
Overview Change of Variable Normalizing Flows Building Flow Models

COMPSCI 688: Probabilistic Graphical Models
Lecture 23: Normalizing Flows

Dan Sheldon

Manning College of Information and Computer Sciences
University of Massachusetts Amherst

Partially based on materials by Benjamin M. Marlin (marlin@cs.umass.edu) and Justin Domke (domke@cs.umass.edu)

1 / 25

 Overview Change of Variable Normalizing Flows Building Flow Models

Overview

2 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Motivation: Transforming a Simple Distribution

Suppose we want to learn a model p◊(x) for a complex x (like images). What properties
do we want from p◊(x)?

I Easy to sample (useful for generation)
I Easy to evaluate density (useful for learning)

Many simple distributions satisfy these properties (e.g., Gaussian, uniform).

But data distributions are complex! E.g. multi-modal.

Key idea behind flow models: map simple distributions to complex ones through
deterministic invertible transformations

3 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Motivation: Transforming a Simple Distribution (Learning)

Consider our VAE model p◊(x) but with no noise

z ≥ p(z) simple, e.g. N (0, I)
x = f◊(z)

=∆ p◊(x)

Could we learn p◊(x) “directly” by MLE?
I Can easily generate samples x ≥ p◊(x)
I To learn, need to compute the density p◊(x) under transformation f◊. Can we do it?

Demo

4 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Motivation: Transforming a Simple Distribution (Inference)

Also useful in variational inference, e.g. q„(z) in VAEs

Goal: q„(z) ¥ p(z|x) where p, x are given. We used reparameterized Gaussians:

‘ ≥ N (0, I)
z = T„(‘) = L‘ + µ

=∆ z ≥ q„(z) = N (z;µ,LLT)

What if we used complex T„(‘) (e.g. neural net) instead?
I Would have a rich class of variational distributions.
I Could easily sample from q„(z)
I For ELBO, need to compute density q„(z) under transformation T„. Can we do it?

5 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Can we do it?

Not in general. Consider the VAE model

z ≥ p(z) := N (z; 0, I) (“easy”)
x ≥ p(x|z)

Even though p(z) is “easy”, p(x) =
s
p(z)p(x|z)dz is “hard”: need to enumerate all z

that could have produced x.

Even if x = f◊(z) is deterministic, could be hard to reason about z that produced x.

But if f◊ is invertible, we can do it!

6 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Change of Variable

7 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Change of Variable in 1D (False Start)
Example (false start). Suppose

Z ≥ Unif(0, 1)
X = 2Z + 1 := f(Z)

What is pX(2)?

Easy to guess pX(2) = pZ(f≠1(2)) = pZ(1
2) = 1. Wrong.

Correct answer is pX(2) = 1
2 . Easy to see X ≥ Unif(1, 3).

8 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Volume Change
Density at points is not preserved under transformations.

Issue: transformations also “stretch” or “compress” space (change volume)

9 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Change of Variable in 1D

Correct approach: probability of regions is preserved

Informal derivation: if X = f(Z) and f is invertible and with inverse g then

pX(x)dx = pZ(z)dz

pX(x) = pZ(z)

dz

dx

pX(x) = pZ(g(x))|gÕ(x)| (g = f≠1)

(Also assume f di�erentiable.)

10 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Change of Variable in 1D

Formal statement: suppose X = f(Z) for invertible, di�erentiable f with inverse g.
Then

pX(x) = pZ(g(x))|gÕ(x)|

Let z = g(x). We can also write

pX(x) = pZ(z)

1
f Õ(z)

since gÕ(x) = 1/f Õ(z) (calculus fact).

11 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Change of Variable in 1D Proof
We can derive this more formally using the fact that
Pr(X œ [c, d]) = Pr(Z œ [g(c), g(d)]).

For c < d we have: ⁄ d

c
pX(x)dx = Pr(c Æ X Æ d)

= Pr(g(c) Æ Z Æ g(d))

12 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

=
⁄ g(d)

g(c)
pZ(z)dz

=
⁄ d

c
pZ(g(x))gÕ(x)dx

The last line uses the calculus change of variable formula with the substitution z = g(x).
(So this is really the same change of variable formula.)

Since c and d are arbitrary, by comparing the integrands we see that
pX(x) = pZ(g(x))gÕ(x).

13 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Change of Variable: General Case

Suppose z ≥ pz(z) and x = f(z) for invertible, di�erentiable f : RD æ RD with inverse
g. Then

px(x) = pz(g(x)) ·
----det ˆg(x)

ˆx

I The matrix ˆg(x)
ˆx œ RD◊D is the Jacobian of g. It’s (i, j)th entry is ˆgi(x)

ˆxj

I It’s also true that ˆg(x)
ˆx =

1
ˆf(z)

ˆz

2≠1
for z = g(x). So we often call ˆg(x)

ˆx the
inverse Jacobian of f

14 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

I Another version, often convenient. Let z = g(x). Then

px(x) = pz(z) ·
----det ˆf(z)

ˆz

≠1

I Geometrically,
---det ˆf(z)

ˆz

--- describes how much f changes the volume of a small
hypercube.

15 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Normalizing Flows

16 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Normalizing Flow

A normalizing flow uses a simple prior and learned transformation to model data

z ≥ pz(z) simple (e.g., Gaussian)
x = f◊(z) invertible

By the change-of-variable formula, the density is

px(x; ◊) = pz(f≠1
◊ (x)) ·

-----det ˆf≠1
◊ (x)
ˆx

17 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Normalizing Flow

Most often f◊ = fm◊ ¶ · · · ¶ f1
◊ is a composition or “flow” of many transformations:

z0 ≥ pz0(z0) simple
z1 = f1

◊ (z0)
z2 = f2

◊ (z1)
...
x = zm = fm◊ (zm≠1)

The density is

px(x; ◊) = pz0(f≠1
◊ (x)) ·

mŸ

j=1

-----det ˆ(f j◊)≠1(zj)
ˆzj

(Uses rules for Jacobian of composition and product of determinants.)

18 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Learning and Prediction

I Learning by maximum likelihood. Find ◊ to maximize

1
N

Nÿ

n=1
log p(x(n); ◊) = 1

N

Nÿ

n=1

A
log pz(f≠1

◊ (x(n))) + log
-----det ˆf≠1

◊ (x(n))
ˆx(n)

B

I Learning uses inverse mapping x ‘æ z and change of variables formula
I Prediction (sampling) uses simple distribution for z and forward mapping z ‘æ x

19 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Building Flow Models

20 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Building Flow Models

To build a flow model we need
I A distribution p(z) that is “easy”. Can sample and compute density.
I Transformations f◊ that are

I Always invertible
I Allow us to compute the determinant easily. In general, it is O(D3) — too expensive!
I Key idea: choose tranformations with special structure

21 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Triangular Jacobian

J = ˆf

ˆz =

S
WWU

ˆf1
ˆz1

· · · ˆf1
ˆzD...

ˆfD
ˆz1

· · · ˆfD
ˆzD

T
XXV

Suppose xi = fi(z) only depends on z1, . . . , zi. Then

J = ˆf

ˆz =

S
WWU

ˆf1
ˆz1

· · · 0
...

ˆfD
ˆz1

· · · ˆfD
ˆzD

T
XXV

is lower triangular =∆ the determinant is the product of the diagonal entries of J , can
be computed in linear time.

22 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Real-NVP

There are many constructions that ensure a triangular Jacobian. We’ll look at one:
“Real-NVP”. We split z and x into two equal-sized parts of size d = D/2:

z =
C
z1
z2

D
, x =

C
x1
x2

D
.

The forward mapping z ‘æ x is

x1 = z1 (identity)
x2 = µ◊(z1) + z2 § exp(–◊(z1)) (shift and scale z2 based on z1)

where µ◊(·) and –◊(·) are neural networks from Rd æ Rd.

23 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

The inverse mapping is x ‘æ z is therefore

z1 = x1 (identity)
z2 = (x2 ≠ µ◊(x1)) § exp(≠–◊(x1)) (unshift and unscale x2 based on x1)

The Jacobian of the forward mapping and its determinant are

J = ˆx
ˆz =

C
I 0

ˆx2
ˆz1

diag(exp(–◊(z1))

D

det(J) =
dŸ

i=1
exp

!
–◊(z1)i

"
= exp

A
dÿ

i=1
–◊(z1)i

B

Change order of dimensions in di�erent layers, so sometimes z2 ‘æ x2 is identity instead.

24 / 25

Overview Change of Variable Normalizing Flows Building Flow Models

Demo

I Demo: implementation and 2d density estimation with Real-NVP
I There are tons of examples on the internet of images generated by flows. Take a

look.
I Flows have been used for tons of applications

I They can be extremely good for VI.
I They are good at generating images, but not the most competitive models right now

(if you care). One reason is they restrict f◊ too much. Some more competitive current
models descend from normalizing flows.

25 / 25

