
Nonmyopic Informative Path Planning in Spatio-Temporal Models

Alexandra Meliou
UC Berkeley

Andreas Krause
CMU

Carlos Guestrin
CMU

Joseph M. Hellerstein
UC Berkeley

Abstract
In many sensing applications we must continuously gather in-
formation to provide a good estimate of the state of the envi-
ronment at every point in time. A robot may tour an environ-
ment, gathering information every hour. In a wireless sensor
network, these tours correspond to packets being transmitted.
In these settings, we are often faced with resource restrictions,
like energy constraints. The users issue queries with certain
expectations on the answer quality. Thus, we must optimize
the tours to ensure the satisfaction of the user constraints,
while at the same time minimize the cost of the query plan.
For a single timestep, this optimization problem is NP-hard,
but recent approximation algorithms with theoretical guaran-
tees provide good solutions. In this paper, we present a new
efficient nonmyopic greedy algorithm, exploiting submodu-
larity of the information collected, that efficiently plans data
collection tours for an entire (finite) horizon. Our algorithm
can use any single step procedure as a black box, and, based
on its properties, provides strong theoretical guarantees for
the solution. We also provide an extensive empirical analysis
demonstrating the benefits of nonmyopic planning in a real
world sensing application.

Introduction
Many practical applications require the monitoring of
various physical phenomena that change over time. Sensing
devices can often be hard to recharge, repair or replace,
posing limitations to their use. These resource constraints
demand nuanced schemes for collecting observations that
tolerate bounded uncertainty in exchange for reduced
resource consumption. In wireless sensor networks for
example, sensors have limited battery life. To conserve
power, one can use data gathering tours (Meliou et al.
2006) to acquire measurements at minimum cost. In robotic
applications, there can be limits on fuel. Hence one has
to plan robot trajectories in order to efficiently acquire
information (c.f., Singh et al. 2007). Common to these
problems is the need to find maximally informative paths,
while minimizing the traversal cost incurred.

In the case of monitoring with sensor networks, the
requirements for informativeness are usually determined
by a user, who often specifies desired confidence require-
ments on the returned result. This problem is the focus of
earlier work (Deshpande et al. 2004), where model-based
querying is proposed as a new approach to approximate
query answering. In order to assess the informativeness of
observations before acquiring the actual values, one can use

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

probabilistic models. When dealing with spatial phenomena,
as in the current common uses of sensor networks, Gaussian
Processes (c.f., Rasmussen & Williams 2006) have been
successfully used as such models. These models allow us
to quantify the informativeness of selected observations in
terms of the expected reduction in predictive variance.

Most existing work in the area of resource-bounded
observation selection has been myopic. In this paper, we
present an efficient nonmyopic algorithm for observation
selection in spatio-temporal models. Within its planning
horizon, our algorithm optimizes a collection of paths,
one for each time step, which minimizes the long-term
observation cost. More specifically, our contributions are:

• An efficient nonmyopic observation planning algorithm
with strong theoretical performance guarantees.

• A general technique, which can use any myopic planning
algorithm and convert it into a nonmyopic algorithm.

• Empirical analyses of the effectiveness of our algorithm
on real world data sets.

The NSTIP Problem
Our goal is to monitor a spatio-temporal phenomenon at a
finite set of locations V and timesteps T = {1, . . . , T}. With
each location i and time t, we associate a random variable
Xi,t, and use Vt and XVt to refer to all locations and their
variables at time t, respectively. Since it is costly to observe
all locations at every point in time, our approach selects a set
of locations to visit at each time step, and uses a statistical
model to predict the missing values. To make this predic-
tion, we assume a joint distribution P (X) over all variables.
This joint distribution encodes the dependencies along
spatial and temporal dimensions. In this paper, we use a
class of nonparametric probabilistic models called Gaussian
Processes (GPs, c.f., Rasmussen & Williams, 2006), which
have found successful use in modeling spatial phenomena.
Our approach is however not limited to this class of models.

In order to select which observations to make, we need
to quantify the expected “informativeness” of these observa-
tions with respect to the missing ones. We quantify the infor-
mativeness of any set of observations A = ∪1..tAj by some
function f(A), where At refers to the observations made at
time t. In the literature, different objective functions f have
been proposed to quantify informativeness, such as entropy
(Shewry & Wynn 1987), mutual information (Caselton &
Zidek 1984), or the reduction of predictive variance (Das &
Kempe 2007). In the case where no probabilistic model is
available, one can also associate a sensing region observed

by each sensor, and aim to maximize the total area cov-
ered (Bai et al. 2006). All these objective functions have two
properties in common.1 They are monotonic (i.e., f(A) ≤
f(B) for A ⊆ B) and satisfy the following diminishing re-
turns property: Adding a sensor to a small deployment helps
more than adding it to a large one. More formally, ∀A ⊆ B ⊆
V and s ∈ V \ B, f(A∪ {s})− f(A) ≥ f(B ∪ {s})− f(B). A
set function f satisfying this property is called submodular
(c.f., Nemhauser, Wolsey, & Fisher, 1978). In this paper we
focus on optimizing a monotonic submodular set function f .

In our setting, we are solving the filtering problem: at each
time t, we would like to predict the values of all unobserved
variables in the current time step based on information
collected up to this point in time, A1:t = ∪1..tAj . In partic-
ular, given a measure of informativeness for each time step,
ft, we would like to ensure that the information collected
up to that time step passes some user-specified threshold
kt, i.e., ft(A1:t) ≥ kt. For example, a user may require
that the average standard deviation of estimates for each
temperature reading at each time step is smaller than 1oC.

Chosen observations at each time t must be connected
into a path Pt = (v0, . . . , vm) of nodes vi ∈ Vt. For all
time steps, we assume we are given a nonnegative, possibly
asymmetric distance function dt : Vt × Vt → R+. In the
wireless sensor network example, dt might reflect the
expected transmission cost between any pair of locations
at time t. The cost C(P) of a path P can then be measured
with respect to this distance function dt.

We can now define our nonmyopic spatiotemporal in-
formative path planning problem (NSTIP). Given a col-
lection of submodular functions ft : 2V1∪···∪Vt → R+

defined on the timesteps up to t, cost functions dt, and
a set of accuracy constraints kt we desire a collec-
tion of paths Pt, one for each time step, with P∗ =
argminP

PT
t=1 C(Pt) subject to ft(P1:t) ≥ kt ∀t. Hereby,

P1:t = ∪1..tPj , where Pt′ ⊆ Vt′ is the path selected at
timestep t′. We will assume in discussion that the start and
end nodes for each path are a single specified base-station
node, but our algorithms extend to settings where we do not
need to return to a base station at each time step.

Nonmyopic Planning Algorithm
A naive, myopic, approach for continuous querying is to
treat each timestep as an independent single-step query, and
optimize it independently. We are aiming for a nonmyopic
approach, that performs optimization by adjusting the
rewards of observations to account for the effect that these
can have for later timesteps.

In our approach to the NSTIP problem, we first con-
vert the problem of optimizing multiple paths, one for each
timestep, into a problem of optimizing a single path on a new
graph, the nonmyopic planning graph (NPG). We then show
how to use existing algorithms for solving a related problem,
the submodular orienteering problem (SOP) (Chekuri & Pal

1Variance reduction is submodular under certain conditions
(Das & Kempe). Mutual information is only approximately mono-
tonic (Guestrin, Krause, & Singh 2005).

2005) as a subroutine to solve our nonmyopic planning prob-
lem. This procedure will retain the approximation guaran-
tees which existing SOP algorithms provide for the myopic
case, while only introducing a small loss in the approxima-
tion guarantee due to the nonmyopic nature of our problem.

The Nonmyopic Planning Graph
A solution for the NSTIP problem consists of a series of
cyclic paths, one for each time step, starting and ending at
the base-station node. Imagine these arranged on a timeline
and connected through their base-station nodes as in Fig. 1a.

t t t1 2 T

G NPG

Figure 1: (a) Ex. NSTIP path. (b) Nonmyopic planning graph.

Fig. 1a represents the query plan across time. This overall
solution, augmented by the edges connecting the basestation
nodes at subsequent timesteps can now be considered a
single path through a different graph. This nonmyopic
planning graph (NPG) on all nodes V is constructed by
combining the graph of finite-distance (via dt) pairs of
nodes from Vt for each timestep, adding zero-cost directed
edges connecting them through the basestation nodes. This
transformation is illustrated in Fig. 1b.

Our goal is to recover a solution to the NSTIP problem by
optimizing a path in the NPG. Note that any path P through
the NPG, starting at the basestation at time 1, and ending
there at time T , uniquely corresponds to a collection of paths
Pt, one for each timestep. Moreover, the cost of P is exactly
the sum of the costs of all Pt. We now need to define an
objective function f and a constraint k on the NPG, such
that a solution P on NPG is feasible (i.e., f(P) ≥ k) iff the
corresponding collection of paths is feasible (i.e., ft(P1:t) ≥
kt). To achieve this, we set k =

∑
t kt, and for each timestep

t redefine a function f ′t(P1:t) = min(ft(P1:t), kt). Hence,
timestep t is satisfied iff f ′t(P1:t) = kt. It can be verified
that f ′t is still submodular and nondecreasing. Now define
f(P) =

∑
t f
′
t(P1:t). f is nondecreasing and submodular,

and P is a feasible solution iff f(P) = k. Moreover, the set
of optimal solutions coincides, having identical path costs.

Satisfying per-timestep constraints
Even after the described transformation, the problem of find-
ing a minimum cost feasible path on the NPG is still NP-hard
(Feige 1998). Nonetheless, since it is expensive to collect
observations, we need an algorithm with theoretical guaran-
tees to solve our problem. Unfortunately, we are unaware of
any algorithm providing nontrivial guarantees for this prob-
lem. On the other hand, there are recent results by Chekuri
& Pal (2005) on a basically dual problem – the submodular
orienteering problem (SOP). Instead of minimizing cost
for a fixed information threshold, SOP seeks a maximally-
informative path P∗ given a fixed budget B on path length.
The cited paper presents a recursive greedy algorithm, which

we call CP, which is guaranteed to return a path P̂ with cost
at most B, such that f(P̂) ≥ 1

αf(P∗), where α = log |P∗|.
Hence CP will return a solution where the reward is at
most logarithmically worse in the length (number of nodes
visited) of the optimal path. While the CP algorithm has the
currently best known theoretical properties for SOP, our ap-
proach to NSTIP will accommodate any algorithm for SOP
as a “black box”. The approximation guarantee α will di-
rectly enter the approximation guarantees of our algorithm.

A naive approach would be to call an SOP solver with
increasing budgets, until we satisfy the reward constraints.
However, the SOP algorithm only gives an approximation
guarantee for the reward of a particular budget, not on how
much more budget is necessary to reach the desired re-
ward. Instead, we will stop our search as soon as we sat-
isfy some portion of the total achievable reward. To save
time, we increase the budget values by powers of 2. Suppose
that an optimal algorithm would fulfill the desired constraint
(f(P ∗) = k) with a path P ∗ with cost bounded by 2j <
C(P ∗) ≤ 2j+1, for some integer j. We then know that the
approximate SOP algorithm, given a budget of B = 2j+1

we will get a solution P̂1 with the guarantee f(P̂1) ≥ k
α .

However, since we covered only an α-fraction of the con-
straint k, we need to also cover the remaining difference.
The key idea here is to look at the residual reward. For a set
of “disqualified” nodes A (used in some earlier iteration),
we define a new submodular function, fA(B) = f(A∪B)−
f(A),also monotonic. Our goal is to cover the missing por-
tion of the constraint by optimizing this residual function.
That is, if we have found a path P̂1 in the first iteration, we
will fulfill our constraint with a path P such that f bP1

(P) =
k − f(P̂1). Since f is a monotonic function, we know that
f bP1

(P∗) = k − f(P̂1). Hence, there must exist a path (e.g.,
P∗) of budget at most B which covers the remaining reward
k−f(P̂1) ≤ k− k

α when optimizing f bP1
, i.e., when planning

conditionally on the nodes we already observed.

Algorithm 1 Cover(k)
Budget = 0; kcov = 0; P = ∅
while kcov ≤ k(1− ε) do

for j = 1 . . . jmax do
B = 2j ; bP ′ ← SOPP(B)

if f(bP ′) ≥ k−kcov
α

then
Budget = Budget+B; kcov = kcov + fP(bP)

P = P ∪ bP; break
end if

end for
end while

By the above argument, we can again find an approxi-
mate solution bP2 which covers an α fraction of the remaining
difference. After m iterations, the remaining difference is
k−f(bP1∪· · ·∪ bPm) ≤ (1− 1

α
)mk, which shrinks exponentially

fast in m. This process is described in Algorithm 1. Hereby,
SOPA for a set of nodesA denotes a call to the submodular
orienteering blackbox, using the residual reward fA.

Since the reward function f is real valued, we need

to specify a threshold ε, such that we are satisfied with
a solution which covers a (1 − ε) fraction of the desired
accuracy constraint k. Theorem 1 bounds the number of
iterations required in terms of the accuracy ε.

Theorem 1 Algorithm 1 returns a solution of budget B ≤
2 log ε

log(1− 1
α

)
BOPT which violates the constraint by at most εk,

in time O
“

log ε

log(1− 1
α

)
Q(nT, 2BOPT)

”
.

Hereby, Q(n,B) is the running time of the SOP black box
executed on a graph with n nodes and budget B. For the CP
algorithm, Q(n,B) = O((nB)log(n)).

Efficient Nonmyopic Planning using Black Box
In the previous section we presented a transformation of
a multistep problem to a single step equivalent, which al-
lows for the use of existing algorithms with good theoretical
bounds. Additionally we demonstrated how an approxima-
tion algorithm of a dual problem, the Submodular Orienteer-
ing Problem, can be adapted to address our setting, while
preserving the algorithm’s guarantees.

This approach has running time proportional to Q(nT,B),
i.e. the running time of the submodular orienteering black-
box executed on a graph with nT nodes, and takes advantage
of the algorithm’s guarantee. Currently the best known guar-
antee is the one by Chekuri & Pal (2005). Unfortunately, the
guarantee of their approach comes at a price – albeit subex-
ponential, the algorithm is superpolynomial: For our setting,
their running time is bounded by O((nTB)log(nT)). Using a
spatial decomposition approach and branch and bound tech-
niques, this running time can empirically be significantly de-
creased (Singh et al. 2007). However, the Nonmyopic Plan-
ning Graph (NPG) gets very big very quickly, even for small
horizons T , quickly rendering the approach infeasible.

Nonmyopic Greedy Algorithm
In this section we will present an efficient greedy algorithm,
which can be used more effectively in large structures like
the Nonmyopic Planning Graph, and which also provides a
theoretical bound better than that of Chekuri & Pal (2005)
on the NPG. What makes the development of an efficient
algorithm possible in this scenario is the flexibility of Al-
gorithm 1, which was developed based on a blackbox un-
derstanding of the SOP Algorithm. Algorithm 1 simply uses
a solution to the dual SOP problem, and transforms it to a
solution of the NSTIP problem. What makes the algorithm
computationally expensive is the use of the SOP algorithm
on the NPG graph which is big in size. To develop an effi-
cient alternative we will replace the blackbox that solves the
SOP on NPG with another algorithm which is based on a
greedy selection on every step, and resorts to the SOP algo-
rithm on the smaller network graph.

In the same spirit as in our previous analysis, the reward
that we gain from observing a setA is given by f(A) which
is a submodular monotone function. The marginal increase
of f with respect to A and X is defined as f ′(A;X) =
f(A ∪ X) − f(A). All elements are chosen from a set V ,
and for a positive budget B, our greedy blackbox will solve

the budgeted maximization problem:

OPT = argmax
A∈V:c(A)≤B

f(A)

An elementX in the greedy algorithm setting corresponds
to a tour in the network graph at a particular timestep, and
the approximately best tours are computed for each assign-
ment of possible budgets per timestep. The SOP algorithm
is used as an approximation oracle that returns a tourX with
an α approximation factor relative to the optimal solution.

The details of our greedy algorithm are given in Algo-
rithm 2.

Algorithm 2 NonmyopicGreedy(k,Budget, T)
A1 = ∅
usedB = 0
while usedB ≤ Budget do

for t = 1 . . . T do
for b = 1 . . . Budget− usedB do
M(b, T) = SOP (b,Gt,A1)

end for
end for
X∗=argmax{f ′({A1;Xb,t})/c(Xb,t) : Xb,t ∈M}
usedB = usedB + c(X∗)
A1 = A1 ∪X∗

end while
% Given A1 compute the best greedy choice for Budget
for t = 1 . . . T do
M2(Budget, t) = SOP (Budget,Gt,A1)

end for
A2 = argmax{f ′({Xb,t})/c(Xb,t) : Xb,t ∈M2}
return argmaxA∈{A1,A2} f(A)

The algorithm begins by filling in a B × T matrix, where
element (b, t) contains the orienteering solution over the net-
work graph that corresponds to timestep t and for budget b.
The greedy rule adds to set A the element X∗ such that

X∗ = max
X∈W\Gi−1

f ′(Gi−1;X)
c(Xi)

,

where W is the set of all possible choices for X and Gi−1

the already chosen set. Since we can’t evaluate the marginal
increases f ′(Gi−1;X) exactly, we only assume that we can
evaluate f̂(Gi−1;X), using the SOP algorithm as an approx-
imation oracle. The main part of the algorithm is the com-
putation of the greedy set of tours A1. However there are a
few cases when A1 can be arbitrarily bad. These are cov-
ered by A2, which is the best tour when assigning all of
the given budget to a single timestep, given set A1. A2 is
guaranteed to be good in these few corner cases. Despite
its greedy nature, our algorithm is still nonmyopic, as the
reward functions consider the effect of node selections in
future timesteps as well.

Algorithm 2 provides a solution to the SOP over multi-
ple timesteps, which is equivalent to a solution on the NPG
graph, and thus can replace the blackbox call to the SOP in
algorithm 1. This is computationally an improvement, as the
SOP procedure is now called on the smaller network graph
as opposed to the NPG. In Algorithm 2 the initial popula-
tion of the matrix requires B × T calls to the SOP, and the

while loop will repeat this process at most B times. Thus,
the running time of Algorithm 2 is O(B2TQ(n,B)), where
Q(n,B) is the running time of the SOP executed on a graph
of n nodes and budget B. Specifically, if the CP algorithm
is used for the SOP calls, the final running time will be
O(B2T (nB)logn), as opposed to O((nTB)log(nT)) that the
call to the SOP on the NPG graph would cost.

Additionally to improving the running time, Algorithm 2,
also provides better approximation bounds than the SOP on
the NPG offers, which for the CP algorithm is 1

log(nT)
. This

statement is formally given by Theorem 2:

Theorem 2 Algorithm 2 returns a solution path P for which

f(P) ≥ 1
2

(
1− 1

e
1
α

)
f(OPT)− 1

2
βε

where α is the approximation factor of the SOP call.

More specifically, if the approximation factor of the SOP
blackbox is log n as is the case with the CP algorithm, it is
easy to show that f(P) ≥ 1−e−1

2 logn f(OPT).

Adaptive Discretization
To compute an entry M(b, t) in Algorithm 2, we must
perform an expensive call to the SOP blackbox for each
value of b ≤ B. This computational cost can quickly become
prohibitive if we make the computation for all budget levels.
To counter that we need a discretization scheme, and only
make the expensive SOP call for some relatively small
number of budget levels. Instead of choosing an arbitrary
discretization approach, we propose an adaptive discretiza-
tion which, although heuristic in nature, was found to
perform well empirically; a small number of budget levels
(roughly O(T)) sufficed to achieve good solutions.

Algorithm 3 Adaptive(k,B, T)
for t = 1 to T do
B̃t = {b0 = 1, b1 = B}}
rew[b0]=compRew(b0); rew[b1] = compRew(b1)
for j = 2 to MaxNumLevels do
i = arg maxi(rew[bi+1]− rew[bi]) · (bi+1 − bi)
b′ = (bi+1 + bi)/2
rew[b′] = compRew(b′) using SOP blackbox
insert b′ into B̃t; store reward of b’

end for
end for

We dynamically decide which entries M(b, t) to compute,
as shown in Alg. 3. For each timestep t we maintain a sorted
list of budget levels B̃t, initially containing only 1 andB, and
the rewards of all budget levels. We iteratively add a new
level between bi and bi+1, such that (rew(i + 1) − rew(i)) ·
(bi+1 − bi) is maximized. The reason is that we want to add
discretization where the reward difference is large, but also
where the gap between budgets is large.

Evaluation
We empirically analyze our proposed algorithm, comparing
the myopic and nonmyopic greedy approaches for various

0.8 1 1.2 1.4 1.60

20

40

60

80

100

120

140

160

Constraint on RMV

Pa
th

 C
os

t

nonmyopic greedy

myopic

lookahead = 3
horizon = 3
budget levels = 5

(a) Varying constraints: T=3, LA=3

0.8 1 1.2 1.4 1.6200

400

600

800

1000

1200

1400

1600

1800

2000

Constraint on the RMV

Pa
th

 C
os

t

lookahead = 3
horizon = 24
budget levels = 20

myopic

nonmyopic greedy

(b) Varying constraints: T=24, LA=3

Figure 2: Algorithm comparison for varying constraints

0 5 10 15 20 250

50

100

150

200

250

300

350

400

Varying Horizon

Pa
th

 C
os

t myopic

nonmyopic greedy

lookahead = 3
RMV constraint = 1.61

(a) Varying horizon: RMS≤1.61, LA=3

0 5 10 15 20 25100

101

102

103

104

105

Varying Horizon

Ru
nt

im
e

nonmyopic greedy

myopic

lookahead = 3
RMV constraint = 1.61

(b) Runtime comparison(d)

Figure 3: Algorithm comparison for varying horizon

0 1 2 3 4 568

70

72

74

76

78

80

82

84

86

88

lookahead

Pa
th

 C
os

t

RMV constraint = 1.32
horizon = 6
budget levels = 10

(a) Varying lookahead: T=6, RMS≤1.32

2 4 6 8 10 12
100

120

140

160

180

200

220

240

Pa
th

 C
os

t

Budget Levels

nonmyopic greedy

myopic

lookahead = 3
horizon = 6
RMV constraint = 1.14

(b) Varying discret.: T=6, RMS≤1.14

2 4 6 8 10 12101

102

103

104

105

Budget Levels

Ru
nt

im
e

nonmyopic greedy

myopic

lookahead = 3
horizon = 6
RMV constraint = 1.14

(c) Runtime for different budget levels (f)

Figure 4: Varying the parameters of the nonmyopic greedy algorithm

settings of our parameters. We also demonstrate how these
parameters affect the running time and the quality of the
results.

Our experiments are based on a real data set. Data was
gathered from a deployment of a 46 node sensor network
at the Intel Berkeley Lab used by Deshpande et al. (2004).
Temperature and network connectivity measurements were
gathered at one hour intervals, for a period of seven days.
We learned Kalman filter models, capturing the satiotem-
poral correlations. Five days of measurements were used
for training and learning the transition model, and two were
used for testing.

Implementation Details
In our experiments we compare the myopic to the non-
myopic greedy approach. The myopic approach calls Alg. 1
once for each timestep, the objective function only considers
the current timestep and the model is updated based on the
chosen observations before proceeding to the next timestep.
The nonmyopic algorithm uses the greedy approach with
adaptive discretization to produce an observation plan for
multiple timesteps. The objective function considers the
reward that a set has from the current to a fixed number of
timesteps into the future: f ′t(A1:t) =

Pmin(t+LA,T)

t′=t ft′(A1:t).
T is the planning horizon, LA a lookahead parameter
that allows us to interpolate between the myopic solution
(LA = 1), to the completely nonmyopic approach (LA = T).

Both algorithms use a fast heuristic by Chao, Golden, &
Wasil (1996) as blackbox for the SOP problem, which Singh
et al. (2007) experimentally showed to often provide rela-
tively good results when compared to their efficient version
of the recursive greedy algorithm of Chekuri & Pal (2005).

In many practical applications, one wants to control the
RMS error. Hence, in our implementation we chose the
mean total variance reduction as our objective function:
ft(A1:t) = 1

n

P
i (V ar(Xi,t)− V ar(Xi,t | XA1:t)), which is

monotonically nondecreasing, but not always submodular.
There is both empirical and theoretical evidence however
that in many practical problems, it indeed is submodular
(Das & Kempe 2007). So, for our per-timestep information
constraints, we chose the Root Mean Variance (RMV), since
this is the criterion used in the myopic approach of Desh-
pande et al. (2004), requiring

q
1
n

P
i V ar(Xi,t | XA1:t) ≤ k,

where k is the maximum RMV allowed each timestep.

Experiments
In our first set of experiments, we test how the accuracy con-
straint k affects the path cost achieved by both algorithms.
Figures 2a and 2b display how the query path costs of both
algorithms change as we vary the constraints on the RMV. In
both graphs, we used a lookahead of 3 steps in the objective
function. The first graph presents plans for a horizon of 3
hours, whereas the second uses a horizon of 24 hours. The
path costs decrease as we loosen the constraints on the RMV.
Apart from one data point, our nonmyopic algorithm always
dominates the myopic one, providing better solutions. This
outlier is due to the adaptive discretization procedure. For

rather loose constraints, we observe that the nonmyopic al-
gorithm drastically outperforms the myopic algorithm, often
providing a reduction in cost of up to 30%. For very loose
constraints, as well as for very tight constraints, the per-
formance of both algorithms is very similar. In the “loose”
case, few observations close to the basestation suffice, a
solution found by both algorithms. In the “tight” case, both
algorithms choose a large number of observations to satisfy
the constraints, so the nonmyopic benefit is decreased.

In our second set of experiments (Fig. 3a) we observe
how the overall path cost of the two algorithms varies
with the number of planning timesteps of the query. The
RMV constraint used for this experiment was 1.6 and the
lookahead of the non-myopic greedy algorithm was set to
3. We observe that our non-myopic approach is consistently
better. Relative to the number of timesteps, observe that the
biggest improvement happens between 0 and 6 timesteps,
when the nonmyopic algorithm drastically outperforms the
myopic algorithm. This gain can be explained by noting
that the experiment starts around midnight. In the first
few hours, the model is very accurate in predicting the
temperatures from very few observations. During daytime
hours, the path cost quickly increases as more observations
have to be made. In the late evening to night time, again,
few observations suffice for accurate predictions, and
the nonmyopic algorithm again outperforms the myopic
approach. In Fig. 3b we see how the running time of the
greedy algorithm is affected by the number of timesteps
we need to plan for. As expected from our analysis of the
running times, they grow linearly in terms of the horizon.

In our third set of experiments we examine how the
various parameters of our greedy algorithm affect its perfor-
mance. In Fig. 4a we examine how the lookahead parameter
of the objective function affects the quality of the result
for the nonmyopic approach. The experiment is performed
for a planning horizon of 6 timesteps, and for a RMV
constraint of 1.3. We see that, as the lookahead increases,
the results get better, which is evidence that nonmyopic
planning is very important for continuous queries. The
biggest improvement is achieved from the myopic setting
for the objective function (lookahead 0) to a lookahead of 1.

In he following two graphs, we examine how the
adaptive discretization in the greedy algorithm affects its
performance. Figures 4b and 4c display the results of this
experiment for a horizon of six timesteps and a constraint on
the RMS of 1.14. The first figure displays how the cost of the
query plan produced by the non-myopic algorithm changes
with the number of discretization levels. For very coarse
discretization (few budget levels), the non-myopic solution
is worse than the myopic result, because the coarse dis-
cretization prunes too much of the nonmyopic algorithm’s
search space, and good solutions are lost. Increasing the
number of budget levels to roughly the order of timesteps,
the solutions improve and exceed the performance of the
myopic algorithm. As expected, finer discretization is more
desirable, but as Fig. 4c shows, the running time increases.

Related Work
The problem of data acquisition in sensing applications
has been studied in literature. Deshpande et al. (2004)
present the BBQ system, which proposes a model-driven
scheme to provide approximate answers to queries posed in
a sensor network, satisfying some information guarantees.
At each step the exact solution is obtained by an exponential
algorithm, under a myopic setting. A greedy heuristic is
also provided, but with no approximation guarantees.

Liu, Petrovic, & Zhao (2003) consider the problem of
nonmyopic collaborative target tracking in sensor networks.
They nonmyopically optimize the information obtained
from a sequence of observations. To optimize this criterion,
they perform a heuristic “min-hop” search without approx-
imation guarantees. Empirically their results shed more
evidence on the importance of nonmyopic sensor selection.

Our problem is also related to the Traveling Salesman
Problem with profits (TSPP; Feillet, Dejax, & Gendreau,
2005). In TSPP, each node has a fixed reward and the goal
is to find a path that maximizes the sum of the rewards,
while minimizing the cost of visited nodes. The orienteering
problem is a special case of TSPP, maximizing rewards,
subject to constraints on the cost (Laporte & Martello 1990).
There are several important differences to this body of work.
The TSPP objective is a modular function. When selecting
informative observations however, closeby locations are
correlated, and hence their information is sub-additive
(submodular). Furthermore, our approach is nonmyopic,
planning multiple paths, satisfying constraints for each time
step. Our algorithm is efficient with respect to the planning
horizon T , and provides approximation guarantees.

In robotics, similar work was developed in the context
of simultaneous localization and mapping (SLAM). Stach-
niss, Grisetti, & Burgard (2005) develop a greedy algorithm,
without approximation guarantees, for selecting the next lo-
cation to visit to maximize information gain about the map.
Sim & Roy (2005) attempt to optimize the entire trajectory,
not just the next step, but their algorithm introduces some
approximation steps without theoretical bounds. We also ex-
pect our approach to be useful in the SLAM setting.

Conclusions
In this paper, we addressed the problem of nonmyopically
optimizing observation tours in spatiotemporal models.
First, we provided a general technique, reducing the nonmy-
opic planning problem with accuracy constraints to be met
at each timestep to the submodular orienteering problem
(SOP) on a single graph. Our approach allows for any SOP
algorithm to be used as a blackbox. The approximation
guarantees of the SOP blackbox are used to provide strong
theoretical bounds about the cost of the paths obtained. We
also develop a greedy algorithm, which still preserves the
nonmyopic character of our approach, that can reduce the
cost of the nonmyopic planning by orders of magnitude.
In addition, our adaptive discretization technique allows
us to trade off solution quality and computational cost,
empirically providing good solutions in a short amount of
time. We demonstrate the effectiveness of our approach on

a real-world data set. Our results indicate that nonmyopic
planning can drastically reduce the observation cost.

Acknowledgments: This work was supported by NSF
Grants CNS-0509383 and IIS-0205647, UC Micro grant 05-
026 and gifts from Intel and Microsoft Corporations. Car-
los Guestrin was supported in part by an IBM Faculty Fel-
lowship, and an Alfred P. Sloan Fellowship. We also thank
Amarjeet Singh for his implementation of the SOP heuristic
and Stanislav Funiak for the model on the Intel Lab data.

References
Bai, X.; Kumar, S.; Yun, Z.; Xuan, D.; and Lai, T. H. 2006. De-
ploying wireless sensors to achieve both coverage and connectiv-
ity. In MobiHoc.
Caselton, W., and Zidek, J. 1984. Optimal monitoring network
design. Statistics and Probability Letters.
Chao, I.-M.; Golden, B. L.; and Wasil, E. A. 1996. A fast and
effective heuristic for the orienteering problem. Eur J Op Res.
Chekuri, C., and Pal, M. 2005. A recursive greedy algorithm for
walks in directed graphs. In FOCS.
Das, A., and Kempe, D. 2007. Algorithms for subset selection in
linear regression. In under review for STOC.
Deshpande, A.; Guestrin, C.; Madden, S.; Hellerstein, J.; and
Hong, W. 2004. Model-driven data acquisition in sensor net-
works. In VLDB.
Feige, U. 1998. A threshold of ln n for approximating set cover.
J. ACM 45(4).
Feillet, D.; Dejax, P.; and Gendreau, M. 2005. Traveling salesman
problems with profits. Transportation Science 39(2).
Guestrin, C.; Krause, A.; and Singh, A. P. 2005. Near-optimal
sensor placements in gaussian processes. In ICML.
Laporte, G., and Martello, S. 1990. The selective travelling sales-
man problem. Discrete Appl. Math. 26(2-3).
Liu, J.; Petrovic, D.; and Zhao, F. 2003. Multi-step information-
directed sensor querying in distributed sensor networks. In
ICASSP.
Meliou, A.; Chu, D.; Guestrin, C.; Hellerstein, J.; and Hong, W.
2006. Data gathering tours in sensor networks. In IPSN.
Meliou, A.; Krause, A.; Guestrin, C.; and Hellerstein, J. M. 2007.
Nonmyopic informative path planning in spatio-temporal models.
Technical Report UCB/EECS-2007-44, EECS, UC Berkeley.
Nemhauser, G.; Wolsey, L.; and Fisher, M. 1978. An analysis
of the approximations for maximizing submodular set functions.
Mathematical Programming 14:265–294.
Rasmussen, C. E., and Williams, C. K. 2006. Gaussian Pro-
cesses for Machine Learning. Adaptive Computation and Ma-
chine Learning. The MIT Press.
Shewry, M., and Wynn, H. 1987. Maximum entropy sampling. J
Appl Statist 14.
Sim, R., and Roy, N. 2005. Global a-optimal robot exploration in
SLAM. In ICRA.
Singh, A.; Krause, A.; Guestrin, C.; Kaiser, W.; and Batalin, M.
2007. Efficient planning of informative paths for multiple robots.
In IJCAI.
Stachniss, C.; Grisetti, G.; and Burgard, W. 2005. Information
gain-based exploration using Rao-Blackwellized particle filters.
In RSS.

Widmann, M., and Bretherton, C. S. 1999. 50km res-
olution daily precipitation for the pacific northwest.
http://www.jisao.washington.edu/data sets/widmann/.

Proofs
Proof:[of Theorem 1] At every iteration of the while loop we cover an α-portion of the yet uncovered constraint, and the
process will terminate when we have covered k(1−ε). At every step we are guaranteed not to exceed the budget of the previous
step. This is because the optimal solution will always exist in the set of possible solutions that the SOP algorithm can pick. This
optimal solution will have a reward that covers the constraints. Thus, based on the guarantees of the SOP algorithm, we know
that for this budget the algorithm will return some set A′ for which f(A′) ≥ f(AOPT)

α . So, in every step, in order to cover an
α-portion of the uncovered space, we will never need a budget bigger than 2j+1, when the optimal budget is 2j . This means that
the SOP algorithm will never need to be called for a budget bigger than 2BOPT if BOPT is the budget of the optimal solution.

Also, at every step we aim for covering an α-portion of the uncovered constraint, so in iteration i the uncovered constraint
would be (1− 1

α)ik. Since the algorithm will terminate when it has covered ≥ k(1− ε), so the uncovered space would be ≤ kε
(and thus the constraint cannot be violated by more than kε), we get that

(1− 1
α

)i ≤ ε⇒ i ≤ log ε
log(1− 1

α)

So, we have a bound on the number of times that the while loop will be executed, which bounds the number of times that
the SOP algorithm needs be called with the maximum budget (2BOPT), in order to cover the reward constraints. If Q(n,B) is
the running time of the SOP blackbox for a graph of n nodes and for budget B, we know that we will call the SOP blackbox at
most log ε

log(1− 1
α)

times on a graph of nT nodes and for budget 2BOPT .

Thus the running time of Algorithm 1 will be O
(

log ε
log(1− 1

α)
Q(n,B)

)
This also gives a bound on the total budget of the solution, since at every step we will never use more than 2BOPT budget.

So, our algorithm will give a solution with a budget no worse than 2 log ε
log(1− 1

α)
BOPT .

Proof:[of Theorem 2] Let us consider the computation of the set A2 in Algorithm 2. Name V all the possible choices of X ,
i.e. every element of the matrix M . Renumber V = {X1, . . . , Xn} and define G0 = ∅ and Gi = {X1, . . . , Xi} such that

f(Gi)− f(Gi−1)
c(Xi)

≥ max
Y

f(Gi−1 ∪ Y)− f(G)
αc(Y)

for some α ≥ 1, which is the approximation factor of the approximation oracle. The sequence (Gj)j corresponds to the
sequence of assignments to A2, and is motivated by the simple greedy rule, adding, for a prior selection Gi−1, the element Xi

such that

Xi = max
X∈W\Gi−1

f̂(Gi−1;X)
c(Xi)

.

Let l = max{i : c(Gi) ≤ B} be the index corresponding to the iteration, where A2 is last augmented, hence A2 = Gl. Let
L = c(OPT), cmin = minX c(X) and w = |OPT |.

To prove Theorem 2, we need two lemmas:

Lemma 1 For i = 1, . . . , l + 1, it holds that

f(Gi)− f(Gi−1) ≥
c(Xi)
αL

(f(OPT)− f(Gi−1))− ε
(

1 +
wc(Xi)
αL

)
Proof: Using monotonicity of f , we have

f(OPT)− f(Gi−1) ≤ f(OPT ∪ Gi−1)− f(Gi−1) = f(OPT \ Gi−1 ∪ Gi−1)− f(Gi−1)

Assume OPT \ Gi−1 = {Y1, . . . , Ym}, and let for j = 1, . . . ,m

Zj = f(Gi−1 ∪ {Y1, . . . , Yj})− f(Gi−1 ∪ {Y1, . . . , Yj−1}).
Then f(OPT)− f(Gi−1) ≤

∑m
j=1 Zj .

Now notice that
Zj − ε
αc(Yj)

≤ f(Gi−1 ∪ Yj)− f(Gi−1)− ε
αc(Yj)

≤ f(Gi)− f(Gi−1) + ε

c(Xi)
using submodularity in the first and the greedy rule in the second inequality. Since

∑m
j=1 c(Yj) ≤ L it holds that

f(OPT)− f(Gi−1) =
m∑
j=1

Zj ≤ αL
f(Gi)− f(Gi−1) + ε

c(Xi)
+mε

Lemma 2 For i = 1, . . . , l + 1 it holds that

f(Gi) ≥

[
1−

i∏
k=1

(
1− c(Xk)

αL

)]
f(OPT)−

(
αL

c(Xi)
+ w

)
ε.

Proof: Let i = 1 for sake of induction. We need to prove that f(G1) ≥ c(X1)
αL f(OPT)−

(
αL
c(Xi)

+ w
)
ε. This follows from

Lemma 1 and since
αL

c(Xi)
+ w ≥ 1 +

wc(Xi)
αL

.

Now let i > 1. We have

f(Gi) = f(Gi−1) + [f(Gi)− f(Gi−1)]

≥ f(Gi−1) +
c(Xi)
αL

[f(OPT)− f(Gi−1)]− ε
(

1 +
wc(Xi)
αL

)
=
(

1− c(Xi)
αL

)
f(Gi−1) +

c(Xi)
αL

f(OPT)− ε
(

1 +
wc(Xi)
αL

)
≥
(

1− c(Xi)
αL

)[(
1−

i−1∏
k=1

(
1− c(Xk)

αL

))
f(OPT)−

(
αL

c(Xi)
+ w

)
ε

]
+
c(Xi)
αL

f(OPT)− ε
(

1 +
wc(Xi)
αL

)

=

(
1−

i∏
k=1

(
1− c(Xk)

αL

))
f(OPT)− ε

(
1 +

wc(Xi)
αL

)
−
(

αL

c(Xi)
+ w

)
ε

(
1− c(Xi)

αL

)

=

(
1−

i∏
k=1

(
1− c(Xk)

αL

))
f(OPT)−

(
αL

c(Xi)
+ w

)
ε

using Lemma 1 in the first and the induction hypothesis in the second inequality.
From now on let β = αL

cmin
+ w.

Observe that for a1, . . . , an ∈ R+ such that
∑
ai = A, the function (1 −

∏n
i=1(1 −

ai
αA)) achieves its minimum at a1 =

· · · = an = A
n . In order to show this, let G(a1, . . . , am−1) = log

A−
Pm−1
j=1 aj

A +
∑
i log(α− ai

A). It holds that

∂G

∂ai
=
−1/A

α− ai/A
+

1/A
α− (A−

∑m−1
j=1 aj)/A

.

This derivative is 0 iff A −
∑m−1
j=1 aj = ai for all 1 ≤ i < m. Hence, for 1 ≤ i ≤ m it must hold that ai = A/m. We hence

have

f(Gl+1) ≥

[
1−

l+1∏
k=1

(
1− c(Xk)

αL

)]
f(OPT)− βε

≥

[
1−

i∏
k=1

(
1− c(Xk)

αc(Gl+1)

)]
f(OPT)− βε

≥

[
1−

(
1− 1

α(l + 1)

)l+1
]
f(OPT)− βε

≥
(

1− 1
e1/α

)
f(OPT)− βε

where the first inequality follows from Lemma 2 and the second inequality follows from the fact that c(Gl+1) > L, since it
violates the budget.

Name Xl+1 the second candidate solution considered by the algorithm. From submodularity and monotonicity we get:

f(Gl) + f(Xl+1) ≥ f(Gl+1) ≥
(

1− 1
e1/α

)
f(OPT)− βε

thus

max{f(Gl), f(Xl+1)} ≥
1
2

(
1− 1

e1/α

)
f(OPT)− βε

Specifically, for α = log n, the bound becomes as follows:
Since n represents the nodes in the network, n is an integer ≥ 2. Now, ∀x ∈ [0, 1] and ∀η, it is eηx ≤ 1 + (eη − 1)x.

Replacing x with 1
logn and η = −1 we get:

e−
1

logn ≤ 1 + (e−1 − 1)x⇒ 1− 1

e
1

logn
≥ (1− e−1)

1
log n

Using this in the previous bound we get:

f(P) ≥ 1− e−1

2 log n
f(OPT)

