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Factor analysis model with non-linear mapping r? @ "Wa'j(' d;%,'f 1

p(z) =N(z0.1)  y;
p(z;j|z) = Bernoulli(z;; (fo(2)),), ji=1,...,d

M=fy(2) e To, 1N\

Example non-linear mapping:

Yoo o 50we yR
fo(z) = ha(bs + W2 hi(b1 + Wz)) fR‘O“’ 4
?

S('svnol'd T

Exact inference and learning are intractable. 10
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Choose variational family, e.g., diagonal Gaussian, to approximate posterior:

e (2lx) x = N (g, diag(c?)), 0= (1)
/m JA\,G) 1o

Stochastic optimization: repeatedly get unbiased gradient estimate V¢, update ¢:

Ve ~ V4ELBO() [691 =V, ELgo(d)
¢~ ¢+ Oéﬁd)

How to get @q;?
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. . . . eq, A=Az 4 & L . . .
Gradient Estimation: Reparameterization 3 C[" VA ’G> Reparameterization with Diagonal Gaussians
Without
reparameterization With reparameterization
. . Suppose the variational family is a diagonal Gaussian
Variational distribution q5(2) q5(2)
enlloy) 224+ SE 46(2) = N (p, diag(0?))
Sampling z~ qy(2) e~ q(e)jz=Ty(e) ¢
ELBO E log P(Z:2) E log PT2(9).2) This can be reparameterized as: B
90(2) [Og q¢<Z>] a(c) [Og 7%(7}(5»] 2=+ 6y ¥
z=p+o0e e~N(0,I)
. 2,T Ty (€)s
ELBO estimate log ’;i(z)),z ~ gy(2) log %, e~ qle)
©® = elementwise multiplication)
, . , 0. (
Gradient estimate Vg log ’;(; :)),z ~ qy(2) Vg log %, e~ q(e)
(wrong/biased) (unbiased)
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Aside: Reparameterization with Arbitrary Gaussians Example: Bernoulli VAE °®
040, (</2)
Another choice would be to use a general Gaussian distribution: Let's return to our Bernoulli VAE factor analysis model and use a diagonal Gaussian
approximation:
e~N(0,1) = p+ Le ~ N(u, LLT). PP Lied
(e
This i ceriation with p(z) = N(20,1)
s is a reparameterizatio
1515 @ reparameterization wi ee p(zj|z) = Bernoulli(z;; (fo(2));), ji=1,....d
q(e) = N(0, 1), Ts(e) =p+Le ¢ = (L p) _
L ao(e) =N diag(@?)) & p (249
It covers any multivariate Gaussian, since an arbitrary covariance matrix 3 can be )
written as ¥ = LLT for some L (e.g., a Cholesky factor) BBSVI would repeat the following steps:
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e~N(0,1) (z=p+o0¢)

Vio = Vaol[logN(@H o @e 0,1) EX

d

+ Z log Bernoulli (.’Ej; (folp+eo® e))j
j=1

[ao) @(%fz)
tOE\ ‘1@(2)

- log./\/(u +oOe u, diag(0'2))

(1,0) « (1,0) + Ve

With the optimized parameters we could approximate p(z|x) ~ g4(z) and lower bound
the log-marginal likelihood log p(x) > ELBO(¢). What about learning?
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Learning with Stochastic Variational Inference

The basic idea is to jointly maximize the ELBO with respect to model parameters 6 and
variational parameters ¢ by getting unbiased gradient estimates for both:

log po(Z, x)}

lngO(x) = ELBO(&, ¢) = El]q‘> Q¢(Z)

Vo ~ V4ELBO(0, ¢)
V4 = V4ELBO(0, )

(0,0) « (0,0) + - (Vg,Vy)
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Learning with 11D Data 2 < -

R Q)
& & ;
How do we learn a latent variable madel py(z, X when we have iid data x(1), ... x(N)?

Each datum x(™ has its own:
» marginal likelihood pg(x(™)
» posterior pg(z(™ | x(™)

S
» variational distribution g, (z(™))
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Then optimize the lower bound with respect to all parameters. Compute:
Basic approach: introduce variational parameters ¢\ for each datum and construct an
overall lower bound: . ") ()
9 ¢(‘) qb(“) V¢(n) %V¢(n)ELBO(9,¢ ,x™), n=1,...,N,
N N
(n n) (n 1
Zlogpe Z ELBO(6, ¢! ) Vo~ Vo > ELBO(Y, o™ xM)
- n 1
Then update 0,0, ..., ™) using stochastic gradients.
ELBO(6, ¢, x(") = Eq,m) [logpe(z(’L)7X(")) — log q¢(n>(Z(n))]
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Amortized Inference VAEs Amortized Inferences: VAEs ® -Fg‘ 2 F— M, € Io, N
, , 2 o X7 M, ¢R
The basic approach described above introduces a very large number of variational @ R (347 2
parameters and can be very slow for large data sets
A common choice for g4 is a multi-layer neural network, similar to fy, e.g
Amortized inference proposes to use a neural net to predict the variational parameters Y ool .,.(—JL'&
& for datum x(™, e g. 20 = e ) s {gmot el ¢
& qb( ) N{ ! M ‘?, l fg(Z) = hg(bg + Wy - hl(bl —+ le)) € COJ (—X
(n)y _ (n). RCLU-
ap(z™ | x") = N (2" gs(x™), 7°1)
9o(x) = ba + Wy - hz(bg + W;x) e R
> The funct|on ge predicts the mean of the variational posterior approximation for . . ‘\Y\ T
datum x(™. (We could also model the (co)variance as some function of x(™).) (ha, ha, hs are elementwise non-linear functions
> This is called amortization because it shares information across data points for Cb:(w‘l, baj W‘f/ bq)
learning the variational approximations.
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[llustration: p and ¢ graphical models [llustration: “Auto-Encoder”

v M
Latent space ELBO encigy ferw
—— Pe (I Je‘l
Co [
— E oo p(2)]
S (ot dist  onl 4¢,(2)7<> 1 j@e
Citb no )owd- ) \/ C( C(b('sz‘)
\ ncoulra
99(\#{2 (m(‘odf‘r ¢ h '(795
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Example: Inference and Learning in Bernoulli VAE
Putting all the pieces together, stochastic variational inference and learning for a
Bernoulli VAE would repeat the following for all n in some order:

e~ N0, 1) Gtﬁ(z(“\[ «)= ( 2 %(K‘"') ;’fI) (2™ = gy(xV) + 7€)

|0§ ()9(2)

Voo = Vool logN (go(x™) + 7€ 0,1)

d

Z log Bernoulh(

Jj=1

— 10g/\/'(g¢(x(")) + T€; g¢(x(”)), 7'2]) }

; (fo@a(x™) +7¢)

) {03 po(%[2)
9 90

(9, ¢) A (97 ¢) +o- @9,4)

20/23




¢ Variational Inference

Bonus: Closed Form Entropy, Etc.

21/23

Bonus: Closed Form Entropy, Etc.
@00

tochastic Variational Inference

Bonus: Handling Some Terms in Closed Form

The ELBO can be decomposed into several terms with different computational
properties:

p(Z,z)
ELBO(¢) = E,, [log }
! (%)
= Ey,[log p(Z)] 4 Eqy,[log p(z| Z)] — By, [log q4(Z)]
"cross entropy" "energy" "entropy"

With simple distributions (esp. Gaussians) the cross entropy and entropy terms can often
be computed in closed form.
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Example: Closed-Form Cross-Entropy

Example: p(z) is a standard normal and g4 is a diagonal Gaussian:

=S

=
N

2
Il

N(z;0,1)
N (z; p, diag(0?))

'S

=

=
N

2
I

d 1<
— /q¢(z) logp(z) = —710g (2m) iz u] + o

When possible, it's usually (but not always) best to compute these terms and their
gradients analytically, and only use Monte Carlo estimation for the energy term.

This is because lower variance gradient estimates will make the stochastic optimization
converge faster.
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