
SASE+: An Agile Language for Kleene Closure over
Event Streams

Yanlei Diao Neil Immerman Daniel Gyllstrom

University of Massachusetts, Amherst
{yanlei, immerman, dpg}@cs.umass.edu

Abstract

In this paper, we present SASE+, a complex event lan-
guage that supports Kleene closure over event streams,
and provide a formal analysis of the expressibility of
this language. Complex event patterns involving Kleene
closure are finding application in a growing number of
stream applications including financial services, RFID-
based inventory management, monitoring in healthcare,
etc. While Kleene closure has been well studied for reg-
ular expression matching, Kleene closure patterns over
streams have unique features regarding the event defi-
nition, event selection, and termination criteria, which
fundamentally distinguish them from patterns studied
in conventional problems. This paper addresses Kleene
closure in this new context. In particular, we propose a
compact language that can be used to define a wide vari-
ety of Kleene closure patterns, develop a formal model
that precisely describes the semantics and expressive
power of the language, and characterize its relationships
to standard languages in the literature as well as recent
proposals for stream-based event languages.

1 Introduction

Complex event processing over streams is a new pro-
cessing paradigm where continuously arriving events are
matched against complex event patterns and the events
used to match each pattern are transformed into new
events for output. Of particular interest are Kleene clo-
sure patterns that can be used to extract from the in-
put stream a finite yet unbounded number of events
with a particular property and to transform them into
output events. Such event patterns are crucial to a vari-
ety of emerging stream applications including financial
services [8], RFID-based inventory management [27],
click stream analysis [24], electronic health record sys-
tems [12], etc. In financial services, for example, a bro-
kerage customer might want to retrieve a sequence of
stock transaction events representing a period where the
price of a particular stock steadily increased and this
increase resulted in a dramatic increase in the trading
volume of this stock. In an RFID-equipped retail store,
the retail manager might be interested in a sequence
of shelf reading events that capture unusually fast de-
pletion of a valuable product, possibly resulting from a

shoplifting activity.
While Kleene closure was originally proposed for and

has been well studied for regular expression match-
ing [14], Kleene closure patterns on event streams have
several features that fundamentally distinguish them
from patterns used in conventional problems.

Relevant Event Definition. Sophisticated predi-
cates define what events are relevant to Kleene closure.
Such predicates might specify constraints on a value in
an individual event, on how this value compares to that
of a previous event, or how this value compares to an
aggregate value of a series of earlier events.

Event Selection Strategy. Kleene closure over
streams also requires flexibility in deciding how to se-
lect relevant events from a stream mixing relevant and
irrelevant events. Some queries only intend to select
relevant events that are contiguous in the input stream,
while others may want to sift out relevant events from
the interleaving irrelevant events. The latter requires
event processing to be able to skip irrelevant events and
select non-contiguous relevant events.

Termination Criteria. A third issue is when
Kleene closure computation terminates. Given that
the input is an infinite event stream and some queries
may want to skip irrelevant events to continue as far as
possible, the termination criteria in this new problem
can also differ significantly from the traditional settings
where the input is a finite string and no character in
the input is allowed to be skipped.

There has been significant recent interest in event
processing in both active databases and relational
stream systems. Kleene closure over streams, however,
remains insufficiently addressed. Event processing in
active databases [7, 11, 10, 4, 21, 19, 30] focuses on tem-
poral operators, including some variants of Kleene clo-
sure, that can be used to define event patterns. It does
not support predicates that compare different events.
As we shall show in this paper, such predicates are cru-
cial to all three dimensions of Kleene closure definition
listed above. Relational stream systems [5, 6, 22] of-
fer windowed joins for specifying certain event patterns.
However, joins are inherently unable to express Kleene
closure, as the number of inputs that may be involved
is a priori unknown. Several recent studies on event
streams support Kleene closure patterns. In particu-

1

lar, we analyze the expressive power of [24] and [8], and
show that they are strictly less expressive than SASE+.

In this paper, we present the design and analysis of
SASE+, a complex event language that supports Kleene
closure over streams. Our contributions include:
• A Compact, Rich Language: SASE+ is de-

signed to be declarative and compact. Despite
that, it is a rich language in that it allows patterns
to be fully defined along three dimensions, namely,
the relevant event definition, event selection strat-
egy, and termination criteria.

• A Formal Semantic Model: We offer a formal
definition of the semantics of SASE+, which ad-
dresses all possible semantic variations along each
of the three dimensions. This semantic model is
crucial for understanding the meanings of queries
and for later producing query plans that faithfully
implement those queries.

• A Formal Analysis of Expressibility. Based
on the formal model, we perform an analysis of
the expressive power of SASE+ and characterize
its relationships to standard languages, including
temporal logic [16] and modal µ-calculus [18], as
well as recent proposals for stream-based event
languages [24, 8]. In particular, we show that
SASE+ and some of its natural sublanguages, as
well as the recent stream languages listed above, fit
tightly into the standard complexity classes NC1,
DSPACE[log n] and NSPACE[log n].

The remainder of the paper is organized as follows.
Section 2 presents the SASE+ language. Section 3 de-
scribes its semantic model. Section 4 analyzes the ex-
pressive power of SASE+ and related languages. Sec-
tion 5 discusses an extension of the language. Section 6
covers related work and Section 7 concludes the paper.
An appendix includes additional sample queries and a
more formal treatment of the syntax and semantics of
SASE+.

2 The SASE+ Event Language

In this section, we present the underlying event stream
models and introduce the reader to SASE+.

2.1 Event Stream Models

Input event stream. The input to an event processing
system is an infinite sequence of events, referred to as
an event stream. Each event in a stream represents
an atomic occurrence of interest at an instant in time.
Similar to the distinction between types and instances
in database systems, our model includes event types
that describe a bounded set of attributes that a class of
events must contain. Each event consists of the name of
its type and a set of values corresponding to the defined
attributes.

Each event is assigned a timestamp from a discrete
ordered time domain. We assume that such timestamps
are assigned by a separate mechanism before events en-

ter a processing system. We also assume that times-
tamps of events are monotonically increasing, giving
rise to a natural total order of events.1 Timestamps
are treated as an implicit attribute of events and can
be retrieved (but not modified) in queries.

Output event stream. The output of an event
processing system is also a stream of events and each
event again contains a bounded set of attributes. The
output model is an extension of the input model in
that it allows attributes to take complex data types.
These data types can be categorized along two dimen-
sions. The first dimension makes a distinction be-
tween atomic data types, whose values are indivisible,
and sequence data types, whose values consist of a se-
quence of values. The second dimension distinguishes
between simple data types, which are not defined in
terms of other data types, and composite data types,
which are defined by combining other data types. The
output model allows all combinations along the two
dimensions, namely, atomic-simple, atomic-composite,
sequence-simple, sequence-composite (in comparison,
the input model currently only supports atomic-simple).
Examples of these data types are presented in the next
subsection.

It is important to note that our ultimate goal is to
make the two models identical, especially, to relax the
input model to the more general output model. As such,
the query language will satisfy the closure property and
queries written in the language can be arbitrarily com-
posed. In this work, we restrict input streams to the
simpler model in order to focus on several fundamental
issues pertaining to Kleene closure over streams. In sce-
narios where queries need to be composed, even if the
output model is restricted to the case of atomic-simple
for the time being, the query language is already quite
expressive. A more detailed discussion of this issue is
postponed until Section 5 after we present our main
techniques and results.

2.2 Overview of the Language

In this section, we present SASE+, a declarative
language for specifying complex event patterns over
streams. This language significantly extends our previ-
ous proposal [29] by supporting Kleene closure patterns.
The overall structure of SASE+ is:

[FROM <input stream>]
PATTERN <pattern structure>
[WHERE <pattern matching condition>]
[WITHIN <sliding window>]
[HAVING <pattern filtering condition>]
RETURN <output specification>

By default, a SASE+ query reads from the input
stream of an event processing stream. The FROM clause

1Our language, in fact, is powerful enough to handle events
that have sufficiently close timestamps to be considered simulta-
neous. A detailed discussion of this topic is beyond the scope of
this paper.

2

can be used to reset the query input to another stream,
which we illustrate later in this section. We next explain
the various constructs using examples drawn from the
scenarios of stock market analysis and monitoring in
transport networks.

Query 1:
PATTERN SEQ(NEWS a, STOCK+ b[])
WHERE a.type = ‘bad’ ∧ b[i].symbol = ‘GOOG’
WITHIN 4 hours
RETURN sum(b[].volume)

Query 1 retrieves the total trading volume of Google
stocks in the 4 hour period after some bad news oc-
curred. The PATTERN clause declares the structure of a
pattern. It uses the SEQ construct to specify a sequence
pattern of two components: the first refers to an event
whose type is news, and the second refers to a series of
events of the stock type. The latter uses the Kleene
plus, denoted by “+”, to represent one or more events
of a particular type. A variable is declared in each com-
ponent to refer to the corresponding event(s). A com-
ponent that uses the Kleene plus declares its variable
as an array using the “[]” symbols.

The WHERE clause, if present, contains value-based
predicates to define the events relevant to the pattern.
In Query 1, the first predicate requires the type at-
tribute of the news event to be bad. The second pred-
icate requires every relevant stock event to have the
symbol GOOG; the “every” semantics is expressed by
b[i] (where i ≥ 1). We refer to such predicates as indi-
vidual iterator predicates. The WITHIN clause specifies
a window over the entire pattern, restricting the events
considered to those within a 4 hour period.

PATTERN, WHERE, and WITHIN clauses together com-
pletely define a pattern. Their evaluation over an event
stream results in a stream of pattern matches. Each
pattern match consists of a unique sequence of events
used to match the pattern, stored in the a and b[]
variables. The RETURN clause transforms each pattern
match into a result event. In its specification, b[] im-
plies an iterator over the events in the array, the volume
attribute is retrieved from each event returned by the
iterator, and the aggregate function sum() is applied
to all the retrieved values. According to the output
model, this aggregate function creates an attribute of
the atomic-simple type for inclusion in the result event.

Query 2:
PATTERN SEQ(STOCK+ a[])
WHERE skip till next match(a[]!)

{ [symbol] ∧
a[1].price = 10 ∧
a[i].price > a[i-1].price ∧
a[a.LEN].price = 20 }

WITHIN 1 hour
HAVING avg(a[].volume) ≥ a[1].volume
RETURN a[1].symbol, a[].price

Query 2 captures a one-hour period in which the
price of a particular stock increased from 10 to 20 and

the trading volume of the stock stayed relatively stable.
The PATTERN clause defines a pattern with a single com-
ponent that applies the Kleene plus to stock events.
The WHERE clause uses a variety of predicates to define
what stock events can be used to match the pattern.
For now, focus on the predicates embraced in “{ }”;
other constructs will be explained shortly.

The first predicate, [symbol], requires that all rele-
vant stock events have the same symbol. Such a pred-
icate is called an equivalence test on the pattern [29]
and its effect amounts to partitioning the stream on the
specified attribute and matching the pattern in each
partition. The next three predicates specify additional
constraints on a sequence of events that can match the
pattern. The predicate on a[1] specifies the start con-
dition on the sequence, i.e., the stock price equal to 10.
The next predicate specifies the relationship between
each pair of adjacent events in the sequence, i.e., for
each position i (where i > 1), the price of a[i] exceeds
that of a[i − 1]. Such predicates that compare each
event to the previously selected events are referred to
as correlated iterator predicates. The last predicate on
a[a.LEN] defines the end condition on the sequence, i.e.,
the price reaching 20.

After PATTERN, WHERE, and WITHIN generate pattern
matches, the HAVING clause filters each of them by ap-
plying predicates on the constituent events. In Query
2, the predicate in HAVING requires the average volume
of the events in a[] to be no less than that of a[1]. A
pattern match that satisfies the HAVING predicate is re-
tained for output. The distinction between WHERE and
HAVING in SASE+ is analogous to that in SQL. The only
difference is that HAVING here is applied to each pattern
match, while HAVING in SQL is applied to each group
created by Group By.

The RETURN clause again translates each pattern
match into a result event. It retrieves a[1].symbol and
a[].price as two new attributes for inclusion in the result
event. Note that a[].price here creates a new attribute
of the sequence-simple type.

Query 3:
PATTERN SEQ(STOCK+ a[], STOCK b)
WHERE skip till next match(a[]!, b)

{ [symbol] ∧
a[1].volume > 1000 ∧
a[i].price > avg(a[..i-1].price) ∧
b.volume < 80% ∗ a[a.LEN].volume }

WITHIN 1 hour
RETURN a[1].symbol, a[].(price,volume),

b.(price,volume)

Query 3 captures a more complex trend for each
stock: in the last hour, the volume started high, but
after a period when the price increased or remained rel-
atively stable, the volume plummeted. This query is
similar to Query 2 in structure, but with several differ-
ences. The PATTERN structure has two components, a
Kleene plus on stock events, whose result is in a[],
and a separate single stock event, referred to using

3

b. In WHERE, the predicate involving a[1] defines a start
condition using the volume attribute. The correlated it-
erator predicate, expressed using a[i], requires the price
of each event to exceed the average of all previously se-
lected events, denoted by a[..i− 1]. Aggregates used in
correlated iterator predicates are called running aggre-
gates. While there is no explicit condition on a[a.LEN],
the last predicate in Query 3 compares b to a[a.LEN]
on the volume attribute.

For each pattern match consisting of a[] and b,
the RETURN clause transforms it into a result event
with three attributes. In particular, a[].(price, volume)
means that for each event in a[], select the price and
volume and convert them into a composite data type as
specified by the “()” symbols. Repeating this for all the
events results in an attribute of the sequence-composite
type. In comparison, b.(price, volume) creates a new
attribute of the atomic-composite type.

We presented the basic constructs of SASE+ above.
Of particular importance are the predicates in the
WHERE clause that define the events relevant to Kleene
closure. They form a first dimension of the definition of
Kleene closure, which we call relevant event definition.

2.2.1 Event Selection Strategies

A second orthogonal dimension of the Kleene closure
definition, called event selection strategy, addresses how
to select the relevant events from an input stream mix-
ing relevant and irrelevant events.

Revisit Query 2. It looks for a particular period
of price increase of a stock, as defined by the pred-
icates in WHERE. Note that it uses both the equiva-
lence test, [symbol] (whose canonical yet verbose form
is a[i].symbol = a[i− 1].symbol), and the iterator pred-
icate, a[i].price > a[i− 1].price, to define the condition
on the next relevant event a[i]. What remains unclear is
the relationship between the two relevant events a[i] and
a[i− 1] in terms of their positions in the input stream.
Possible positional relationships include:

Strict Contiguity. The two relevant events must
be contiguous to each other in the input stream; that
is, there can be no other event in between in the input
stream. This requirement is typical in regular expres-
sion matching against strings, DNA sequences, etc.

Partition Contiguity. The two relevant events
need not be contiguous to each other in the input
stream. However, if the events are conceptually par-
titioned based on a certain condition, the next relevant
event must be contiguous to the previous one in the
same partition, thus referred to as partition contiguity.
For example, to apply this requirement to Query 2, we
can use the equivalence test to form a partition for each
stock symbol. The query then captures the trend of
“monotonic” increase in price in each partition.

The condition used to form partitions can be any
boolean combination of predicates that do not use ag-
gregation functions. This is slightly richer than equiva-
lence tests (which are similar to GROUP BY in SQL and

PARTITION BY in CQL [2]).
Skip till next match. In this category, the two

relevant events need not be contiguous in a relevant
partition. In the absence of contiguity requirements,
the selection of the next relevant event can completely
ignore irrelevant events and only compare the current
event with the previously selected ones. In this way,
Kleene closure can go as far as possible until explicit
termination criteria (explained shortly) are met.

With this requirement, Query 2 will acquire a differ-
ent meaning: it looks for an overall trend of price in-
crease from 10 to 20 while ignoring intermediate tempo-
rary fluctuating values. The ability to ignore such local
fluctuating values proves important to many real-world
applications where the emphasis is on broad trends,
such as the change in price in the stock market and
the rate of depletion of valuable products in retail, as
opposed to monotonic behaviors.

Skip till any match. The last category further
relaxes the previous requirement with more flexibility
in selecting the next relevant event. For each relevant
event encountered, it allows non-deterministic decisions
between including the event into the Kleene closure and
simply skipping it. Such behaviors could be useful in
scenarios where skipping some relevant events would
prolong the Kleene closure computation, resulting in a
longer sequence of events selected. For example, given a
sequence of stock prices “1, 2, 7, 3, 4, 5, 6”, the longest
sequence of events with increasing price is “1, 2, 3, 4, 5,
6”. The detection of this result would require the value
7 to be skipped, despite that the value itself is relevant
to the Kleene closure.

The above discussion also applies when we consider
the relationship between two events selected for adja-
cent components, e.g. a[a.LEN] and b in Query 3. A
detailed discussion is omitted in the interest of space.

For sufficient support of Kleene closure, SASE+ of-
fers an additional construct in WHERE to specify the
above requirements as event selection strategies. As
shown in Query 2 and Query 3, the strategy in use is
specified as a function over the variables declared for the
pattern (the “!” symbol is explained shortly); the body
of the function includes the original predicates. The ra-
tionale behind this design is that different components
of a pattern can be associated with different strategies;
this design allows it to be expressed as a series of func-
tions, one over each variable referring to the respective
component. Queries showing such uses are omitted due
to space constraints.

The default event selection strategy in SASE+ is skip
till next match. It is assigned to queries without explicit
specification, e.g. Query 1. When partition continuity
is used, by default the equivalence test(s) present in a
query are used to define partitions. A query can cus-
tomize the partition definition by underlining any pred-
icates in the WHERE clause. Again, examples are omitted
in the interest of space.

4

2.2.2 Termination Criteria

A third dimension in the definition of Kleene closure
relates to its termination criteria. Given that queries
take an infinite stream as input and may allow irrele-
vant events to be skipped in the Kleene closure compu-
tation, the termination of such computation needs to be
carefully addressed in order to obtain expected results
while avoiding unnecessary work.

Condition on the Last Event Selected. Query 2
illustrates a first type of termination. The predicate on
a[a.LEN] in its WHERE clause specifies a constraint on the
last event selected by the Kleene closure for each pat-
tern match. The predicate itself does not specify what
should be done to the Kleene closure upon detection of
such an event, e.g., if it should terminate or continue to
produce more matches. Consider the example of stock
price change in Figure 1(a). The sequence from Point
1 (where the price is 10) to Point 2 (where the price
is 20) produces a pattern match for this query. Since
there can be future points whose price equals 20, e.g.
Point 3, the Kleene closure can continue to generate
more matches. For those queries that are not interested
in such additional results, they can force the predicate
on a[a.LEN] to be used as the termination criterion.
This is expressed by appending the “!” symbol to the
Kleene plus variable in the function for event selection
strategy declaration (see Query 2), similar to the “!”
cut operator in Prolog.

Next Component of the Pattern. Query 3
demonstrates a second type of termination. This query
does not have a predicate constraining a[a.LEN]. How-
ever, it has a subsequent b component. Consider the
price and volume changes in a series of stock events
depicted in Figure 1(a) and 1(b), respectively. The
Kleene closure starts at Point 1 (based on the condition
a[1].volume > 1000) and runs successfully up to Point
2 (by checking a[i].price > avg(a[..i − 1].price)). The
event corresponding to Point 3 satisfies the predicate on
b (b.volume < 80% ∗ a[a.LEN].volume), resulting in a
pattern match. The same event, however, can be used
to continue the Kleene closure, as it also satisfies the
iterator predicate on a[i].price; such continuation can
lead to future pattern matches, e.g., produced at Point
4. In SASE+, a query can force the Kleene closure to
terminate once the next pattern component is matched,
by applying “!” as shown in Query 3, or allow it to con-
tinue and produce additional matches by omitting “!”.2

Window Constraints. Another type of termina-
tion comes from the window constraint, if present. In
addition to any of the above termination criteria used,
the window constraint forces the Kleene closure to ter-
minate when a specified amount of time has elapsed.

The relevant event definition, event selection strat-

2Caution should be taken when applying “!” to the Kleene
plus. If a pattern has a few subsequent components whose predi-
cates use the Kleene plus variable, stopping Kleene closure early
may fail to produce any match that satisfies those components.
The appropriate decision is left to the discretion of the user.

price

time
10

20
1

2
volume

time

1 2
1000

800

(a) change of stock price (b) change of stock volume

3
4

3 4

Query 2: terminate Kleene closure? Query 3: terminate Kleene closure?

Figure 1: Examples of price and volume change in a
sequence of stock events.

egy, and termination criteria together completely define
Kleene closure patterns over streams.

2.2.3 Negation on Kleene Closure

SASE+ also allows negation to be applied to Kleene
closure. Query 4 shows such an example in the scenario
of object tracking in a transport network. Objects were
scheduled to be shipped from New York to Amherst and
to be scanned at each point in the transport network.
The query aims to detect anomalies in the transport
process. More specifically, it captures the scenario that
for a particular object, there was an initial scan at New
York and a final scan at Amherst, but there did not
exist (expressed using ∼) a series of scans in between
that correspond to a normal route of at most 3 hops.
In the WHERE clause, the equivalence test [object id] is
applied to all events addressed by the pattern, and the
predicates on b[] describe a normal route. Negation
evaluates to true if any of the predicates constraining a
normal route is violated, e.g. the route not forming a
connected path or consisting of more than 3 hops.

For each anomaly detected, the query returns the
object id and courier id of the last scan in the result
event. In addition, it uses the AS construct to name
the type of the result event and each of its attributes,
and the IN STREAM construct to name the output
stream (for use of the next example query).

Query 4:
PATTERN SEQ(SCAN a, ∼(SCAN+ b[]), SCAN c)
WHERE partition contiguity(a, b[], c)

{ [object id] ∧
a.location = ‘New York’ ∧
c.location = ‘Amherst’ ∧
b[1].location = a.next ∧
b[i].location = b[i-1].next ∧
c.location = b[b.LEN].next ∧
b.LEN ≤ 3}

RETURN c.object id, c.courier id
AS ANOMALY(object id, courier id)
IN STREAM Q4-OUTPUT

2.2.4 Other Language Features

We remark on other important features of SASE+.
Aggregates. SASE+ supports all usual aggrega-

tion functions including count, sum, avg, max, min, and
some slighlty less standard ones including highest k and
lowest k for any fixed constant, k.3 All these aggregates

3The precise set of aggregation operators included is the set of

5

can be used in WHERE to select events, in HAVING to fil-
ter pattern matches, and in RETURN to return aggregate
values.

Union. Similar to SQL, SASE+ also supports UNION
to connect multiple query blocks into one query.

Query Composition. Finally, SASE+ queries can
be composed by feeding the output of one query as input
to another. As noted previously, for the time being,
we restrict the output of the first query to the atomic-
simple type, exemplified by Query 4. Query 5 below
takes the output of Query 4, as specified in the FROM
clause, and identifies each courier that is responsible
for at least 10 anomalies within a week. It returns the
courier id and the complete list of affected objects in
each result event.

Query 5:
FROM Q4-OUTPUT
PATTERN SEQ(ANOMALY+ a[])
WHERE partition contiguity(a[])

{ [courier id] }
WITHIN 1 week
HAVING count(a[]) ≥ 10
RETURN a[1].courier id, a[].object id

3 A Formal Semantic Model

We presented the SASE+ language in the previous sec-
tion. The semantics of the language is rich, spanning
three dimensions in the Kleene closure definition as well
as involving negation and composition. In this section,
we present a formal model that precisely defines the se-
mantics of SASE+. This formal semantics is crucial for
understanding the meanings of queries, and for later
producing efficient query plans that faithfully imple-
ment the queries.

The semantic model consists of a nondeterminis-
tic finite automaton (NFA) combined with a match
buffer .4 We call the combined machine, which is signif-
cantly more powerful than a standard NFA, an NFAb.
In this section we explain this model somewhat intu-
itively, with a more formal presentation in Section A of
the appendix.

3.1 NFAb: A Linear, Modular Structure

Each simple SASE+ query, i.e. one without negation or
composition, determines an NFAb consisting of a linear
sequence of states. The NFAb for Query 3 is illustrated
in Figure 2(a).

In this example, the start state, a[1], is where the
matching process states. Here, the process awaits in-
put to start the Kleene plus computation and select an
event into the a[1] unit of the buffer. At the next a[i]
state, the process awaits input to select another event
into a[i] (where i > 1) in the buffer. The subsequent
b state denotes that the matching process has fulfilled

binary operations that are associative, have an identity element
and an NC1 iterated multiplication algorithm.

4A similar but not identical NFA-based model is used in [8].

θa[1]_begin =
a[1].volume>1000

θa[i]_take =
¬θa[i]_forced-stop ∧
a[i].symbol=a[i-1].symbol ∧
a[i].price>avg(a[..i-1].price)

θa[i]_ignore =
¬θa[i]_forced-stop ∧
¬(a[i].symbol=a[i-1].symbol ∧
 a[i].price>avg(a[..i-1].price)

θa[i]_proceed = θb_begin ∨ θa[i]_auto-stop

θb_ignore =
¬(b.symbol=a[a.LEN].symbol ∧
b.volume<80%*a[a.LEN].volume)

θb_begin =
b.symbol=a[a.LEN].symbol ∧
b.volume<80%*a[a.LEN].volume

θa[i]_forced-stop = a[i].time-a[1].time≥W ∨ θb_begin

relevant event definition

event selection strategy

termination criteria

(a) NFA structure

(b) Conditions on edges

θa[i]_auto-stop = ¬θa[i]_take ∧ ¬θa[i]_ignore

Fb

ignore ignore

take

begin beginproceed
a[1] a[i]>

Figure 2: The NFAb for Query 3.

the Kleene plus (for a particular match) and is ready
to process the next component of the pattern. The fi-
nal state, F , represents the successful completion of the
process, resulting in the creation of a pattern match.

In general, each Kleene plus component of a pattern
has a pair of states, the first for the initial selection
of an event (i.e., the select-first state), and the second
for the iterative selection of subsequent events (i.e., the
select-more state). In comparison, a non-Kleene plus
component has a singleton, select-first state.

Each state is associated with a number of edges, rep-
resenting the possible actions that can be taken at the
state. There are four types of edges in total: begin, take,
ignore, and proceed. As shown in Figure 2, a select-first
state usually has two edges: a begin edge that selects
the current event into the buffer and moves to the next
state, and an ignore edge that skips the event and loops
back to the same state. As an exception, the start state
does not have an ignore edge because a match must be-
gin with a selected event. A select-more state has three
edges: a take edge that selects the current event into
the buffer and loops back to the same state, an ignore
edge as discussed above, and a proceed edge that tran-
sitions to the next state, thus declaring the Kleene plus
computation completed.

Each edge can be precisely described as a triplet: a
condition on traversing the edge, an operation (i.e., con-
sume or not) on the input event stream, an operation
(i.e., write or not) on the match buffer. In Figure 2(a),
we use solid lines to represent begin and take edges that
consume an event from the input and write it to the
buffer, and dashed lines for ignore edges that consume
an event but do not write it to the buffer. In this exam-
ple, the proceed edge does not consume an event from

6

the input and thus cannot write to the buffer. We dis-
tinguish the proceed edge from ignore edges in the style
of arrow, denoting that it does not consume any event.
The meanings of these edges will become more clear
after we explain the conditions on them next.

3.2 Edges: The Logic of Control

In our model, all specifications in the WHERE and WITHIN
clauses, including the relevant event definition, event
selection strategy, and termination criteria, are realized
by the conditions on edges. Thus, the conditions on
edges implement the logic of control.

Relevant Event Definition. Recall that the pred-
icates in the WHERE clause define relevant events. They
are used to set conditions on begin and take edges. We
identify predicates relevant to these edges and set them
on the corresponding edges. This is a straightforward
process. Consider Query 3. The predicates on the be-
gin and take edges are shown in the first row in Fig-
ure 2(b). At the a[1] state, the condition on the begin
edge contains the (only) predicate on a[1]. We denote
the condition as θa[1] begin. At the a[i] state, the con-
dition on the take edge, θa[i] take, contains two iterator
predicates on a[i]: one for the equivalence test on sym-
bol, and the other for the required change in price. Note
that θa[i] take also has a factor of ¬θa[i] forced−stop. It
is used to control the termination of the Kleene plus.
For now, treat this factor as a placeholder; its condition
is set using the termination criteria, which we discuss
shortly. Finally, θb begin at the b state is set similarly,
using the two relevant predicates, one for the equiva-
lence test, and the other for the change in volume.

Event Selection Strategy. Recall that event se-
lection strategies address how to select relevant events
from an input stream mixing relevant and irrelevant
events. SASE+ offers four strategies for uses in queries.
The strategy specified in each query is used to set all
its ignore edges. Our discussion below focuses on select-
more states, as they represent a more complex case.

Consider Query 3 and allow its event selection strat-
egy to be varied among the four choices. Table 1 shows
how to set the ignore edge at the a[i] state in relation
to the take edge. From top-down, it shows θa[i] take

set on the take edge and θa[i] ignore to be set on the
ignore edge. Both the take and ignore edges have the
¬θa[i] forced−stop factor, which controls the termination
of the Kleene plus but otherwise does not affect the dis-
cussion below. The remaining factor of the take edge,
denoted as θa[i] select, contains all the predicates that
define relevant events. The remaining factor of the ig-
nore edge, θa[i] skip, is what remains to be determined.

As the table shows, when strict contiguity is applied,
θa[i] skip is simply set to False. This disallows any event
to be skipped, thus ensuring that all relevant events se-
lected are contiguous in input. If partition contiguity
is used, one or multiple predicates are used to define
each partition. θa[i] skip is set to the negation of these
predicates. In Query 3, a[i].symbol = a[i − 1].symbol

Table 1: Conditions on Ignore Edges for Query 3 with
Varied Event Selection Strategies

Take θa[i] take ¬θa[i] forced−stop ∧ θa[i] select

θa[i] select =
a[i].symbol = a[i− 1].symbol∧
a[i].price > avg(a[..i− 1].price)

Ignore θa[i] ignore ¬θa[i] forced−stop ∧ θa[i] skip

θa[i] skip =
Group Contiguity: False
Partition Contiguity: ¬(a[i].symbol = a[i− 1].symbol)
Skip till next match: ¬(a[i].symbol = a[i− 1].symbol∧

a[i].price > avg(a[..i− 1].price)
Skip till any match: True

defines a partition for each symbol. By setting θa[i] skip

to the negation of this predicate, only events irrelevant
to a partition can be skipped. To support skip till next
match, θa[i] skip is set to the negation of θa[i] select. This
amounts to skipping any event that does not satisfy
θa[i] select and thus cannot be selected. Finally, to sup-
port skip till any match, θa[i] skip is simply set to True,
allowing any (including relevant) event to be skipped.

Similar to the a[i] state, the ignore edge at a select-
one (e.g. b) state, is set in relation to the begin edge
based on the strategy used. For Query 3 using skip till
next match, the conditions on ignore edges are shown
in the second row in Figure 2(b).

Termination Criteria. We next consider issues re-
lated to the termination of the Kleene plus.

A first task is to use query-specified termination cri-
teria to set θforced−stop at the corresponding state. Re-
call that there can be three types of criteria. A simple
type is the window constraint. Accordingly, θforced−stop

has a term that requires the Kleene plus to terminate if
the specified amount of time has elapsed since the first
selected event. When the condition on the last event
selected for each pattern match is used as a stopping
criterion (e.g. Query 2), this condition is included in
θforced−stop as an additional term. In the absence of
such a condition, if a query decides to terminate the
Kleene plus when an event matches the next pattern
component (e.g. Query 3), the condition on the next
component should be added to θforced−stop.

A second task is to set the condition on a proceed
edge that departs from a select-more state. A transi-
tion along this edge can occur before as well as when
the Kleene plus terminates, discussed as follows. In a
simpler case, the query imposes a condition on the last
event selected by the Kleene plus in each pattern match,
e.g. Query 2. Then, no matter what termination crite-
ria are used, the proceed edge is set using this condition.
A more complex case relates to queries that do not have
such a condition, e.g. Query 3. Then, the proceed edge
can have two terms in its formula.

The first term contains the predicates on the next
pattern component, if present. It means that if the cur-

7

rent event can match the next component, the select-
more state may have collected enough events for a po-
tential pattern match, so it is worth an attempt to move
to the next state and make progress there. This transi-
tion can occur before the Kleene plus terminates.

The idea behind the second term is that if the
Kleene plus has come to a stop, we can also make
an opportunistic move to the next state and let that
state decide what can be done next. For a complete
description of termination, however, we need to in-
troduce another concept called auto-stop, defined as
θauto−stop = ¬θtake ∧ ¬θignore. While θforced−stop en-
codes the query-specified stopping condition, θauto−stop

captures a complete set of stopping conditions in exe-
cution. As both θtake and θignore contain ¬θforced−stop

as a factor, θauto−stop obviously subsumes θforced−stop.
It may include additional conditions, however. Con-
sider Query 3 using partition contiguity. If an event
belongs to a partition but cannot be selected, the eval-
uation of θa[i] take and θa[i] ignore will both fail, causing
the Kleene plus to come to a stop. This shows that
true stopping conditions are determined by both the
query specified termination criteria and the event selec-
tion strategy. θauto−stop captures both such conditions.

The definition of the proceed edge for Query 3 is
shown in the last row of Figure 2(b). It is worth not-
ing that this edge does not consume any event from
the input (i.e. it is an ε edge). In its evaluation, how-
ever, it needs to peek at the current event but keep it
in the input for the next state. We introduce this non-
traditional ε edge to achieve a modular design: the pro-
ceed edge performs a single function—to depart from
the select-more state—and leaves any decision about
the current event regarding the next component (i.e.,
to take or to ignore) to the next state.

In summary, the discussion above reflects the compi-
lation rules that we offer for automatically translating
a simple SASE+ query, i.e. one without negation or
composition, to a presentation in the formal semantic
model. This representation can be later used as a query
plan for execution. For ease of exposition, we omitted
the discussion about how to place the window constraint
onto all take and begin edges; this can be added in a
straightforward way.

4 Expressibility of SASE+

In this section, we restrict ourselves to SASE+ queries
that return atomic-simple values. We study the ex-
pressive power of SASE+ and related languages. As
we will see, the SASE+ query language can be natu-
rally mapped into large subsets of the complexity classes
NC1, DSPACE[log n], and NSPACE[log n], when we re-
strict queries to uses of only strict or partition conti-
guity, only skip till next match, or the full language,
respectively. For background on complexity results and
classes see [26].

An extensive intuitive introduction to SASE+ has
been given, and a more formal treatment of SASE+ and

the related NFAb model can be found in Section A of the
appendix. We prove there that a simple SASE+ query,
i.e, without composition or negation, can be compiled
into an NFAb automaton, and thus any SASE+ query
is in cl(NFAb, ◦,∼), i.e., the closure of NFAb languages
under composition and negation (Lemma A.1).

The subtlety of characterizing the expressive power
of SASE+ has to do with the interaction of Kleene +
and aggregation. To get started, in our first theorem
we simply remove aggregation from consideration.

Let SASE+(w.o. aggregation) and NFAb(w.o. aggre-
gation) be the restriction of these two models to have
no occurrences of aggregation operators. In this case
we can think of the input alphabet, Σ = D1× · · ·Dk as
the product of the domains of possible attribute values
in the event stream. It is not surprising that without
aggregation we are limited to the regular sets:

Theorem 4.1 Let A ⊆ Σ?. The following conditions
are equivalent:
1. A is regular
2. A is recognizable by a SASE+(w.o. aggregation,∼)

query
3. A is recognizable by a SASE+(w.o. aggregation)

query
4. A is in cl(NFAb(w.o. aggregation),◦)
5. A is in cl(NFAb(w.o. aggregation),, ◦,∼)

Proof sketch: Since SASE+(w.o. aggregation,∼) con-
tains single letter alphabets and is closed under con-
catenation, union, and Kleene +, it contains the regu-
lar languages. We further know that 2 → 3 → 5 and
2 → 4 → 5. Finally, since an NFAb(w.o. aggregation)
automaton is a special kind of NFA, 5 → 1. �

We note that temporal logic is equivalent to first-
order logic and thus the star-free regular languages on
words [16, 20]. Thus, SASE+, even without aggregation
or negation is more powerful than temporal logic.

In the presence of aggegation, we can express non-
regular properties, e.g., a simple, strictly contiguous
SASE+ query can read a consecutive sequence of let-
ters having the property that it contains more a’s than
b’s. In fact, we show in Theorem 4.3 that the SASE+
with only contiguous queries expresses a rich subset of
the complexity class NC1. First we show,

Lemma 4.2 The word problem for S5 – an NC1-
complete problem – is expressible in a simple SASE+
query of the form strict contiguity.

Proof sketch: The word problem for S5 can be repre-
sented as a simple strict-contiguity a+ query: we define
an aggregate that keeps track of a value, v, from 1 to
5 and combines that with the input π, an element of
the fixed, finite alphabet, S5 and computes the next
value, π(v). The beginning and ending condition of the
SASE+ query is that v = 1. �

8

Theorem 4.3 SASE+ with only strict contiguity or
with only strict and partition contiguity expresses a sub-
set of NC1 that includes complete problems for NC1.

Proof sketch: The NC1 completeness comes from
Lemma 4.2. For containment in NC1: the SASE+ with
partition contiguity query can be simulated in NC1 as
follows: first replace any input from an event not in the
partition by the identity element for the aggregation
operation in question. Then do a partial-prefix compu-
tation of the aggregation operation. �

The language SQL-TS described in [24] provides a
stream-processing addition to SQL. Just looking at that
stream processing facility, it is not hard to see that the
expressive power – assuming the same set of aggregate
functions – is the same as SASE+ without negation
and restricted to uses of strict or partition contiguity.
It thus follows that this stream language is restricted to
at most the same subset of NC1.

The ordered graph reachability problem, oREACH,
consists of the set of directed graphs on vertices num-
bered 1 to n such that there is a path from 1 to n and all
edges (i, j) are increasing, i.e., i < j. It is well known
that oREACH is complete for NSPACE[log n]. Simi-
larly, oREACHd, the restriction of oREACH in which
there is at most one edge from each vertex is complete
for DSPACE[log n].

It is not hard to see that

Lemma 4.4 oREACHd is expressible in a simple
SASE+ query of the form skip till next match. Simi-
larly, REACHd is expressible in a simple SASE+ query
of the form skip till any match.

Proof sketch: In both cases the input stream consists
of a sequence of edge events with attributes head and
tail. A simple a+ query checking that a[i].tail = a[i −
1].head finds the path. In the deterministic case this
is of the form skip till next match because there is at
most one edge with a given tail, but in the general case
this is a skip till any match because nondeterminism is
involved in finding the right path. �

Theorem 4.5 SASE+(without skip-till-any-match)
expresses a subset of the DSPACE[log n] queries
including some that are complete for DSPACE[log n].

Proof sketch: The DSPACE[log n] completeness
comes from Lemma 4.4. The only subtlety about con-
tainment in DSPACE[log n] comes with the possible
nondeterminism between (Ignore or Take) versus Pro-
ceed. Since there are only a bounded number of places
where this nondeterminism can occur in any SASE+
query, we remain in logspace by sequentialy trying each
possible choice. This involves adding a log n-bit counter
for each of the states of the NFA where such a non-
deterministic move could occur. �

The Cayuga system described in [8] is built from
an algebraic stream processing language. A least-fixed-
point operator is described to express Kleene +, and the
semantics of simple, i.e., not composed, queries is given
via an automaton model quite similar to our NFAb.
It is not hard to see that in fact that the expressive
power – assuming the same set of aggregate functions –
is the same as SASE+ without negation and restricted
to skip til next match queries. It thus follows Cayuga is
restricted to at most the same subset of DSPACE[log n].

Finally, for full SASE+ we have,

Theorem 4.6 SASE+ expresses a subset of
NSPACE[log n] including some queries that are
complete for NSPACE[log n].

Proof sketch: The NSPACE[log n] completeness
comes from Lemma 4.4. Containment is obvious. �

Theorem 4.6 gives an upper bound on the expressive
power of SASE+. It is contained in FO(TC) – first-
order logic with a transitive closure operator – and it is
not as rich as the modal µ-calculus which can express
polynmial-time complete languages [15, 18].

The above results give an interesting view of the ex-
pressiblity of sublanguges of SASE+ as well as of SQL-
TS and Cayuga. We feel that the above theorems give
a good initial picture of the expressiveness of SASE+.
However, many questions remain concerning the com-
plexity of evaluating SASE+ queries. On the theoreti-
cal side, there is a strong connection to the complexity
of branching programs that may only read their input
a bounded number of times, cf. [28]. In summary, un-
derstanding stream languages means understanding the
interaction between Kleene plus and aggregation.

5 Discussion on Query Composition

In this section, we revisit the event stream models for
query input and output and discuss their impact on
query composition. Recall from Section 2.1 that the
difference between the current input and output mod-
els is that an input event can only contain attributes
of the atomic-simple type, while an output event can
take complex types such as atomic-composite, sequence-
simple, and sequence-composite. The discrepancy be-
tween the two models is a potential barrier to query
composition. In our previous discussion, in order to
compose two queries, we restrict the output of the first
query to the case of atomic-simple. Below, we discuss a
general solution to query composition.

A generic solution is to relax the input query model
to the more general output model. To this end, several
issues need to be examined. The first issue is event en-
coding. As attributes of an event can now be complex
objects such as a sequence of atomic or composite val-
ues, XML appears to be a natural solution to encoding
events comprised of such complex objects.

Given an XML-encoded event stream, a second issue
is how to extend SASE+ to operate on events in the new

9

format. We expect the majority of the language con-
structs to remain unchanged, as they address relation-
ships between events. It seems a promising approach
to obtain the necessary changes by leveraging standard
XML query languages such as XQuery [3]. One such
change, for example, would be to replace the current
“.” operator for retrieving the value of an attribute
(e.g. a.price) with the path operators (e.g. “/” and
“//”) in XQuery. Another change would be to over-
load comparators, e.g., “=” and “<”, with existential
qualification, when they operate on sequence-valued at-
tributes. As can be seen, an important benefit of lever-
aging XQuery is that the necessary extension to SASE+
will have well-defined semantics.

We also want to be cautious when adapting con-
structs from XQuery, as our goal is to keep SASE+
as compact as possible, yet expressive enough to han-
dle events containing complex objects as defined in the
output model. It will be an interesting study to ex-
ploit known results pertaining to XQuery in the litera-
ture [17] to identify a minimal subset of XQuery neces-
sary for the extension of SASE+.

6 Related Work

Much related work has been covered in previous sec-
tions. We discuss broader areas of related work below.

Traditional publish/subscribe systems [1, 9] offer
predicate-based filtering of individual events. Our sys-
tem significantly extends them with the ability to pro-
cess complex event patterns across multiple events. A
mentioned in Section 4, Cayuga [8] offers a complex al-
gebra (but no query language) for expressing Kleene
closure patterns that amount to those in SASE+ us-
ing partition contiguity or skip till next match, but not
negation.

Research on sequence databases [25, 24] offers SQL
extensions and efficient implementations for sequence
data processing. Like relational stream systems, SE-
QIN [25] uses joins to specify sequence operations and
thus cannot express Kleene closure. SQL-TS [24] adds
new constructs to SQL to support Kleene closure over
partitioned sequence data, but can only match such pat-
terns with contiguous tuples in each partition.

The recent event systems [13, 27, 23, 12] offer simple
event languages and consider stream-based processing.
None of these systems support Kleene closure or offer
a former definition of their language semantics. In con-
trast, SASE+ offers both a rich language and a formal
model for describing its semantics and characterizing its
expressibility.

7 Conclusions

In this paper, we described SASE+, a compact yet ex-
pressive language that can be used to define a wide va-
riety of Kleene closure patterns, and we rigorously de-
fined its semantics. We analyzed the expressive power
of SASE+ and its natural sublanguages as well as

some related languages including SQL-TS and Cayuga.
We showed that these languages fit neatly into the
standard complexity classes NC1, DSPACE[log n] and
NSPACE[log n].

We are currently developing an efficient implementa-
tion of SASE+ as well as working on various extensions,
including the addition of the sequence-composite data
type to the query input model.

We are interested in the theoretical tradeoff between
the expressive power of SASE+ and the complexity of
evaluating SASE+ queries. More practically, we believe
that many optimizations are available to evaluate typi-
cal SASE+ queries very quickly.

There are many deep theoretical issues concerning
stream languages, which are quite different from those
in tranditional languages. One approach to addressing
these issues is to more closely relate this new problem
to that of read k times branching programs.

In implementation, many issues need to be consid-
ered, including the design and analysis of algorithms to
efficiently implement match buffers and eliminate un-
necessary work. To address these issues, significant re-
search effort is underway.

References

[1] M. K. Aguilera, R. E. Strom, D. C. Sturman, et al.
Matching events in a content-based subscription system.
In PODC, 53–61, 1999.

[2] A. Arasu, S. Babu, and J. Widom. CQL: A language for
continuous queries over streams and relations. In DBPL,
1–19, 2003.

[3] S. Boag, D. Chamberlin, M. F. Fernndez, et al. XQuery
1.0: An XML query language, 2006.

[4] S. Chakravarthy, V. Krishnaprasad, E. Anwar, et al.
Composite events for active databases: Semantics, con-
texts and detection. In VLDB, 606–617, 1994.

[5] S. Chandrasekaran, O. Cooper, A. Deshpande, et al.
TelegraphCQ: Continuous dataflow processing for an un-
certain world. In CIDR, 2003.

[6] M. Cherniack, H. Balakrishnan, M. Balazinska, et al.
Scalable distributed stream processing. In CIDR, 2003.

[7] U. Dayal, B. T. Blaustein, A. P. Buchmann, et al. The
HiPAC project: Combining active databases and timing
constraints. SIGMOD Record, 17(1):51–70, 1988.

[8] A. J. Demers, J. Gehrke, M. Hong, et al. Towards ex-
pressive publish/subscribe systems. In EDBT, 2006.

[9] F. Fabret, H.-A. Jacobsen, F. Llirbat, et al. Filter-
ing algorithms and implementation for very fast pub-
lish/subscribe. In SIGMOD, 115–126, 2001.

[10] S. Gatziu and K. R. Dittrich. Events in an active object-
oriented database system. In Rules in Database Systems,
23–39, 1993.

[11] N. H. Gehani, H. V. Jagadish, and O. Shmueli. Com-
posite event specification in active databases: Model &
implementation. In VLDB, 327–338, 1992.

[12] L. Harada and Y. Hotta. Order checking in a cpoe using
event analyzer. In CIKM, 549–555, 2005.

10

[13] A. Hinze. Efficient filtering of composite events. In
BNCOD, 207–225, 2003.

[14] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Intro-
duction to Automata Theory, Languages, and Computa-
tion. Addison-Wesley Longman Publishing Co., 2006.

[15] N. Immerman. Descriptive complexity. Springer, 1999.

[16] J. A. Kamp. Tense logic and the theory of linear order.
PhD thesis, University of California, Los Angeles, 1968.

[17] C. Koch. On the complexity of nonrecursive xquery
and functional query languages on complex values. In
PODS, 84–97, 2005.

[18] D. Kozen. Results on the propositional mu-calculus.
Theor. Comput. Sci., 27:333–354, 1983.

[19] D. F. Lieuwen, N. H. Gehani, and R. M. Arlein. The
Ode active database: Trigger semantics and implemen-
tation. In S. Y. W. Su, editor, ICDE, 412–420, 1996.

[20] R. McNaughton and S. A. Papert. Counter-free au-
tomata. MIT Press, Cambridge, MA, 1971.

[21] R. Meo, G. Psaila, and S. Ceri. Composite events in
chimera. In EDBT, 56–76, 1996.

[22] R. Motwani, J. Widom, A. Arasu, et al. Query process-
ing, approximation, and resource management in a data
stream management system. In CIDR, 2003.

[23] S. Rizvi, S. R. Jeffery, S. Krishnamurthy, et al. Events
on the edge. In SIGMOD, 885–887, 2005.

[24] R. Sadri, C. Zaniolo, A. Zarkesh, et al. Expressing and
optimizing sequence queries in database systems. ACM
Trans. Database Syst., 29(2):282–318, 2004.

[25] P. Seshadri, M. Livny, and R. Ramakrishnan. The de-
sign and implementation of a sequence database system.
In VLDB, 99–110, 1996.

[26] H. Vollmer. Introduction to Circuit Complexity.
Springer, Berlin, 1999.

[27] F. Wang and P. Liu. Temporal management of rfid
data. In VLDB, 1128–1139, 2005.

[28] I. Wegener. Branching programs and binary decision
diagrams: theory and applications. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2000.

[29] E. Wu, Y. Diao, and S. Rizvi. High-performance com-
plex event processing over streams. In SIGMOD, 407–
418, 2006.

[30] D. Zimmer and R. Unland. On the semantics of com-
plex events in active database management systems. In
ICDE, 392–399, 1999.

11

A Formal Syntax and Semantics of
SASE+

In this section as in Section 4, we restrict ourselves to
SASE+ queries that return atomic-simple values. In
the main text we gave a detailed intuitve treatment of
SASE+. All that needs to be added here are some de-
tails in order to explain precisely

1. Exactly which formulas may occur in SASE+.

2. Exactly what constitutes an NFAb automaton.

3. A formal definition for the strings accepted by an
NFAb automaton, and finally,

4. The semantics of a SASE+ query via the automa-
ton model.

A.1 SASE+ Syntax

Recall that the overall structure of SASE+ is:

[FROM <input stream>]
PATTERN <pattern structure>
[WHERE <pattern matching condition>]
[WITHIN <sliding window>]
[HAVING <pattern filtering condition>]
RETURN <output specification>

The pattern structure of a simple SASE+ query is of
the form

SEQ(([∼]<qitem>)+) where

<qitem> : <ename> <let> | <ename>+<let>[]

A SASE+ query is a composition of simple SASE+
queries – where we have to name a new stream as the
output of one query to use in the next one, as shown by
Query 4 and Query 5 in Section ??.

An identifier in a pattern matching or a filtering
condition consists of any of the following:

• a, where <ename> a is a qitem occuring in the pat-
tern structure

• a[1], a[i], a[i-1], or a[a.len], where <ename>+ a[] is
a qitem occuring in the pattern structure.

Inductively, a term is any of the following:

• c, a constant,

• p.att where p is an identifier and att is an attribute,

• agg(a[].att), or agg(a[..i-1]) where agg is any as-
sociative aggregation operation with an identity
element and an NC1 iterated multiplication algo-
rithm.

• (t1 ◦ t2) where ◦ is one of +,×,−, and t1, t2 are
terms.

An atomic formula (predicate) is an expression
t1 relop t2 where relop is one of =, 6=, <,≤, >,≥, and
t1, t2 are terms. Finally a formula is a boolean com-
bination of atomic formulas. While any formula can be
compiled into a SASE+ query, in order to avoid mis-
leading queries and unintended consequences, we only
allow good formulas in pattern matching conditions. A
good formula is a formula in CNF such that for each
clause, C, the last identifier in the SEQ order, `, occurs
in every predicate in C. Thus in a pattern matching
condition, C is taken as a selection criterion on `.

A pattern filtering condition is a formula. A pat-
tern matching condition is a good formula preceded
by an optional header: one of strict contiguity,
partition contiguity, skip til next match, or,
skip til any match.

A.2 NFAb Automaton

An NFAb Automaton, A = (Q,E, θ, q1, F), consists
of a set of states, Q, a set of directed edges, E, and a set
of formula, θ, labelling those edges. Q is arranged as a
linear sequence consisting of any number of occurrences
of singleton states, s, or pairs of states, p[1], p[i], plus a
rightmost final state, F. See Figure 2 for an example.

Each state, q, has a self-loop labelled with the for-
mula θq ignore. Furthermore, each state, q that is a sin-
gleton state, s, or the first state, p[1], of a pair has
a forward edge labelled with the formula θq begin. Fi-
nally each second state, p[i], of a pair has a forward
edge labelled with the formula θp[i] proceed. and a self-
loop labelled with the formula θp[i] take. The first state,
q1, has no edges to it, i.e., the corresponding Ignore
self-loop is removed. This is because we are only in-
terested in matches that start with the first event they
take rather than skipping some initial elements.

The formulas that may occur as edge labels are ex-
actly the formulas as defined in Section A.1, but the
only identifiers that may occur on an edge from state q
are those that have occurred from q1 up to and includ-
ing q, with the exception that a.len and agg(a[].att),
may not occur on Ignore or Take edges from state a;
they make occur on the Proceed edge.

NFAb automata may exhibit non-determinism when-
ever from some state there are two edges whose labels
are not-mutually exclusive. For example, if θp[i] take and
θp[i] ignore are not mutually exclusive then we are in a
nondeterministic skip-til-any-match situation.

Let A = (Q, E, θ, q1, F), be an NFAb automaton and
let E = e1, e2, . . . , en be an event stream. A run of S on
E is a sequence of pairs: ρ = (j1, t1), (j2, t2), . . . (jk, tk)
such that 1 ≤ j1 < j2 < · · · < jk ≤ n + 1, and induc-
tively the following conditions apply:

• (base case:) If 1 ≤ j1 ≤ n, then (j1, q1) is an
initial run of A on E.

(Intuitively, (j1, q1) means that we are in the initial
state about to look at ej1 .)

12

• (begin move:) If ρ′ = (j1, t1), (j2, t2), . . . (jk −
1, tk−1), is a run of A on E, tk−1 is an identifier, s
or a[1], and θtk begin holds, with identifier tk−1 in-
stantiated as ejk−1, and tk is the successor of tk−1,
then ρ is a run of A on E.

(For example, if ρ′ = (3, a[1]), and θtk begin holds
with i = 1 and a[1] instantiated as e3, then ρ =
(3, a[1]), (4, a[2]) is a run, in state a[i] about to look
at e4.)

• (ignore move:) If ρ′ =
(j1, t1), (j2, t2), . . . (jk−1, tk−1), (jk − 1, tk) is a
run of A on E and θtk ignore holds, with identifier
tk (temporarily) instantiated as ejk−1, then ρ is a
run of A on E.

(Inductively we were in state tk, about to look at
ejk−1, then we looked at it and ignored it, so now
we are still in tk about to look at ejk

.)

• (take move:) If ρ′ =
(j1, t1), . . . (jv1 , a[1]), . . . , (jvn , a[n]), is a run
of A on E, and θa[i] take holds, with a[n] instanti-
ated as evn , i = n, then ρ = ρ′, (jvn + 1, a[n + 1])
is a run of A on E.

• (proceed move:) If ρ′ =
(j1, t1), . . . (jv1 , a[1]), . . . , (jvn , a[n]), is a run
of A on E, and θa[i] proceed holds, with the succes-
sor, tk of a[i] instantiated as evn , and a.len = n,
then ρ = (j1, t1), . . . (jv1 , a[1]), . . . , (jvn

, tk) is a run
of A on E.

(Note that a Proceed edge is a “peeking edge” of
the NFAb: it looks at the next input event, evn

,
but doesn’t consume it – it will at the next step.)

An accepting run is a run, ρ with tk = F . The
match occurs from position j1 through jk−1 in E, and
the output of the match is the instantiation of the run
that we have inductively defined. Finally, the language
accepted by an NFAb automaton, A, is defined as,

L(A) = {E = e1 · · · en | A has an accepting run,
(1, q1), . . . (n+1, F), on E}

We end by connecting the language SASE+ with the
NFAb model. In Section 3.2 we explained in detail how
to compile a simple SASE+ query into an NFAb which
faithfully captures its meaning. Thus we have,

Lemma A.1 Any simple SASE+ query can be com-
piled into an equivalent NFAb automaton. Thus, the
languages expressed in SASE+ are contained in the clo-
sure under composition and negation of the languages
recognizable by NFAb automata.

13

