Overview 00000	Change of Variable 00000000	Normalizing Flows 0000	Building Flow Models	Overview •0000	Change of Variable 00000000	Normalizing Flows 0000	Building Flow Models
Last time; - GPML Next time? - Flows? - PPL? Partially	COMPSCI 688: Pro ; $G P_S$ Lecture 23 Manning College of In University of $HW \ 5$ Jue	babilistic Graphical Mod Normalizing Flows -generative AI vaviational inference an Sheldon formation and Computer Sciences Massachusetts Amherst Friday (marlin@cs.umass.edu) and Justin Domke (domke@c	els e s.umass.edu)		(Dverview	2/25
Overview oooo	Change of Variable 00000000	Normalizing Flows	Building Flow Models	Overview 00000	Change of Variable 00000000	Normalizing Flows 0000	Building Flow Models
Motivation: T	ransforming a Simpl	e Distribution	00	Motivation:	Transforming a Simp	le Distribution (Learning)	
Suppose we w	vant to learn a model $p_{\theta}(\mathbf{x})$) for a complex \mathbf{x} (like images).	What properties	Consider or	ur VAE model $p_{ heta}(\mathbf{x})$ but wit	th no noise	
 Easy to s Easy to e 	sample (useful for generat evaluate density (useful fo	ion) 👋 🔁 🖙 p(x ⁽ⁿ⁾) r learning)		$VAEs:$ $\mathcal{M} = f_{\theta}(z)$ $\times \sim \mathcal{N}(\mathcal{M}, \tau^{2}I)$	$\mathbf{z} \sim p(\mathbf{z})$ simple, e $\mathbf{x} = f_{ heta}(\mathbf{z})$	$ \text{.g. } \mathcal{N}(0,I) \implies p_{\theta}(\mathbf{x}) $	LOULOC
Many <i>simple</i> distributions satisfy these properties (e.g., Gaussian, uniform).				Could we learn $p_{ heta}(\mathbf{x})$ "directly" by MLE?			
But data distributions are <i>complex</i> ! E.g. multi-modal.				• Can easily generate samples $\mathbf{x} \sim p_{\theta}(\mathbf{x})$			
Key idea behind flow models: map simple distributions to complex ones through deterministic invertible transformations			To learn, need to compute the density $p_{\theta}(\mathbf{x})$ under transformation f_{θ} . Can we do it? Demo				
			3 / 25				4 / 25

Overview 00000	Change of Variable	Normalizing Flows 0000	Building Flow Models				
Demo							
•	Demo: implementation and 2d density estimation with Real-NVP						
•	There are tons of examples on the internet of images generated by flows. Take a look.						
•	Flows have been used for tons of applications						
	 They can be extremely good for VI. They are good at generating images, but not the most competitive models right now (if you care). One reason is they restrict f_θ too much. Some more competitive current models descend from normalizing flows. 						
			25 / 25				
			25 / 25				