x)dx, where f is the
normal probability density function.

4.1 DP Traversal
We will solve the optimal traversal problem using a dy-

namic programming algorithm. Every node will keep a DP
table (in our case it’s just a vector) which will hold informa-
tion on forwarding decisions based on assigned budget. For
example, if v is the root of subtree Tv and CTv is the cost
of traversing the entire subtree Tv , then v will keep a vector
of length CTv

where every entry will be the maximum mass
that can be collected by assigning the corresponding budget
to that subtree. For a tree of fanout F , children u1, . . . , uF
of node v and a budget assignmentB = {b1, . . . , bF } among
theF children, the DP function for computing the entry Jv(c)
will be:

Jv(c) = max
B

F∑
i=1,bi>0

Jui
(bi) +

F∑
i=1,bi=0

Mass(Mv, w)|Tui
|

(2)
where |Tui

| corresponds to the number of nodes represented
by the subtree of node ui. The second summation in (2) gives
a mass estimate for the unvisited children (bi = 0) based on
the model of node v. Also,

∑
i bi = c−

∑
i s.t. bi>0 w(v,ui),

where w(v,ui) the weight of the edge (v, ui), and the sum
subtracted in this formula adjusts the available budget by the
cost of reaching those children of v with non-zero budget as-
signments. The weight of each (v, ui) edge can be simply de-
fined as the number of hops needed to reach that child. Along
with the DP vector, the choice of best budget assignment for
each cell should also be kept. At the leaves of the tree, the
DP vector is a single element, J(0) = Mass(Mv, w).

Algorithm 1 outlines this dynamic program for the case of
a binary tree (F = 1), and unit edge weights. The code can
be easily extended to the more general case of fanout F or
even unrestricted fanout.
Algorithm 1 DPConstruct(v,w,B)

1: if B < 0 then
2: return 0
3: if B == 0 then
4: J(B) = Mass(Mv, w)
5: else
6: for k = 0 . . . B do
7: lMass(k) = DPConstruct(u1, w, k − 1)
8: rMass(k) = DPConstruct(u1, w,B − k − 1)
9: J(B) = maxk(lMass(k) + rMass(k))

10: leftBudget(B) =argmaxk(lMass(k) + rMass(k))− 1
11: rightBudget(B) = B − leftBudget(B)− 1

With the DP in place, routing decisions can easily be made
depending on the δ parameter of the query. Given δ we can

compute the desirable mass as δn, where n is the total num-
ber of nodes in the network. Using the DP table at the root,
we can find the smallest budget that achieves that mass, say
bi, and the values of leftBudget(bi) and rightBudget(bi)
will give the budget assignments for the left and right child
respectively. The traversal descends until the budget is ex-
hausted. The DP vector for each node is equal to the number
of nodes in that node’s subtree, so if n are all the nodes in
the tree, the space needed would be O(n). Constructing the
DP vector for each node has complexityO(n2), so the whole
algorithm has complexity O(n3).

The described DP approach can compute the optimal traver-
sal solution for a query of window w, on a tree model com-
pressed using the same window. One problem is that the DP
tables can become large at nodes high in the hierarchy, which
could violate our limited storage principle.

As an alternative, we proceed to propose a simple greedy
traversal algorithm that makes decisions locally at every node,
without the requirement of keeping extra information, like
the DP tables.

4.2 Greedy Algorithm
Our greedy descent algorithm is quite straightforward. The

query is initiated at the root of the tree, and every node de-
cides whether to descend or not based on the satisfiability of
the query by the local model:∫ µ+w

µ−w
f(x)dx ≥ δ (3)

If the model at the current node satisfies (3), then no de-
scent is necessary. Otherwise the query is forwarded to the
node’s children. In this simple version of the algorithm, if a
decision is made to forward, then all of the children will re-
ceive the query. More elaborate schemes can give different
priorities to children and perform selective forwarding. This
however would require extra communication, as decisions to
forward might depend on traversal results on other subtrees,
and cannot be made only locally.

Algorithm 2 GreedyDescend(nodei,w,δ)

1: Compute I =
R µ+w

µ−w f(x)dx

2: if I ≥ δ then
3: return µi
4: else
5: GreedyDescend(childreni,w,δ)

Algorithm 2 is more conservative than the DP approach, as
it applies the satisfiability definition on every subtree and not
just the global tree. The algorithm will terminate the recur-
sion at a set of nodes each of which satisfy the query accord-
ing to Definition 2 in their local subtree. If ki is the number
of nodes represented by every subtree i where the recursion
terminated, then on expectation δ

∑
i ki = δn have accurate

within w values, which in turn means that globally the query
is satisfied. So every solution of the greedy algorithm is guar-
anteed to satisfy queryQ, but the satisfiability definition only



requires it to hold globally and not for every subtree, making
Algorithm 2 conservative.

We evaluate the performance of the greedy algorithm com-
paring it with the DP solution for different sizes of the win-
dow w, and against different values of the confidence param-
eter δ depicted on the x-axis. Both algorithms in this case are
executed on the same binary tree with data gathered from the
Intel Berkeley Lab deployment [1]. To construct the initial
leaf distributions, data from one hour is analyzed, and nodes
are grouped together in the tree based on spatial proximity.
The results are given in Figures 2 and 3. The greedy algo-
rithm demonstrates a more conservative behavior in terms
of cost, which also results in a smaller number of reported
errors, but stays a competitive alternative, without requiring
maintaining state in the nodes.

In this experiment, the choice of range of window sizes for
the query workload ([0.5,2]) relates to the variance of the un-
derlying data. Queries with windows smaller than 0.5 would
always sample all, or most, locations, as the queries are now
too strict even for the leaf level models. Also, experiments
with very big windows provide no useful information, as the
queries become so loose relative to the data that even the
rough root level model is enough to satisfy them.
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Figure 4: Comparison of our compression method with KL divergence
based compression, using DP and greedy traversal

In Figure 4 we demonstrate the benefits of our compres-
sion scheme, based on mass maximization, with KL diver-
gence based compression. Depicted are the results for a spe-
cific query window size, but the rest behave similarly. The
comparison is done using both the DP and greedy traver-
sal algorithms, and in both cases our compression results in
plans of lower cost. An important note is that the temperature
data used for our experiments actually gives KL divergence
some advantage, and yet it still loses. With data points whose
underlying distributions differ a lot, the problems of the KL
based compression would become more exaggerated.

5. THE TREE CONSTRUCTION PROBLEM
In the previous sections we discussed methods for per-

forming compression and query traversal. However, the algo-
rithms were applied over a predefined tree, and even though
compression is optimally done given a specific design work-
load (i.e. a set window), the way the nodes are grouped af-
fects the quality of compression. Grouping of dissimilar nodes

into the same subtree will inevitably lead to bad compres-
sion, and therefore bad performance. In this section we will
discuss the problem of finding the optimal tree for a specific
query workload.

We focus on the case of graphs with unit edge weights.
From a practical perspective, a communication link between
two nodes is considered to exist if the nodes have a packet
loss rate bounded by a threshold.

The metric to minimize is communication cost during query
execution. Assume TOPT is an optimal tree that produces the
minimum possible cost when traversed by query Q(w, δ). A
traversal of TOPT using the greedy algorithm (Alg. 2) will
stop at nodes on various levels that all satisfy inequality (3).
Define the cut C as the set of nodes at which Alg. 2 stops.
Note that there is no path from root to leaf in tree TOPT that
does not “hit” the cut C. The structure of the tree below the
cut, i.e. all nodes that have an ancestor in C, is irrelevant to
the cost of queryQ, as the query traversal will never descend
that far.

Also, in the case of trees with constant fanout, the structure
above the cut is irrelevant as well as shown in Theorem 1:

THEOREM 1. 2 In a tree with fixed fanout F , the cost to
traverse from the root to cut, i.e. the cost to reach all nodes
in the cut from the root, is F

F−1 (|C| − 1), where |C| is the
size of the cut.

5.1 Optimal Tree Problem
Theorem 1 shows that if C is the cut that Alg. 2 picks

for query Q(w, δ), then the structure of the hierarchy above
and below the cut are irrelevant to the cost of answering the
query, and therefore only the size of the cut determines query
cost. A node in the cut acts as a representative for the whole
subtree, so the cut is a set of connected components each
of which contains a representative node with model Mv that
satisfies Q.

The Optimal Tree Problem with respect to query Q(w, δ),
is the problem of finding a tree that satisfies Q using Alg. 2
with minimum communication cost, and is formally defined
as follows:

DEFINITION 3 (OPTIMAL TREE PROBLEM).
Given: Graph G(V,E) with the cost function c : E → R+

and query Q(w, δ)
Find: Set of components S = {C1 . . . Ck} such that

• ∀i Ci is connected in G.
• ∀i 1

|Ci|
∑
j∈Ci

Massj(Ci) ≥ δ.

• ∪Ci = V and Ci ∩ Cj = ∅ for i 6= j

• With the objective to minimize the cost of the minimum
cost subtree T of G that contains at least one vertex
from each component Ci.

In the above definition Massj(Ci) represents the total mass
that node j contributes to component Ci.
2For proofs refer to the extended version of this paper [21]
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Figure 2: Evaluation of cost of Greedy against optimal cost found by the DP algorithm. The “Simple” and “Tail-aware” schemes refer to the type of compression
deployed (Section 3)
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Figure 3: Comparison of the proportion of correct responses for the greedy and the optimal cost traversal chosen by the DP algorithm. The “Simple” and
“Tail-aware” schemes refer to the type of compression deployed (Section 3)

The objective of the Optimal Tree Problem (4th bullet) is
the Group Steiner Tree Problem: given a graphG(V,E), cost
function c : E → R+ and sets of vertices g1, g2, . . . , gk ⊂
V , find the minimum cost subtree T of G, that contains at
least one vertex from each set gi.

Since the Group Steiner Tree Problem is NP-hard, the Op-
timal Tree Problem is also hard. The GST problem has a
polylogarithmic approximation [11], so we will attempt to
address the selection of componentsCi as a separate problem.

5.2 Optimal Clustering
From Definition 3, the division of nodes into the compo-

nents Ci can be viewed as a clustering problem. Each cluster
corresponds to a subtree rooted at a node chosen by the query
cut. Each cluster is of limited diameter (Def. 3, 2nd bullet)
and, according to Theorem 1, we want to find the minimum
size cut for the specific query, so equivalently the optimal
clustering should minimize the number of clusters.

This subproblem is also hard, but we provide a greedy al-
gorithm that approximates the optimal solution by a logarith-
mic factor. The pseudocode is given in Alg. 3.

PROPOSITION 1. Algorithm 3 provides a factor log(n)
approximation to the optimal clustering, which minimizes the
number of clusters.

Proposition 1 is easily derived when one notices that Al-
gorithm 3 is equivalent to greedy Set Cover. In practice the
algorithm behaves a lot better than this guarantee, with re-
sults always close to the best solution. The graphs from those
experiments were omitted due to space constraints.

It is important to note that Algorithm 3 may violate one
of the conditions of Definition 3, that each cluster has to be
connected. Greedy Clustering greedily adds nodes to each

Algorithm 3 GreedyClustering(V,w, δ)
1: Clusters = ∅
2: Pick discretization D = {z1, . . . , zk}
3: repeat
4: for z ∈ D do
5: Sz = ∅
6: for vi ∈ V do
7: Massz(vi) =

R z+w
z−w fi(x)dx //fi the model of node

vi
8: while

P
vi∈Sz

Massz(vi) ≥ δ|Sz| do
9: v∗ =argmaxiMassz(vi)

10: remove v∗ from Massz
11: if

P
vi∈Sz∪{v∗}Massz(vi) ≥ δ|Sz| then

12: Sz = Sz ∪ {v∗}
13: else
14: break;
15: S∗z =argmaxi|Szi |
16: Clusters = Clusters ∪ S∗z
17: V = V \S∗z
18: until V = ∅

fixed cluster center from the discretization. For a fixed center,
the weight of a vertex is constant and independent of which
other vertices join the same cluster. Without the connectiv-
ity requirement, the greedy addition of vertices in decreasing
weight will indeed create the cluster with the largest cardi-
nality for that interval. However, if connectivity is enforced,
the problem becomes NP-hard as we proceed to show.

Limited Diameter Max Connected Subgraph:
Given: GraphG(V,E), vertex weightWu for vertex u, max-

imum diameter D. 3

Find: G′(V ′, E′) s.t: G′ is connected, 1
|V ′|

∑
u∈V ′Wu ≤

D, with the objective to maximize |V ′|
3With vertex weight Wu being the mass of u’s distribution outside
the window interval, then D would be 1− δ



THEOREM 2. The Maximum Connected Subgraph of Lim-
ited Diameter Problem (MCSLD) is NP-hard.

The connectivity requirement ensures that the participat-
ing nodes can form a tree. To enforce connectivity we can
either: (a) augment the clusters chosen by Algorithm 3 with
extra communication nodes to force connectedness, or (b)
change the greedy algorithm so it only augments the clusters
with nodes accessible by those already in the cluster. With
option (b) the algorithm will no longer have the logarith-
mic guarantee. Option (a) may be more appealing in most
cases, as the extra cost for intra-cluster communication is
only setup cost for the cluster formation and determination
of the common model, and does not inflict extra cost dur-
ing query time. Figure 5 presents a comparison of commu-
nication cost between clusters constructed by the different
approaches. The numbers for Greedy with Intra-Cluster cost
encode the model setup cost; during query execution com-
munication cost is equivalent to Greedy and therefore beats
the Connected Greedy approach.

5.3 Distributed Clustering
Algorithm 3 provides a centralized approach in approxi-

mating the minimum number of clusters. In this section we
will give a distributed clustering algorithm, and experimen-
tally compare it with the centralized one.

Algorithm 4 Distributed Expanded Neighborhood
1: Basestation broadcasts clustering msg
2: Each node picks a random wait time.
3: if wait time passes without cluster requests then
4: node initiates clustering
5: repeat
6: node randomly selects v from neighbor table
7: if d ≤ Dmax then
8: node sends cluster request to v
9: Augment neighbors table with neighbors of v

10: else
11: Remove v from neighbors
12: until no more neighbors

A distributed approach avoids the overhead of communi-
cating all the data to a centralized location, and is more suit-
able for performing selective reclustering in case some part
of the hierarchy needs to be updated. Algorithm 4 basically
initiates at a single node level where a cluster of size 1 is cre-
ated. The node looks up neighbors on its neighborhood ta-
ble and attempts to augment its cluster size by inviting them
to join the cluster. Once a new neighbor joins, the current
neighborhood is augmented by the newcomer’s neighbors.
The cluster stops growing when no more neighbors can be
added without exceeding the maximum allowed cluster di-
ameter Dmax. Note that the algorithm requires some book-
keeping and messages to communicate neighborhood tables.
A simpler version of distributed greedy clustering uses a ran-
dom walk to augment the cluster, with a node making a pick
only from its own neighbors and not the complete neighbor-
hood defined by the cluster. The cluster stops growing when

the random walk cannot proceed without violating the clus-
ter diameter.

In Figure 6 we compare the 2 centralized approaches, greedy
and connected greedy, and the 2 distributed approaches, ex-
panded neighborhood and random walk. The simulation ex-
periments were performed in Matlab, with real data from
the Intel Berkeley Lab deployment. The algorithms are com-
pared on the cardinality of the clusterings that they create.
Out of all the approaches, greedy is the only one that does
not enforce the connectivity requirement, which does not en-
sure that it will give the best result as it is not optimal, but
has a logarithmic approximation guarantee.

From these experiments we observe that the results of dis-
tributed clustering are very comparable to the centralized
ones, especially to connected greedy. On average the dis-
tributed expanded neighborhood and random walk heuristics
performed within a factor of 1.4 and 2.8 respectively of the
centralized greedy algorithm which has a guaranteed loga-
rithmic factor approximation of the optimal solution.

5.4 Building Trees for Varied Workload
In Section 5 we discussed the problem of constructing the

optimal tree for a specific query. We connected it with a
clustering problem, we showed hardness results and gave ap-
proximation algorithms and heuristics. In this section we will
extend our approach to the setting of a more varied query
workload. We will assume a baseline confidence δ, and query
workload that includes various different windows {w1, . . . , wk}.

Following the intuition that models high in the hierarchy
present a coarse view of the data, while moving into deeper
levels provides more detail, it seems natural to address var-
ied workload by recursively clustering in decreasing order of
window size. Clustering will start with the largest window
size which represents the less strict query in the workload.
The clusters produced are further divided into smaller clus-
ters using the next largest window in the query workload, and
the process continues in that fashion until the smallest win-
dow size. This heuristic, sketched in Algorithm 5 produces
a tree in which every level corresponds to a different win-
dow size, from larger in the higher parts of the hierarchy, to
smaller in the deeper levels.

Algorithm 5 TreeConstruction(G,wRange)
1: sort(wRange)
2: G(k+1) = G;
3: for i = k downto 1 do
4: w = wRange(i)
5: G(i) = cluster(G(i+1),w)
6: Connect G(i) with G(i+ 1)

We will experimentally evaluate the performance of our
heuristic by comparing its communication cost for queries
of the different window sizes, versus a tree that was geared
only towards the specific window at hand. We design a single
tree T for window sizes 0.5, 1, 1.5 and 2, and confidence 0.9,
as well as 4 other trees each one geared towards a single one
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Figure 5: Comparing the different clustering approaches, based on the communication cost for varied parameters of window size and confidence for the query
workload.
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Figure 6: Comparison of the distributed and centralized clustering algorithms.

0.5 1 1.5 2
0

5

10

15

20

25

30

Window Size

N
u

m
b

e
r 

o
f 

M
e

s
s
a

g
e

s

Query Cost

 

 

Tree optimized for window sizes 0.5, 1, 1.5 and 2

Tree optimized for specific window size

Figure 7: Comparing the performance of a tree designed over workload W
vs a tree clustered over a single window

of the previous window values. The choice of window sizes
is again dictated by the variance of the underlying data which
we are modeling, as explained in Section 4.2. Compression
with window sizes that are too small or too big, relative to
the underlying data variance, would produce models of too
high variance that would not be useful in query answering.
The communication cost of the query workload over T is
evaluated against the corresponding cost of the optimal tree
for each window size.

Figure 7 shows that Algorithm 5 approximates well the
best single clustering solution. Note that the tree construc-
tion is not specific to the type of clustering used, and any
of the clustering algorithms that we proposed –distributed or
centralized– can be used for that step.

Figure 8 compares the performance of hierarchies con-
structed using the tree construction heuristic (Alg. 5) for a
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Figure 8: Query experiments on trees constructed by different clustering
algorithms

design workload of window sizes 0.5, 1, 1.5 and 2, and con-
fidence of 0.9, with different methods for the clustering step:
centralized connected greedy (Alg. 3), distributed expanded
neighborhood (Alg. 4) and random walk. The hierarchies are
evaluated on the communication cost of a query workload
of a fine range of window sizes. The distributed algorithms
are somewhat outperformed by the centralized approach, but
they still beat traditional data gathering approaches like TinyDB
([18]) which gathers data along a spanning tree. The TinyDB
cost is constant and independent of the query parameters.

5.5 Enriched Models
Our analysis up to this point focused on Single Gaussian

Model (SGM) compression schemes, which have minimal
requirements of storage space from the nodes. In this section



we will examine more complex models and evaluate their
performance against SGMs. Note that the tradeoff is not only
between informativeness and storage space, but also com-
munication cost, as larger models will be more expensive to
transmit and update. The size of each model is represented
by the parameter k (for SGMs k = 1), and the amount of
space that each model uses is proportional to k.

We compare 3 different types of models against SGMs:
k-mixture: A k-size mixture is maintained instead of a

size 1 mixture. The compression of a l-size mixture to size k
is done by clustering the l distributions of the original mix-
ture into k sets using a modified k-means algorithm. Then
each set is compressed to a SGM as described in Section 3.1.

Virtual nodes: As in k-mixtures, an l-size mixture is di-
vided into k sets and a SGM is computed for each one. The
difference is that in the previous approach, a single k-mixture
represents all of the nodes in the subtree, whereas here each
separate SGM represents only that portion of the nodes used
to construct it. This is equivalent to “splitting” each node
into k virtual nodes and using simple SGMs. Note that this
approach requires some extra bookkeeping space to record
the groupings of sensor nodes into the virtual nodes.

SGMs on multiple windows: The extra space is used to
maintain additional SGMs for different window sizes. De-
pending on the query window the appropriate model is used
at every node.

The generalized models described are evaluated against
simple SGM compression on a tree built for a workload of
window sizes [0.5, 1, 1.5, 2] and confidence of 0.9. The mod-
els are then tested on a query workload of a finer range (Fig-
ure 9). The results shown are for enriched models of size
k = 4. Experiments with larger k were also performed, with
no change in the results.

An initially surprising observation is that enriched models
demonstrate minimal to no performance gains. Specifically,
k-size mixtures are not any better than a size 1 mixture, and
the same goes for virtual nodes. Even though this may seem
counterintuitive, it is justified by the criterion used during
tree construction. Nodes are divided into clusters ensuring
that the mass in the interval [c − w, c + w] for each clus-
ter, where c the center of the cluster, is enough to satisfy the
confidence that the tree was designed for. Also, the design
of SGMs preserves this mass in the resulting compressed
model. Therefore, a cluster designed on that criterion can be
sufficiently represented by a SGM, making more elaborate
models unnecessary for queries of equal or less confidence
than the tree was designed for. We observe some minimal
gains on queries of higher confidence – we can now receive
some benefit from the additional information – but still the
gains are not significant. These results are actually evidence
of the quality of our tree construction method. Queries have
requirements for normal error bounds and thus a normal dis-
tribution is the appropriate model when the underlying nodes
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Tree optimized for confidence 0.9

Tree optimized for confidence 0.95

Figure 10: Comparison of hierarchies built on different confidence. The
query workload is of confidence 0.95.

are clustered based on its properties.
The 3rd design, SGMs for multiple windows, shows some

performance gains, but note that these are not due to model-
ing improvements, i.e. better representation of the underly-
ing data, but better tuning to the design workload. A SGM
hierarchy attempts to minimize the average communication
cost for the design workload. The benefit in multi-window
SGMs arises from keeping models of several window sizes
on higher levels, thus giving the opportunity to queries to
terminate higher in the tree than they otherwise would.

Our analysis demonstrates that a SGM is sufficient for our
data representation, making in-network summaries a very
simple and effective approach for modeling sensornet data.

6. SENSITIVITY ANALYSIS
In this section we evaluate the sensitivity of our tree con-

struction algorithms to different parameters using simula-
tion experiments. As with all the previous experiments, these
are also performed over real temperature data from the Intel
Berkeley Lab deployment.

First we examine the effects of the confidence parameter in
tree construction. Two trees built on different confidence lim-
its, 0.9 and 0.95, are evaluated over the same query workload
of confidence 0.95. The results, shown in Figure 10, demon-
strate that the choice of confidence for tree construction does
not have a big impact on performance.

In our second set of experiments we want to explore the
effects of the choice of design workload on communication
performance during query time. Query workload W is eval-
uated over a tree T built with W as the design workload,
and another one T ′ built with W ′ ⊂ W (Fig. 11). Interest-
ingly enough T is not always the winner. This is because
T is forced to have more levels than T ′, and for some win-
dow sizes (e.g. 0.5), it makes queries traverse more levels.
As a result, including the full workload in the tree design is
not necessarily the best choice. It would be interesting to ex-
plore how to optimize the window range for the tree design,
and incorporating that range as a parameter in the optimiza-
tion may require revisiting our tree construction heuristic.
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Figure 9: Evaluation of SGMs and enriched models
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Tree optimized for window sizes 0.5, 1, 1.5 and 2

Tree optimized for all window sizes

TinyDB Cost

Figure 11: Comparing tree construction with a few vs a broader range of
windows

In our final performance experiments, we evaluate the per-
formance of in-network summaries over time. Data is taken
for 48 hours, starting around midday of the first day. A sum-
mary hierarchy is built based on data from the first hour, and
a workloadW of window sizes [0.5, 1, 1.5, 2] and confidence
0.9. When models at the leaves change due to temperature
variations throughout the day, those get propagated up the
tree either at query time, or with a background process. Mod-
els then get updated at various levels, but the structure of the
tree remains the same throughout the experiment.

The hierarchy is tested using workload W every hour over
a period of 48 hours, and compared with the performance of
a tree that is completely rebuilt every hour (full restructur-
ing). The results are given in Fig. 12.

We observe that even with full reconstruction we get bad
performance when variance of the underlying data is high, as
happens around timesteps 20 and 40. In the case of model up-
dates without restructuring of the tree, even though for large
windows the results are reasonable, for small windows they
are very disappointing. Note however that performance de-
teriorates at different times for different windows. From the
experimental results, the higher levels of the hierarchy corre-
sponding to larger windows remain consistent until about 40
hours later, mid-levels (window 1) seem to become unusable
after about 6 hours, and the lowest levels (smallest window)
seem to not be at all reusable.

This behavior can be addressed with escalated restructur-
ing. Different levels of the tree get restructured with different
frequencies: clusters corresponding to small windows will
get reclustered more frequently, whereas those of larger win-

dow size much less often. In Figure 13 escalated restructur-
ing is performed every hour, 6 hours and 24 hours, for clus-
ters of windows 0.5, 1, and 1.5 respectively. The choice of
restructuring frequencies at this point is ad hoc and based
on observations of the behavior in Fig. 12, but the purpose
of this experiment is to demonstrate that escalated restruc-
turing provides big performance benefits. An interesting part
of future work would be to discuss how to automatically de-
rive the appropriate frequencies or determine on the fly when
reclustering is necessary.

In-network summaries with escalated restructuring have
performance comparable to the best result. After time 42
however, the model deteriorates, because coincidentally the
size 1 clusters get updated on a moment of high variance of
the underlying data, and thus the resulting clusters are of low
quality. A simple fix would be to detect high variance in the
data, and avoid restructuring during those times.

Using escalated reclustering, in-network summaries are able
to follow changes of the data that happen at a relatively slow
rate. This makes our scheme suitable for various monitor-
ing applications that deal with slow changing phenomena,
like environment observation and forecasting systems, vari-
ous types of habitat monitoring applications, landslide detec-
tions, water quality monitoring. It is not suitable for emer-
gency response situations that involve sudden changes in the
underlying data, like fire alert systems. In order to deal with
cases that require some type of outlier detection, in future
work, in-network summaries could potentially be augmented
with a push scheme that locally detects sudden data changes
and reports them to higher levels.

7. CONCLUSIONS
In this paper we introduced in-network summaries to im-

prove the efficiency of approximate query processing in sen-
sornets. Summaries can be used to make routing decisions
and provide answers to queries without paying the communi-
cation cost to access the whole network, and without requir-
ing centralized planning and model maintenance. We for-
mally defined the problem of optimal summary construction,
and broke it into several different components that we ad-
dressed. We presented efficient compression schemes for the
summaries which are optimized based on query workload,
and provided traversal algorithms that utilize the summary
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Figure 12: Time progression of in-network summaries with model updates.
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Figure 13: Time progression of in-network summaries with model updates and escalated restructuring.

structures to produce query results. We related the problem
of tree optimization to a clustering problem which proved to
be NP-hard, and gave a centralized approximation algorithm
and distributed heuristics. We experimentally evaluated our
algorithms using data from a real world deployment and per-
formed comparisons across multiple parameters. Finally we
tested the sensitivity of our scheme to variations of the de-
sign decisions and the data, and we showed that it is quite
robust to changes.
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