
Overview Change of Variable Normalizing Flows Building Flow Models

COMPSCI 688: Probabilistic Graphical Models
Lecture 23: Normalizing Flows

Dan Sheldon

Manning College of Information and Computer Sciences
University of Massachusetts Amherst

Partially based on materials by Benjamin M. Marlin (marlin@cs.umass.edu) and Justin Domke (domke@cs.umass.edu)

1 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Overview

2 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Motivation: Transforming a Simple Distribution

Suppose we want to learn a model pθ(x) for a complex x (like images). What properties
do we want from pθ(x)?

▶ Easy to sample (useful for generation)
▶ Easy to evaluate density (useful for learning)

Many simple distributions satisfy these properties (e.g., Gaussian, uniform).

But data distributions are complex! E.g. multi-modal.

Key idea behind flow models: map simple distributions to complex ones through
deterministic invertible transformations

3 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Motivation: Transforming a Simple Distribution (Learning)

Consider our VAE model pθ(x) but with no noise

z ∼ p(z) simple, e.g. N (0, I)
x = fθ(z)

=⇒ pθ(x)

Could we learn pθ(x) “directly” by MLE?
▶ Can easily generate samples x ∼ pθ(x)
▶ To learn, need to compute the density pθ(x) under transformation fθ. Can we do it?

Demo

4 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Motivation: Transforming a Simple Distribution (Inference)

Also useful in variational inference, e.g. qϕ(z) in VAEs

Goal: qϕ(z) ≈ p(z|x) where p, x are given. We used reparameterized Gaussians:

ϵ ∼ N (0, I)
z = Tϕ(ϵ) = Lϵ + µ

=⇒ z ∼ qϕ(z) = N (z; µ, LLT)

What if we used complex Tϕ(ϵ) (e.g. neural net) instead?
▶ Would have a rich class of variational distributions.
▶ Could easily sample from qϕ(z)
▶ For ELBO, need to compute density qϕ(z) under transformation Tϕ. Can we do it?

5 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Can we do it?

Not in general. Consider the VAE model

z ∼ p(z) := N (z; 0, I) (“easy”)
x ∼ p(x|z)

Even though p(z) is “easy”, p(x) =
∫

p(z)p(x|z)dz is “hard”: need to enumerate all z
that could have produced x.

Even if x = fθ(z) is deterministic, could be hard to reason about z that produced x.

But if fθ is invertible, we can do it!

6 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Change of Variable

7 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Change of Variable in 1D (False Start)
Example (false start). Suppose

Z ∼ Unif(0, 1)
X = 2Z + 1 := f(Z)

What is pX(2)?

Easy to guess pX(2) = pZ(f−1(2)) = pZ(1
2) = 1. Wrong.

Correct answer is pX(2) = 1
2 . Easy to see X ∼ Unif(1, 3).

8 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Volume Change
Density at points is not preserved under transformations.

Issue: transformations also “stretch” or “compress” space (change volume)

9 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Change of Variable in 1D

Correct approach: probability of regions is preserved

Informal derivation: if X = f(Z) and f is invertible and with inverse g then

pX(x)dx = pZ(z)dz

pX(x) = pZ(z)
∣∣∣∣
dz

dx

∣∣∣∣

pX(x) = pZ(g(x))|g′(x)| (g = f−1)

(Also assume f differentiable.)

10 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Change of Variable in 1D

Formal statement: suppose X = f(Z) for invertible, differentiable f with inverse g.
Then

pX(x) = pZ(g(x))|g′(x)|

Let z = g(x). We can also write

pX(x) = pZ(z)
∣∣∣∣

1
f ′(z)

∣∣∣∣

since g′(x) = 1/f ′(z) (calculus fact).

11 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Change of Variable in 1D Proof
We can derive this more formally using the fact that
Pr(X ∈ [c, d]) = Pr(Z ∈ [g(c), g(d)]).

For c < d we have: ∫ d

c
pX(x)dx = Pr(c ≤ X ≤ d)

= Pr(g(c) ≤ Z ≤ g(d))

12 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

=
∫ g(d)

g(c)
pZ(z)dz

=
∫ d

c
pZ(g(x))g′(x)dx

The last line uses the calculus change of variable formula with the substitution z = g(x).
(So this is really the same change of variable formula.)

Since c and d are arbitrary, by comparing the integrands we see that
pX(x) = pZ(g(x))g′(x).

13 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Change of Variable: General Case

Suppose z ∼ pz(z) and x = f(z) for invertible, differentiable f : RD → RD with inverse
g. Then

px(x) = pz(g(x)) ·
∣∣∣∣det ∂g(x)

∂x

∣∣∣∣

▶ The matrix ∂g(x)
∂x ∈ RD×D is the Jacobian of g. It’s (i, j)th entry is ∂gi(x)

∂xj

▶ It’s also true that ∂g(x)
∂x =

(
∂f(z)

∂z

)−1
for z = g(x). So we often call ∂g(x)

∂x the
inverse Jacobian of f

14 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

▶ Another version, often convenient. Let z = g(x). Then

px(x) = pz(z) ·
∣∣∣∣det ∂f(z)

∂z

∣∣∣∣
−1

▶ Geometrically,
∣∣∣det ∂f(z)

∂z

∣∣∣ describes how much f changes the volume of a small
hypercube.

15 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Normalizing Flows

16 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Normalizing Flow

A normalizing flow uses a simple prior and learned transformation to model data

z ∼ pz(z) simple (e.g., Gaussian)
x = fθ(z) invertible

By the change-of-variable formula, the density is

px(x; θ) = pz(f−1
θ (x)) ·

∣∣∣∣∣det ∂f−1
θ (x)
∂x

∣∣∣∣∣

17 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Normalizing Flow

Most often fθ = fm
θ ◦ · · · ◦ f1

θ is a composition or “flow” of many transformations:

z0 ∼ pz0(z0) simple
z1 = f1

θ (z0)
z2 = f2

θ (z1)
...
x = zm = fm

θ (zm−1)

The density is

px(x; θ) = pz0(f−1
θ (x)) ·

m∏

j=1

∣∣∣∣∣det ∂(f j
θ)−1(zj)
∂zj

∣∣∣∣∣

(Uses rules for Jacobian of composition and product of determinants.)

18 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Learning and Prediction

▶ Learning by maximum likelihood. Find θ to maximize

1
N

N∑

n=1
log p(x(n); θ) = 1

N

N∑

n=1

(
log pz(f−1

θ (x(n))) + log
∣∣∣∣∣det ∂f−1

θ (x(n))
∂x(n)

∣∣∣∣∣

)

▶ Learning uses inverse mapping x 7→ z and change of variables formula
▶ Prediction (sampling) uses simple distribution for z and forward mapping z 7→ x

19 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Building Flow Models

20 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Building Flow Models

To build a flow model we need
▶ A distribution p(z) that is “easy”. Can sample and compute density.
▶ Transformations fθ that are

▶ Always invertible
▶ Allow us to compute the determinant easily. In general, it is O(D3) — too expensive!
▶ Key idea: choose tranformations with special structure

21 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Triangular Jacobian

J = ∂f

∂z =




∂f1
∂z1

· · · ∂f1
∂zD...

∂fD
∂z1

· · · ∂fD
∂zD




Suppose xi = fi(z) only depends on z1, . . . , zi. Then

J = ∂f

∂z =




∂f1
∂z1

· · · 0
...

∂fD
∂z1

· · · ∂fD
∂zD




is lower triangular =⇒ the determinant is the product of the diagonal entries of J , can
be computed in linear time.

22 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Real-NVP

There are many constructions that ensure a triangular Jacobian. We’ll look at one:
“Real-NVP”. We split z and x into two equal-sized parts of size d = D/2:

z =
[
z1
z2

]
, x =

[
x1
x2

]
.

The forward mapping z 7→ x is

x1 = z1 (identity)
x2 = µθ(z1) + z2 ⊙ exp(αθ(z1)) (shift and scale z2 based on z1)

where µθ(·) and αθ(·) are neural networks from Rd → Rd.

23 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

The inverse mapping is x 7→ z is therefore

z1 = x1 (identity)
z2 = (x2 − µθ(x1)) ⊙ exp(−αθ(x1)) (unshift and unscale x2 based on x1)

The Jacobian of the forward mapping and its determinant are

J = ∂x
∂z =

[
I 0

∂x2
∂z1

diag(exp(αθ(z1))

]

det(J) =
d∏

i=1
exp

(
αθ(z1)i

)
= exp

(
d∑

i=1
αθ(z1)i

)

Change order of dimensions in different layers, so sometimes z2 7→ x2 is identity instead.

24 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Demo

▶ Demo: implementation and 2d density estimation with Real-NVP
▶ There are tons of examples on the internet of images generated by flows. Take a

look.
▶ Flows have been used for tons of applications

▶ They can be extremely good for VI.
▶ They are good at generating images, but not the most competitive models right now

(if you care). One reason is they restrict fθ too much. Some more competitive current
models descend from normalizing flows.

25 / 25

