Logistics 000	Review 000000000	Question Topics	Logistics •00	Review 0000000000	Question Topics
	COMPSCI 688: Probabilistic Graphical Models Lecture 24: Final Review				
Dan Sheldon					
	Manning College of Information and Computer Sciences University of Massachusetts Amherst				
Partially based on materials by Benjamin M. Marlin (marlin@cs.umass.edu) and Justin Domke (domke@cs.umass.edu)					
		1 / 20			2/20
Logistics 000	Review 000000000	Question Topics 0000	Logistics OO•	Review 000000000	Question Topics
Exam Logistics			Exam Procedur	es	
 Monday, 5/13/2023 1:00pm - 3:00PM Goessmann Lab Room 20 (here) 		3/20	 Open note No electroi Paper exar Double sea 	s nic devices n: bring pencils, erasers, etc. nting (spread out, leave every other seat/row empty)	4/20

Logistics 000	Review 0000€000000	Question Topics	Logisti 000	cs	Review 00000€000000	Question Topics
Inference		Message Passing				
 If Bayes net, first convert to MRF Conditioning = factor reduction Variable elimination = general purpose inference algorithm: marginalize variables one-by-one in some order replace set of factors containing each variable by one new factor 			Message Passing • $p(x) = \frac{1}{Z} \prod_i \phi_i(x_i) \prod_{(i,j)} \phi(x_i, x_j)$. (assume tree structures.) • Derivation principle: leaf-first variable elimination • $m_{i \to j}(x_i) = \sum_{x_i} \phi(x_i) \phi(x_i, x_j) \prod_{l \in \text{nb}(i) \setminus j} m_{l \to i}(x_i)$. • Once we have passed messages, we can compute $Z, p(x_i), p(x_i, x_j)$.			ures.) $x_i), p(x_i, x_j).$
		9 / 20				10 / 20
Logistics 000	Review 000000000000	Question Topics 0000	Logisti 000	cs	Review cocccoceccoc	Question Topics 0000
Exponential Family			Dir	ected vs Unc	lirected	
► p _e	$\phi(x) = h(x) \exp(\theta^{\top} T(x) - A(\theta)).$				Directed	Undirected
► <u>∂</u> .	$\frac{A}{\theta} = \mathbb{E}[T(X)] \frac{\partial^2 A}{\partial \theta \partial \theta^{\top}} = \operatorname{Var}[T(X)].$			assume	$X_i \perp X_{nd(i)} X_{pa(i)}$	$X_i \perp X_{-i} X_{nb(i)}$
► M	loment-matching conditions for ML.			p(x)	$\prod_i p(x_i x_{pa(i)})$	$\frac{1}{Z} \prod_{c \in C} \phi_c(x_c)$
A	► A MRF $p(x) = \frac{1}{Z} \prod_{c \in C} \phi_c(x_c)$ can be written as an exponential family with $T(x) = \begin{bmatrix} \mathbb{I}[x_c = a], & \forall c \in C, & \forall a \in \operatorname{Val}(X_c) \end{bmatrix}$		ML condition	$p(x_i x_{pa(i)}) = \frac{\#(X_i = x_i, X_{pa(i)} = x_{pa(i)})}{\#(X_{pa(i)} = x_{pa(i)})}$	$p(x_c) = \frac{\#(X_c = x_c)}{N}$	
		11/20				12/20

Logistics Review 000 000000000000000000000000000000000	Question Topics	Logistics Review 000 00000000000000000000000000000000	Question Topics
Markov chain Monte Carlo (MCMC)		Bayesian Inference	
 Want to sample x ~ p(x). Create a random walk that will approximately do this. Regularity: ∃n st (Tⁿ)_{ij} > 0 for all i, j. ⇒ Markov chain has only one static distribution. Detailed balance: p(x)T(x' x) = p(x')T(x x'). ⇒ p stationary distribution Gibbs / Metropolis-Hastings sampling Hamiltonian Monte Carlo: M-H that uses ∇ log p to make big steps 	onary of <i>T</i> .	 You create p(θ, Data). You observe Data. You make predictions using p(θ Data). Prior, likelihood, posterior Conjugate inference: prior and posterior in same family "Easy way": drop terms that don't involve θ, combine prior/likelihor posterior 	od to get
	13 / 20		14/20
Logistics Review 000000000000000000000000000000000000	Question Topics	Logistics Review 000 00000000000	Question Topics 0000
Variational Inference (VI) ELBO decomposition: $\log n(x) = \text{ELBO} + \text{KL}$ Gives both:		GPs and Flows	
 ELBO decomposition: log p(x) = ELBO + KL. Gives both: bound on log p(x) approximation of p(z x) Black-box VI: Optimize ELBO using stochastic gradients Reparameterization estimation 	15 / 20	Not on the exam	16 / 20

Logistics 000	Review 0000000000	Question Topics •000	Logistics 000	Review 0000000000	Question Topics
	Question Topics		Expec	 At ~10 questions drawn from ones like these: Bayes nets given a graph, write factorization given factorization, draw graph answer questions about CPTs given graph, which CI properties hold? answer queries using distribution properties Markov networks given a graph, write factorization given a graph, write factorization given graph, which CI properties hold? answer queries conceptual questions about CRFs vs MRFs 	
		17 / 20			18 / 20
Logistics 000	Review 0000000000	Question Topics 00€0	Logistics 000	Review 0000000000	Question Topics 000●
 Inference Conceptual questions about variable elimination and its efficiency Conceptual questions about message passing Execute message-passing on toy model and/or use messages to get marginals, Z Learning Conceptual questions about log-likelihood, KL divergence, conditional log-likelihood Use Bayes net learning rule on toy problem Derive log-likelihood and gradient for some simple graphical model Exponential families Conceptual questions about exponential families and their properties Given a sample distribution, is θ an optima of likelihood? (use moment matching) 				 ACMC Conceptual questions about Markov chains, stationary distributions Is a Markov chain regular? Does a Markov chain satisfy detailed balance with respect to a distribut Conceptual questions about Gibbs sampler, Metropolis-Hastings Apply Gibbs sampler of Metropolis-Hastings to a toy problem Bayesian inference Conceptual questions about latent variable models, prior distributions, lifunctions, posterior distributions Derive formula for posterior distribution in conjugate Bayesian model Variational inference Conceptual questions about ELBO, mean-field VI, stochastic gradient V reparameterization trick Given simple p and q, derive ELBO, or gradient estimator 	tion? ikelihood /I,
		19 / 20			20 / 20