
Data Gathering Tours in Sensor Networks

Alexandra Meliou ∗, David Chu ∗, Carlos Guestrin †, Joseph Hellerstein ∗, Wei Hong ‡
∗ University of California, Berkeley

† Carnegie Mellon University
‡ Arched Rock Corporation

{ameli,davidchu,hellerstein}@cs.berkeley.edu, guestrin@cs.cmu.edu, whong@archedrock.com

ABSTRACT
A basic task in sensor networks is to interactively gather data from a sub-
set of the sensor nodes. When data needs to be gathered from a selected
set of nodes in the network, existing communication schemes often behave
poorly. In this paper, we study the algorithmic challenges inefficiently
routing a fixed-size packet through a small number of nodes in a sensor net-
work, picking up data as the query is routed. We show that computing the
optimal routing scheme to visit a specific set of nodes is NP-complete, but
we develop approximation algorithms that produce plans with costs within a
constant factor of the optimum. We enhance the robustness of our initial ap-
proach to accommodate the practical issues of limited-sized packets as well
as network link and node failures, and examine how different approaches
behave with dynamic changes in the network topology. Our theoretical re-
sults are validated via an implementation of our algorithms on the TinyOS
platform and a controlled simulation study using Matlab and TOSSIM.

Categories and Subject Descriptors:E.1, F.2.0, G.2.2

General Terms: Algorithms, Theory

Keywords: Sensor Networks, Routing Algorithms, Splitting Tours

1. INTRODUCTION
In this paper, we consider a basic task in sensor networks: gathe-

ring data from a subset of nodes. This problem arises in interactive
scenarios, in which a user or algorithm running at a base station re-
quests readings from an explicit subset of the nodes in the network.
The choice of nodes and sensors may be made manually based on
knowledge of the sensor placement and properties or by software.
The BBQ system proposes model-driven querying schemes for sen-
sornets [10], in which an optimization process chooses the set of
nodes and sensors to sample in order to approximately answer a
high-level SQL query.

The standard approach to interactive data gathering uses a two-
part protocol: query flooding from a basestation, followed by an
incast of data from the sensors via a network spanning tree [21].
This approach makes sense in scenarios where all or most of the
nodes need to participate in a query. In some cases, however, the set
of desired readings is small, and only a small subset of nodes need
to participate in answering the query. The combination of flooding
and tree-based result routing is ill-suited to these scenarios.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’06,April 19–21, 2006, Nashville, Tennessee, USA.
Copyright 2006 ACM 1-59593-334-4/06/0004 ...$5.00.

0 0.05 0.1 0.15 0.2 0.25
0

50

100

150

200

success probability variance

nu
m

be
r

of
 li

nk
s

Figure 1: Histogram of the variance of the success probabilities of all links.

Network connectivity in a wireless sensornet can be highly un-
predictable, but in many deployments the sensor nodes are fixed
in space, and the communication links between the nodes do not
demonstrate extreme variation over time – this is the case, for ex-
ample, in an office environment like Intel’s Mirage sensornet test-
bed [1]. In these cases the network graph can be consideredsemi-
static. Although the link quality of an edge demonstrates variations
over time, its distribution is practically stationary ([25]). To sup-
port this assumption, we analyzed connectivity data from an indoor
network of 41 nodes collected every 2 minutes, for a period of 20
hours. Figure 1 presents a histogram of the variance of the link
qualities. Most links demonstrate very low variance, which shows
that the semi-static assumption is reasonable.

In such cases the properties of the network links – e.g. the ex-
pected number of retries required for pairs of nodes to communi-
cate – can be easily measured by the nodes and periodically prop-
agated to the basestation. By taking advantage of this knowledge,
we can develop more sophisticated query routing schemes, where
the most efficient communication path is decided at the basestation,
which uses source routing to move the query through the network.
However, while thecost estimatesof such an approach may rest on
semi-static properties of the network, the actual routing behavior
cannot: transient node and link failures must be handled robustly,
even in static deployments in which they are relatively infrequent.

In this paper we study the algorithmic challenges lurking behind
the problem of selective data-gathering in a semi-static sensor net-
work. Our contributions include the definition of abase-to-base,
source-routed data gathering protocolthat constructs small tours of
nodes in the network, starting and ending at the basestation. Each
tour combines the tasks of propagating a query packet with collect-
ing the requested data: as the query packet progresses through the
network, the indicated readings are written into the packet, which
eventually returns to the basestation. We achieve our tours via
source routing: the basestation uses its knowledge of the network
to choose an optimal route for each fixed-size packet, with the final
hop of the route being back at the basestation.

Our theoretical contributions include the proof of NP-completeness
for our query-routing problem, as well as the development of poly-

nomial constant factor approximation algorithms. Finally we en-
hance the robustness of our algorithms to accommodate the pra-
ctical issues of limited-sized packets as well as network link and
node failures, and examine how different approaches behave with
dynamic changes in the network topology. Our theoretical results
are validated via an implementation on the TinyOS platform and a
controlled simulation study using Matlab and TOSSIM [18].

1.1 Related work
Our work addresses a problem in the BBQ query system [10],

where the authors describe a method of reducing query cost using
probabilistic inference. The presented algorithms derive a subset
of the network nodes that are sufficient to answer the query within
some specified confidence intervals. Our work focuses on com-
puting the optimal communication path for retrieving the measure-
ments from this subset. It should not be assumed however that the
applicability of this work is restricted to the framework of [10].
Many applications that rely on selective data gathering could be-
nefit from the theory presented in this paper (e.g., multi-resolution
storage [11]). We make the assumption that the basestation pos-
sesses information about the entire network topology, which is as-
sumed semi-static. The sensor nodes are not required to maintain
any routing information, not even for their immediate neighbors.

A wide range of routing protocols have been proposed for wire-
less sensor networks, and many of them could be used for selective
data gathering. Conventional protocols like flooding or gossip [14]
spend a lot of bandwidth and energy on unnecessary transmissions.
The tradeoff between energy and latency has also been a topic of
study ([26]). In this work however we do not include latency as
a part of the optimization process. Also, we do not make any as-
sumptions about data correlations as is the case in [24, 7, 8].

The SPIN protocol proposed in [15] and [17] disseminates the
data in each node, so that a user posing a query anywhere in the
network can immediately get back results, assuming that all nodes
keep neighborhood information. In [16] the authors propose an ag-
gregation paradigm called directed diffusion. This is a data-centric
approach that sets up gradients from data sources to the basesta-
tion, forming paths of information flow, which also perform data
aggregation along the way. Rumor routing ([3, 4]) also creates
paths using a set of long lived agents who direct the paths towards
the events they encounter. More specific to query-centric routing
are DIM [19], where indices are embedded in the sensor network,
and semantic trees [20], where trees are constructed in considera-
tion of the query. GHTs [23] also focus on data centric routing and
storage, mapping IDs and nodes to metric space coordinates.

Since the nodes in our framework have no knowledge of the
topology, we will propose a packet structure for injecting routing
information in the network, making the problem similar to the ca-
pacitated vehicle routing problem [22, 5, 13]. In capacitated vehicle
routing, there exist nodes in a graph that contain an item of a spec-
ified volume (analogous to our “measurement set” in Section 2).
The items need to be picked up by a vehicle (a packet) of a certain
capacity and transferred to another node (our basestation). The ca-
pacitated vehicle routing problem is to find the minimum cost tours
that the vehicles need to make in order to transfer all items. The
main difference of this problem with our case is that the packets
(vehicles) are required to carry the routing information as well as
the data, and packets can be copied mid-tour while vehicles cannot.

2. THE OPTIMIZATION PROBLEM
In our setting we have a semi-static sensornet, and we need to

gather data from an explicitly enumerated set of nodesR, which we
refer to as themeasurement set. We assume that there is a powered

a f

e

d

c

b

g

Figure 2: A splitting tour. The tour splits at node b and follows two separate

paths which merge at nodee.

basestation computer that we will also refer to as theroot of the
network, where the data are gathered.

The network is modeled at the basestation as a graphG(V, E),
whereV is the set of all nodes andE represents the radio commu-
nication links between them. A cost functionc(i, j) represents the
expected number of transmissions required to send a message suc-
cessfully over link(i, j). The cost function is modeled as1

pijpji
,

wherepij is the probability that nodei will successfully communi-
cate with nodej on a given trial. The undirected model captures the
requirement of receiving an acknowledgement for every message.
The same approach was proposed in [25] and [9]. This approach
results in an undirected cost graph (c(u, v) = c(v, u)), but it does
not imply symmetry on the link layer.

The graph model of the network is maintained at the basestation
by periodic propagation of link quality measurements. Given the
network graphG and measurement setR, the optimization problem
computes a minimal-cost routing scheme that visits all the nodes in
R and brings their data back to the basestation. The communication
path can include nodes that don’t belong toR and act only as rout-
ing nodes. This optimization is most naturally solved at the bases-
tation. We therefore adopt a source routing approach, in which the
source of the fixed-size query packets (the basestation) marks them
with sufficient information to allow nodes in the network to follow
the route. In Section 4 we elaborate on the mechanics of annotating
a packet with source-routing information; for our expository pur-
poses in this early discussion we can simply assume that (a) some
space in the packet is used to instruct nodes how to acquire data
and forward the packet appropriately, and (b) space is available in
the packet to store the acquired data from nodes inR as the packet
makes its way through the network. Because we use source routing,
nodes do not need to maintain routing or connectivity tables.

2.1 Optimal communication path
Most traditional techniques divide the actions of query dissemi-

nation and data gathering into two separate phases. In the scheme
that we are proposing, these two phases are combined and executed
together, along the same communication path. The communication
path is represented as a graphGs(Vs, Es) whereVs ⊇ R (R the
measuring set), andEs is a multiset of edges(u, v) ∈ E andu, v ∈
R. The existence of an edge(u, v) in Gs indicates that a message
will be sent from nodeu to nodev. Note thatGs is directed.

For Gs to be a valid solution to our problem, it needs to be a
strongly connected graph. This means that there should be a path
from every node to every other node. We refer to a graphGs that
satisfies the above condition as aSplitting Tour, in contrast to a tra-
ditional graph-theoretic tour which is a simple path that begins and
ends at the same node. A splitting tour is a “tour” that is allowed to
split and merge (e.g., Figure 2).

The fact thatGs is strongly connected guarantees that all nodes
in the communication path are able to both receive the query and
deliver the results. A necessary condition for this is that every cut
in the graph is of minimum size 2.1 To see this, first observe that

1The size of a cut(VA, VB), whereVA ⊆ Vs andVB = Vs − VA,

a cut of size 0 would indicate a disconnected graph. Now assume
there was a cut(VA, VB) of size 1, and suppose the basestation was
a noder ∈ VA, then there would be no way of sending the query to
nodes inVB and retrieving the answers, because of the single edge
connectingVA andVB . (Remember thatGs is directed, so using a
physical link in both directions counts as two separate edges inGs.)

The above observation indicates that a necessary condition for
Gs to be a splitting tour is that the undirected version of the graph
is 2-edge connected.

DEFINITION 1 (2-EDGE CONNECTIVITY). A graph is 2-edge-
connected if the removal of any 1 edge leaves the graph connected.

Notice however that a splitting tour represents a communication
pattern, and as such it is allowed to use an edge more than once (a
node can receive and transmit on the same link at different times).
This means that the splitting tour can in general be a multigraph: a
graphG(V, E) whereE is a multiset, and hence there can be mul-
tiple edges between each pair of nodes. We define a generalization
of a 2-edge connected graph which takes this fact into account.

DEFINITION 2 (2-EDGE CONNECTED MULTIGRAPH). A 2-edge-
connected multigraph is a multigraphG(V, E), where∀e ∈ E the
graphG′(V, E − {e}) is connected.

Our goal is to find the most efficient communication path in the
network, that visits all of the nodes in our measurement set. This
means that we need to find the graphGs (splitting tour) with the
minimum total cost, as defined by the sum of its constituent edge
costs. We made the observation that, by definition, the undirected
version of a splitting tour is a2-edge connected multigraph. As the
following lemma states, the converse is also true.

LEMMA 1. G is a 2-edge connected multigraph iff there exists
a direction of its edges that results in a splitting tour.2

We want the splitting tour with minimum total cost. From Lemma 1
we see that the problem that we need to solve is equivalent to find-
ing the 2-edge connected multigraph with minimum cost.

2.2 Hardness
We now assess the hardness of finding the minimal-cost splitting

tour of a graph. We will prove the following:

THEOREM 1. Computing the minimum cost splitting tour of a
graphG(V, E) is NP-complete.

As we know from Lemma 1, finding the min-cost splitting tour
is equivalent to finding the min-cost 2-edge connected multigraph
that spans all the nodes in the measurement setR. From now on we
will refer to this graph as 2-edge-connected multigraphembedding,
to emphasize the fact that it is constructed from another graph (G).

The instance of the problem that we are required to solve is the
following:
Minimum cost 2-edge connected multigraph embedding (2ECME)

• Instance: GraphG(V, E), cost functionc(e) representing
the cost of the edgee = (u, v), integerB.

• Question: Is there a 2-edge-connected multigraph embed-
dingG′ = (V, E′) of G = (V, E) with

P
e∈E′ c(e) ≤ B?

We will prove that 2ECME is NP-hard. To do this, we will use a
reduction from the minimumk-edge connected subgraph problem,
which is known to be NP-complete [12]. The minimum k-edge
connected subgraph problem is stated as follows:

is the number of edges(u, v) ∈ Es whereu ∈ VA andv ∈ VB , or
u ∈ VB andv ∈ VA.
2For proof of lemmas and theorems see extended version [2].

• Instance: GraphG(V, E), positive integersk ≤ |V | and
B ≤ |E|.

• Question: Is there a subsetE′ ⊆ E with |E′| ≤ B such that
G′ = (V, E′) is k-edge connected?

This problem is NP-complete fork ≥ 2. We will concentrate on
the case ofk = 2 and we will refer to this problem as 2EC.

In 2EC, the solution is the spanning2-edge connected subgraph
of G with the minimum number of edges. The difference between
2EC and the 2ECME problem is that the second minimizes the total
weight of the graph and allows reuse of edges (i.e., an edge from
the input graph can appear twice as 2 different edges in the result).

Using a reduction from 2EC, we can prove the following theo-
rem, which we then use to prove Theorem 1:

THEOREM 2. The 2ECME problem is NP-hard.

3. APPROXIMATIONS
Finding the optimal splitting tour is an NP-complete problem

and computing the exact solution is computationally expensive. We
need an approximation algorithm that runs in polynomial time. It is
natural as a first step towards this goal, to examine the connection
this problem has with a very similar graph problem, which is well
studied in the literature: the Traveling Salesman Problem (TSP).
The TSP produces “simple” tours that do not have splits, which
makes it a special case of the splitting tour. Despite the fact that
the TSP problem is also NP-complete, it is very well-studied, with
many known approximation algorithms, which can give us insight
for a solution to our problem.

3.1 Bounding the Minimum Splitting Tour with
the TSP

We intend to provide a polynomial approximation of the Mini-
mum Splitting Tour Problem (MSTP) by examining its relationship
with the TSP. We wish to provide a constant factor bound for our
approximations, so we will start by proving that the solution for the
TSP is bounded by a constant factor of the solution of the MSTP.

Since the communication path is required to span only the mea-
surement setR ⊆ V , we can transform the original network graph
to GR(R, ER) which contains only the nodes inR. The setER is
computed from the original graphG such that each edge(r, s) ∈
ER represents the minimum distance path fromr to s in G. ER

can be computed in polynomial time by computing all-pairs short-
est paths inG. Note thatGR is a complete graph, as long as the
original network graph is connected. We will callGR the reduced
graphof the network. By definition, since every edge ofGR repre-
sents the shortest path inG of the two nodes it connects, the trian-
gle inequality will hold forGR. The TSP can be solved onGR and
transformed to the equivalent tour in the original graph, by replac-
ing every edge fromGR with the path it represents.3

The TSP is a special case of the splitting tour, so it follows that
the MSTP solution will be at least as good as the TSP solution,
i.e., C

opt
MSTP ≤ C

opt
TSP . The question that we need to answer is

how much worse the optimal solution of the TSP space will be,
compared to the solution from the MSTP space. The answer is
given by the following theorem.

THEOREM 3. The optimal solution for the TSP cannot be worse
than a factor of 1.5 from the optimal solution of the minimum split-
ting tour problem (MSTP).

C
opt
TSP ≤ 1.5C

opt
MSTP

3Note that we allow the TSP tour to visit a node more than once.

SeqNo length offset

header Node 1 Node 2 Node n...

sender status

Figure 3: Packet structure.

This means that the TSP solution bounds the MSTP solution by a
constant factor of 1.5.

3.2 A polynomial approximation for the min-
imum splitting tour

The bound of Theorem 3 does not yet provide us with a good ap-
proximation of the minimum splitting tour, because the TSP prob-
lem is itself NP-hard. Therefore, we need to provide a bound for
a polynomial algorithm, and we will do that for Christofides’ ap-
proximation algorithm for the TSP with triangle inequality4, which
runs inO(n3) time [6] and produces a result whose cost is at most
1.5 times that of the optimal tour. Since we will use it later on, a
sketch of Christofides’ Algorithm is presented in Algorithm 1.

Algorithm 1 Christofides’ Algorithm for TSP Approximation

1: Find a MST (Minimum Spanning Tree)T1. ClearlyCT1
≤ CT SP

2: Let S be the set of vertices inT1 with odd degree.
3: Find a minimum weight matchingM on S. It is proven in [6] thatCM ≤

1

2
CT SP .

4: Construct an eulerian tourT2 on the edges ofT1 + M . It will be CT2
=

CT1
+ CM ≤ CT SP + 1

2
CT SP = 1.5CT SP

Now based on the bounds that we proved for the TSP solution,
we will prove a constant factor bound for the TSP approximation.
It is trivial to show that sinceCopt

TSP ≤ 1.5C
opt
MSTP andC

approx
TSP ≤

1.5C
opt
TSP , we getCapprox

TSP ≤ 2.25C
opt
MSTP .

However, we are able to prove that the algorithm provides a bet-
ter bound, as Theorem 4 shows. The proof consists of applying
Theorem 3 to every step of Algorithm 1.

THEOREM 4. Algorithm 1 provides a factor 1.75 approxima-
tion of the Splitting Tour Problem.

Hence, using Algorithm 1 we can compute in polynomial time
a simple tour which we know cannot be more expensive than 1.75
times the cost of the actual optimal solution of our routing problem.

4. PACKET SIZE LIMITATIONS
The previous section established a theoretical basis for our prob-

lem. However, we have yet to handle a number of important pra-
ctical considerations. The first, which we address in this section,
is the fact that radio network packets are of small fixed size, and
source routing instructions for long tours may not fit in a single
packet. We begin by describing the specifics of our packet routing
implementation in Section 4.1, and then three schemes for dealing
with long tours in Sections 4.2 through 4.4.

4.1 Background: Path injection
In Section 2 we discussed in general terms the idea of source

routing in a sensor network. Here we provide more detail. We use
the simple packet structure shown in Figure 3. The packet header
in our implementation includes a sequence number which gets in-
cremented as the packet gets routed around the network, a field in-
dicating the total number of bytes being sent, the ID of the sender,
4Notice that although the triangle inequality does not hold for the
original network, it does hold for its reduced graphGR on which
all the algorithms are performed.

01

02

03
03 52 FF FE 01 DD 02 DD

01 3A 02 0D 03 52 FF FE

02 0D 03 52 FF FE 01 DD

FF FE 01 DD 02 DD 03 DD

Figure 4: Example of how the packet changes from hop to hop. Two bytes are

allocated per node. The first one represents the nodeID and the second holds the

necessary data to instruct the node whether it needs to sample or not, how many

retries it should attempt for the next hop etc. A byte with the value0xDD in the

figure represents sampling data stored by the corresponding node in the packet.

The bytes filled with the values0xFFFE are special delimeters that separate the

routing information from the data storage.

and two additional fields which are used for more advanced packet
handling discussed later in the paper.

The main part of the packet represents a simple path of sizen,
which should be traversed in the order indicated, from node 1 to
noden. Every node in the path is given a slot (in our implementa-
tion 2 bytes are assigned to each slot), which serves as the storage
space for all the information that needs to be sent to the network.
A typical slot entry includes the nodeID, the ID of the sensor to be
sampled, and the maximum number of retries to be attempted for
the next hop.

In our implementation, the packet works as a cyclic buffer. When
a node receives the packet, it removes itself from the beginning and
shifts everyone to the left by one slot. Whenever a node in the
path receives a message, its node ID should be in the first packet
slot. If the node needs to return a measurement it will add it at the
end of the packet. If not, it takes no further action than forward
the message to the next node in the path whose ID is now placed
in the first packet slot. Following this procedure, when the packet
comes back to the basestation, it will contain the measurements
in the same order as the tour was traversed. This packet structure
serves both as a command and as a storage medium, and in order
to discriminate between the routing and the measuring part of the
packet, special delimeters can be used. An example of how the
packet gets routed is given in Figure 4.

In this scheme we move measurements around as the packet tra-
vels through the path. Another alternative would be to statically al-
locate a specific slot for each node. The advantage of the dynamic
scheme compared to the static one, is that routing-only nodes – i.e.,
those not contained in the measurement set – get completely re-
moved after being visited, making the packet shorter. This feature
can improve performance for some traversal methods.

4.2 Cutting a tour
Given that background on our path injection scheme, we can now

consider the problem of routes that do not fit in a packet.
Let us say that a packet can hold tours of maximum sizeP , i.e.,

that the packet has enough space forP node slots, and the tour
TG that we get from Algorithm 1 is bigger thatP . One approach
is to cut the tourTG into smaller parts, each of which will have
maximum sizeP . Cuts in the tour are going to be performed by
re-routing intermediate edges to the source.

Algorithm 2 uses dynamic programming (DP) to compute the
optimal cutting of a long tourTG into smaller tours of size≤ P , so

Figure 5: Cutting a tour into smaller subtours.

that each one can fit in a single packet5. The algorithm computes a
cost-to-gofunction,J(i), that represents the cost of the best cutting
of the segment from theith node to the end ofTG. At completion,
J(1) will hold the best possible cost of cuttingTG into parts of
maximum sizeP . We can obtain the optimal cuts with another
pass overJ in the usual DP fashion.

Algorithm 2 Cutting a tour
∀i, J(i) = ∞

J(n) = L(n, n)
for i = n − 1 to 1do

for j = 0 to P − 1 do
if i + j + 1 ≤ n then

J(i) = min(J(i), L(i, i + j) + J(i + j + 1))
end if

end for
end for

At the core of the computation is thelocal cost functionL(i, j),
representing the minimum cost tour that fits in a packet of sizeP

and visits the subset of nodes ofTG that are in the segment fromi to
j: S → . . . → i → . . . → j → . . . → S. The local cost function
L(i, j) can also be computed efficiently: We first precompute a
hop-restricted distance function,d(u, v, k), representing the cost
of the shortest path fromu to v that uses at mostk hops. This
function can be computed by a standard DP.L(i, j) is then obtained
by another DP that iterates through the nodes ofTG in the range
[i, j], usingd(u, v, k) as the local cost function.

This algorithm does not modify the order in which the measuring
nodes (nodes ofTG) are visited, but the paths followed in between
may differ. This is because a path with fewer nodes which may fit in
one packet may not have been picked due to being more expensive
in terms of cost. So, there can be cases where the algorithm may not
do any cuts at all, and just change the paths followed. For example,
consider the tourTG = S → a → B → c → d → E → f → S,
and the packet sizeP = 4. S is the basestation and the nodes in
capital letters form the measurement setR = {B, E}. It is possible
that the cutting algorithm gives a single tour, e.g.,S → a → B →
g → E → S. This tour may be more expensive thanTG, and that is
the reason it may not have been chosen by the TSP approximation,
but it does fit in a single packet. Another possible output could be
S → a → B → c → S andS → d → E → f → S, whereTG

was divided into two smaller tours by simply short-cutting to the
root at nodesc andd. The cutting algorithm will dynamically pick
the cheapest of the possible choices.

The cost of the main DP algorithm isO(nP). Additionally, we
must consider the cost of precomputing the local cost functionL.
The subfunctiond(u, v, k) is computed inO(n2P). TheL func-
tion itself is computed inO(n3P). Thus, the total cost of the cut-
ting algorithm isO(n3P).

4.3 Multiple packets
As an alternative approach to cutting a tour that cannot fit in a

single packet, one can use a “train” of multiple packets to inject
the path to the network. We have implemented this approach by
using two fields in the packet header that indicate the total length
of the packet-train and the current packet’s offset in the train. Upon
receiving all packets of the train, a node can reconstruct a virtual
“big” packet containing the whole path, process it, break it up again
into a train and forward it. Notice that even if for some reason pack-
ets arrive in a different order, we can reconstruct the proper order
5If we assume that the nodes in the network know the ID of the
basestation, we can exclude the basestation from the packet as an
optimization, but this is not a requirement for the algorithms de-
scribed.

by the header information. In every step we treat the packet-train as
one big packet. However the cost of sending a packet-train over a
link will be proportional to the number of packets it contains. One
thing to note is that by using the policy described in Section 4.1, a
packet-train can become shorter while getting routed on the path,
because of the removal of the routing-only nodes.

4.4 Hybrid: cutting with multiple packets
Simple cutting of a tour does not allow us to reach nodes that

are more thanP hops away, and forces us to use a small num-
ber of (potentially) expensive edges when collecting data from far-
away nodes. Multiple packets, on the other hand, can reach far-
away nodes, but may be wasteful when collecting data from a large
number of nodes. In this section, we use dynamic programming to
combine the strengths of these two approaches.

This hybrid algorithm is similar to the cutting DP procedure in
Algorithm 2, but instead of restricting cuts to be of lengthP , a cut
can consist of multiple packets which can have a total length up
to n. We must also modify the local cost functionL(i, j) to al-
low for the use of multiple packets to visit the subset ofTG that
is in the range[i, j]. A simple approach for computing the multi-
ple packet version ofL(i, j) is to first run the algorithm we used
in Section 4.2, setting the packet size toP ; then, we run the same
algorithm with a packet of size2P , computing the edge costs ac-
cordingly6, then for3P , and so on. Finally, we defineL(i, j) to be
the minimum over all of these packet size options.7 The final com-
putational cost of this algorithm isO(n5). The paths obtained by
the two previous approaches are strictly more costly than this one,
since the hybrid algorithm finds the optimal cut that could use one
or more packets per section. In Section 6 we will assess the merits
of the various schemes in practice on a real network graph.

5. RECOVERING FROM FAILURES
Having dealt with the practical issue of finite-sized packets, we

now turn our attention to a subtler practical issue: the dynamics
of real networks. For purposes of route selection we assumed that
the network is semi-static, but connectivity changes do occur in
wireless sensor networks. Link qualities can change and nodes can
fail. We want our data gathering approach to remain robust in the
face of these events, even if we expect the dynamics of the network
to be relatively modest over time.

If after a certain number of retries specified by the quality of the
link – a bad link means more retries are required – a node wasn’t
able to successfully transmit a message, it has to assume a failure of
either the link, or the node to which it wants to transmit a message.

To resolve failures we propose two different schemes, backtrack-
ing and flooding based recovery.

5.1 Backtracking
In this section we will describe the recovery technique of back-

tracking. Since the nodes do not have any knowledge of the net-
work topology, if the path they are given fails, the simplest thing
they can do is trace back their steps. When a node encounters a
failure, it initiates backtracking which will send the message back
to the root with as much data as it has gathered, in the same path
that it came from. The information needed for backtracking can

6For every path we know which nodes are routing-only and will be
removed, so we can pre-compute how long the packet train travers-
ing a specific edge will be. Then the cost of that edge is calculated
as the basic cost of transmitting one packet times the number of
packets in the train.
7We can also use a modified version of the DP algorithm to com-
pute the multiple packet version ofL(i, j) more efficiently.

X

Inaccessible nodes

X
X

(a) (b)

Figure 6: The bold edges indicate the initially computed tour. (a) During the

traversal a failure is encountered and the message backtracks to the root; a new

message is issued in the opposite direction than the tour was defined to gather

data from the unvisited part. (b) In case of multiple failures nodes can become

inaccessible.

temporarily be stored in the network: upon the arrival of a message,
the receiving node can store the ID of the sender, just for the dura-
tion of the query execution, and then, during backtracking, nodes
can use this “breadcrumb” information to traverse the path back-
wards. When the basestation receives the backtracked message, it
can issue a message in the opposite direction of the original tour, to
attempt to reach the nodes that were missed in the first round-trip.
An example is presented in Figure 6(a).

Notice that in the case of multiple failures happening in a single
tour, some of the nodes may remain unvisited like the example in
Figure 6(b). In this case, the user who issued the query can be
notified about the missing measurements. If this is not acceptable, a
new tour can be computed for the missing nodes taking into account
the information about the failures the previous run encountered.

The backtracking algorithm that we presented is a simple heuris-
tic to handle a small number of failures in the system. It offers full
recovery for single failures per tour, but cannot retrieve nodes that
fall in between failures in a path. Notice however that the commu-
nication cost of performing recovery with backtracking is bounded
by a factor of 2 from the cost of the tour, because every edge of the
tour will be traversed at most twice (one during forward processing
and one during backtracking).

We note that our description of backtracking assumes that there
will be no failures during the backtracking step itself. The assump-
tion here is that an edge traversed in the forward direction should
not fail during the running time of the query, during which it may
need to be traversed in the opposite direction. In case of such fail-
ures though, after a suitable timeout the basestation can re-attempt
the packet either directly, or in the reverse direction.

5.2 Flooding
Another approach to recovery is to perform local flooding in case

a failure is detected. When a nodeA exhausts the number of retries
denoted in the packet, it will enter recovery mode and broadcast the
message in the hope that some node in the unvisited part of the path
will hear it. The flooding message contains a TTL (Time To Live)
number, which determines the depth of the flood. Upon reception
of a flooding message a nodeB examines it to check whether it is
itself part of the path or not. If it is not, it will continue the flood,
decrementing the TTL. Flooding terminates if TTL reaches 0.

If B is a member of the yet unvisited part of the path, it can make
different decisions as to what it should do with the packet. It can ei-
ther start sending the packet forward in the path, or send backwards
to retrieve any measurements that may lie between nodesA andB,
or wait to see if a forwarding message will come from some node
precedingB in the path. An example of flooding based recovery
is demonstrated in Figure 7.

The more specific semantics of the flooding based recovery scheme

basestation

flood

fl
oo

d

Initial normal execution

Reverse routing (local backtracking)
Resume forward execution
Flooding

failure

Figure 7: When a node detects a failure on the path it initiates a flood with

small depth, so that it will remain local. The nodes in the unvisited partof the

path that hear the flood backtrack on the path to get any data possible between

the failure and their position. If a forward and a backtracking message meet, the

backtracking one is killed.

in the way that we actually implemented it, taking a conservative
approach, are described in the following list.

• During normal execution, a node sends only forward
• When a forward sending fails (after specified retries), a re-

covery bit is set in the packet, and the node broadcasts the
packet. The initiator of the flood isA and the part of the path
that is still unvisited isP .

• When a nodeB hears the flooding message, ifB is not inP ,
andTTL > 0, thenB continues the flood.

• If B ∈ P , andB heard the flood or a backtracked message
during recovery:

– If no measuring node exists in the path interval(A, B)
thenB resumes forward execution.

– OnceB has sent a normal-case, forward-directed mes-
sage, thenB will never backtrack.

– If B has already backtracked thenB takes no action for
the new flooding or backtracking message (i.e., back-
track only once).

– If there exists a measuring node in interval(A, B), and
B hasn’t heard a forward message andB hasn’t already
backtracked, thenB backtracks.

– If a backtracking message fails (after a specified num-
ber of retries) thenB resumes normal execution by
sending a message forward.

For the last two points of the above list, we chose to follow a conser-
vative approach targeted to the retrieval of as many measurements
as we can, without trying to optimize the cost. For example we
could possibly have less transmissions ifB waited instead of in-
stantly backtracking, because someone else preceding it may have
heard the flood and already initiated a forward execution. This
would on average decrease communication cost, but it would in-
crease the latency. In this space there is some room for further in-
vestigation of the tradeoffs of these parameters, and how they affect
the recovery scheme.

Compared to backtracking, a flooding based scheme has the ad-
vantage that it can recover from more than one failure in the current
tour. A disadvantage however is that the cost (number of messages
sent) is not theoretically bounded by a constant factor and depends
on the network topology. Also, TTL is a parameter that affects both
the cost and the recovered measurements.

6. EXPERIMENTAL RESULTS
We evaluated our proposed schemes via an implementation, con-

sisting of two separate components. The first involves several Mat-
lab routines used to perform the optimization described in Sec-
tion 3, as well as to apply the packet size restriction of the network,

2 4 6 8 10 12 14 16 18 20 22
0

500

1000

1500

2000

2500

packet size

co
m

m
un

ic
at

io
n

co
st

TSP approximation
hybrid
cutting
multiple packets

Figure 8: Communication cost of the 3 packet

adjustment algorithms. This particular graph cor-

responds to a measuring set of size 15 in a network

of 54 nodes.

20 40 60 80 100 120 140 160
2

4

6

8

10

12

14

network size

pa
ck

et
 s

iz
e

hybrid 2.5 of optimal

cutting 2.5 of optimal

hybrid 1.5 of optimal

cutting 1.5 of optimal

Figure 9: Packet size required for reaching a

constant factor of the optimal cost, for networks of

different size.

0 5 10 15 20 25 30

2

4

6

8

10

12

14

number of measuring nodes

pa
ck

et
 s

iz
e

hybrid 2.5 of optimal

cutting 2.5 of optimal

hybrid 1.5 of optimal

cutting 1.5 of optimal

Figure 10: Packet size required for reaching a

constant factor of the optimal cost for measuring

sets of different size.

5 10 15 20 25 30
20

40

60

80

100

120

140

160

Number of Measuring Nodes

N
um

be
r

of
 tr

an
sm

is
si

on
s

Hybrid vs Cutting: Communication Cost

cutting (uniform distribution)
hybrid (uniform distribution)
cutting (centralized distr.)
hybrid (centralized distr.)

Figure 11: Comparison of the cost of the cutting

and hybrid heuristics for measuring sets of various

sizes chosen by two different distributions from all

the network nodes.

5 10 15 20 25 30
0

200

400

600

800

1000

1200

1400

1600

Number of Measuring Nodes

N
um

be
r

of
 T

ra
ns

m
is

si
on

s
Backtracking vs Flooding: Communicatio Cost

Backtracking (5% failures)
Flooding (5% failures)
Backtracking (10% failures)
Flooding (10% failures)
Backtracking (15% failures)
Flooding (15% failures)

Figure 12: Comparison of the 2 recovery algo-

rithms for failures of rates 5%, 10% and 15% in

terms of communication cost. Notice that the back-

tracking lines practically coincide.

5 10 15 20 25 30
0

5

10

15

20

25

30

Number of Measuring Nodes

N
um

be
r

of
 L

os
t M

ea
su

re
m

en
ts

Backtracking vs Flooding: Lost Measurements

Backtracking (5% failures)
Flooding (5% failures)
Backtracking (10% failures)
Flooding (10% failures)
Backtracking (15% failures)
Flooding (15% failures)

Figure 13: Comparison of the 2 recovery algo-

rithms under conditions of failures with rates 5%,

10% and 15% in terms of the number of lost mea-

surements.

using the algorithms presented in Section 4. Each tour is stored in
a file which is subsequently sent to a Java interface that can parse it
and inject the proper packets into the network.

On the network side, our mote code is written in nesC, on the
TinyOS platform. This code implements the proper handling of
the routing messages, as well as the two different recovery modes,
backtracking and local flooding.

For our simulation experiments we gathered connectivity data
from a real deployment, through TinyDB queries running for a
number of epochs. The connectivity data was given as input to
the simulations, thus modeling the dynamics of a real network. We
chose to use the public mote testbed at Intel Research Berkeley,
which is remotely available via the Mirage resource allocation sys-
tem [1]. At the time, the testbed consisted of 96 Mica2 nodes at
fixed positions8. The environment of the deployment is relatively
noisy, and includes human activity as well as other radio traffic
(802.11, cordless telephone headsets, cellular phones, etc).

6.1 Simulation Results
The results that we present in this section consist of two kinds

of simulations. The first are Matlab simulations of the network
and algorithms, the purpose of which is to provide an insight as of
the behavior of the algorithms under different packet requirements.
The second class of experiments uses the actual NesC code for the
protocols, but instead of running them on the live testbed we ran
them within the TOSSIM simulator, which simulates a network of
TinyOS motes[18]. We focused on TOSSIM rather than the live

8These were recently replaced by MicaZ motes.

testbed in order to be able to control our experiments and validate
their behavior.

Experiments were performed by picking random subsets, as the
measuring set, from the real network graph and computing the ap-
proximation of the optimal solution proposed in Section 3. The
main goal of our analysis is to compare the heuristics that we pro-
posed in Section 4, as well as evaluate our recovery algorithms in
the cases of failures.

The cutting and hybrid heuristics adjust long tours so that they
can fit within packets of a specified size. Figure 8 demonstrates
how the communication cost of the different algorithms converges
rapidly to the optimal as the size of the packet increases. The cost
for using multiple packets is also depicted in this graph, but it is
omitted from our subsequent experiments because it behaved very
poorly. More extensive experiments on networks and measuring
sets of different sizes demonstrate that the required packet size ap-
pears to grow linearly with the network size, as well as the measur-
ing set size, and a relatively small packet is sufficient to achieve a
cost close to the optimal.

In terms of comparing the two main heuristics, cutting and hy-
brid, as expected hybrid demonstrates a lower communication cost.
These results are verified by Figure 11 which was produced from
experiments on the TOSSIM simulator. The figure compares the
packet adjustment heuristics (hybrid and cutting) for two different
distributions for picking the measuring set. One of them chooses
uniformly from all the network nodes, and the other favors nodes
that are positioned closer to the basestation. These TOSSIM runs
were performed by using packets of size 30 bytes. In our imple-

mentation the packet headers are of 8 bytes length, and each node
slot requires 2 bytes. Therefore this corresponds to packets of 11
node slots.

Our approach is extremely effective compared to traditional data
gathering techniques when the number of nodes from which we
want to get measurements is small compared to the size of the net-
work. For the data depicted in figure 11, the total weight of the
minimum spanning tree of the network is 145, where every edge
weight represents the number of expected retransmissions on that
edge to achieve successful communication. This means that even
traversing the minimum spanning tree once would inflict an ex-
pected cost of 145 messages.

We also performed experiments for our proposed recovery ap-
proach. In addition to the previous setting, we pick a constant
number of random failures in the network, and perform TOSSIM
simulations for both our recovery algorithms. The TTL used by
the flooding recovery algorithm for the graphs that we present in
this section is 3. This value was chosen after an evaluation that we
did for various flooding depths, which we have omitted here due
to space restrictions. For the network that we are modeling9 in
TOSSIM a bigger flooding depth did not add value to the recovery
and even started to cause interference phenomena.

Figures 12 and 13 present experimental results for the two re-
covery approaches, corresponding to a 5%, a 10% and a 15% fail-
ure rate in the network. Figure 12 displays the overall communi-
cation cost for runs of various sizes for the measuring set. Each
point in the graph is an average across 20 different runs of the
same measuring set size. As the figure demonstrates, flooding is
a more costly recovery technique compared to backtracking. Also,
the backtracking cost is more robust to changes in the failure rate,
since it is bounded by a constant factor of the cost of the original
route, whereas such guarantees do not hold for flooding. In terms
of the number of lost measurements, backtracking appears to win
again, although the losses for both algorithms increase as the failure
rate increases.

6.2 Discussion
Our Matlab experiments demonstrate that the cutting and hybrid

heuristics for adjusting long tours to finite packets, converge to the
optimal cost very fast, and for relatively small packet sizes. The
TOSSIM experiments helped us evaluate our recovery schemes.
Backtracking appears to be very robust to failures, with bounded
cost and good recovery rates. We can always construct scenarios
where backtracking loses to flooding, but in the network that we
were simulating, it appears to be the winner. One of the main rea-
sons was the bad quality of the communication links, which gave
an advantage to backtracking which utilizes retries. This indicates
that probably flooding would benefit from retransmissions (aggres-
sive flooding) which could possibly include some acknowledge-
ment scheme.

7. CONCLUSIONS AND FUTURE WORK
In this work we focused on optimizing the routing paths for data

gathering tasks that use source routing. Starting by assuming a
semi-static network topology, we defined the optimization problem
that we need to solve, and proved that it is NP-hard. We provided
a polynomial time approximation algorithm, for which we proved
that the total cost of its solution is bounded by a7

4
constant factor

of the optimal cost. We presented the packet structure that is used
to inject the routing information into the network, and provided

9The model is based on connectivity data gathered from the Mirage
testbed.

algorithms to adjust the communication paths so that they can be
accommodated by any specified packet size. Finally we provided
heuristic solutions to recover from failures in the network and pre-
sented experimental results on the performance of our algorithms.

In future work we intend to consider additional recovery meth-
ods, and hope to provide theoretical guarantees on the cost of the
recovery algorithms and the number of recoverable measurements.

Acknowledgments: We would like to thank Andreas Krause for
the data used in Figure 1. This work was supported by NSF Grants
0326472 and 0205647, and a gift from Microsoft Corporation.

8. REFERENCES
[1] https://mirage.berkeley.intel-research.net/.
[2] http://www.cs.berkeley.edu/∼ameli/routing.pdf.
[3] D. Braginsky and D. Estrin. Rumor routing algorithm for sensor networks. In

ICDCS-22, 2002.
[4] D. Braginsky and D. Estrin. Rumor routing algorthim for sensor networks. In

1st ACM international workshop on Wireless sensor networks and applications.
ACM Press, 2002.

[5] M. Charikar, S. Khuller, and B. Raghavachari. Algorithms for capacitated
vehicle routing. In30th annual ACM symposium on Theory of computing. ACM
Press, 1998.

[6] N. Christofides. Worst case analysis of a new heuristic for the traveling
salesman problem. Technical report, Carnegie Mellon University, 1976.

[7] R. Cristescu, B. Beferull-Lozano, and M. Vetterli. On network correlated data
gathering, 2004.

[8] R. Cristescu, B. Beferull-Lozano, M. Vetterli, D. Ganesan, and J. Acimovic. On
the interaction of data representation and routing in sensor networks. In
ICASSP, 2005.

[9] D. De Couto, D. Aguayo, B. Chambers, and R. Morris. Performance of
multihop wireless networks: Shortest path is not enough. InHotNets-I. ACM
SIGCOMM, October 2002.

[10] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong.
Model-driven data acquisition in sensor networks. InVLDB, 2004.

[11] D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Estrin, and J. Heidemann.
Multi-resolution storage and search in sensor networks.ACM Transactions on
Storage, Aug. 2005.

[12] M. R. Garey and D. S. Johnson.Computers and Intractability – A Guide to the
Theory of NP-Completeness. Freeman, San Francisco, 1979.

[13] M. Haimovich and A. H. G. R. Kan. Bounds and heuristics for capacitated
routing problems.Mathematics of Operations Research, November 1985.

[14] S. T. Hedetniemi, S. M. Hedetniemi, and A. Liestman. A survey of gossiping
and broadcasting in communication networks.Networks, 1998.

[15] W. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive protocols for
information dissemination in wireless sensor networks, 1999.

[16] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: a scalable
and robust communication paradigm for sensor networks. In6th annual
international conference on Mobile computing and networking, 2000.

[17] J. Kulik, W. R. Heinzelman, and H. Balakrishnan. Negotiation-based protocols
for disseminating information in wireless sensor networks.Wireless Networks,
2002.

[18] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accurate and scalable
simulation of entire tinyos applications. InProc. ACM Conference on
Embedded Networked Sensor Systems (SenSys), Nov. 2003.

[19] X. Li, Y. J. Kim, R. Govindan, and W. Hong. Multi-dimensional range queries
in sensor networks. In1st international conference on Embedded networked
sensor systems. ACM Press, 2003.

[20] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. The design of an
acquisitional query processor for sensor networks. InACM SIGMOD, 2003.

[21] S. Madden and J. Gehrke. Query processing in sensor networks.Pervasive
Computing, 3(1), January-March 2004.

[22] T. Ralphs, L. Kopman, W. Pulleyblank, and L. Trotter. The capacitated vehicle
routing problem.

[23] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker.
Ght: a geographic hash table for data-centric storage. In1st ACM international
workshop on Wireless sensor networks and applications. ACM Press, 2002.

[24] A. Scaglione and S. D. Servetto. On the interdependence of routing and data
compression in multi-hop sensor networks. InMobiCom, pages 140–147, 2002.

[25] A. Woo, T. Tong, and D. Culler. Taming the underlying challenges of reliable
multihop routing in sensor networks. InSenSys, pages 14–27, 2003.

[26] Y. Yu, B. Krishnamachari, and V. K. Prasanna. Energy-latency tradeoffs for data
gathering in wireless sensor networks. InINFOCOM, 2004.

