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Variational Inference (VI) Overview

» Variational inference is an approximate inference approach (alternative to MCMC)

» Variational inference is at the core of a large family of techniques, all of which
start with the same mathematical idea

mean-field and structured VI

black-box VI

expectation maximization (EM)

variational EM

variational Bayes

variational auto-encoders

loopy belief propagation and advanced message-passing algorithms
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Problem Setting
Assume we have an unnormalized probability model over z. Two examples:

1. Bayesian model p(z|z) for latent z, observed x, unknown p(z)
2. Unnormalized model p(z) = %ﬁ(z) with unknown Z (e.g., loopy MRF)
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Problem Setting
For concreteness, henceforth we'll assume the Bayesian model setting:

> p(z,z) = p(z)p(x|z) easy to compute

» We observe x, but not z

» We want to approximate

p(z,z)
p(zlz) = =~
p(z)
but don’t know the normalization constant p(z)
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General Strategy Why use VI?
1. Let g4(2) be a “simple” distribution from some family with parameters ¢
2. Try to optimize N
» Can often get reasonable approximations faster than MCMC
. » Gives a bound on p(z) (or “Z"), useful for learning (more later
min KL(gg(2) | p(2|x)) (“reverse KL") p() ( ) g ( )
Then use gg(2) in place of p(z|x)
7/22 8/22




Introduction The ELBO Decomposition Variational Inference
0000000 #0000 00000

The ELBO Decomposition

Variational Learning

The ELBO Decomposition

Variational Inference Varia
PO00000 08000 et

ational Learning

Big Idea: ELBO Decomposition

This is the math trick that is at the heart of all VI methods:

ez
log p(z Z q6(2) log + Z ((bz(|:r))
ELBO (g4 (=) I p(z,z)) KL(g4(2) [l p(zl2))

» ELBO: “Evidence Lower BOund" (will explain later)
> KL: what we want to minimize
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Derivation ELBO Significance
Claim: @) p(z.) )
z z, qp(z
log p(x) = Z as(2) log )y Z a4 log p(x Z 4s() log 222 4 Z 4 (=) log ~
Iw) (%) p(z|z)
Proof. Start with RHS and simplify: ELBO (g4 (2) || p(2,7) ) KL(gg(2) || p(2]))
RHS = Z q¢(2) [logp(z, x) — log g4(2) + log g4(2) — log p(z|z)] 1. KL is “hard”: can't evaluate the normalized distribution p(z|x)
2. ELBO is “easy”(ish). Uses unnormalized distribution p(z,z). Can often evaluate or
= Z% [logp(z,x) — log p(z, x) + log p(x)] approximate it, e.g., by Monte Carlo:
@)
= Z% Ylog p(x sample 2(1), ..., z(") ~ g4(2), then compute & -V, log ZE:(Z(;?;
—lo 3. KL is non-negative
gp( Z% 4. Therefore log p(x) > ELBO (“Evidence lower bound")
= log p(z) 5. Therefore, choosing ¢ to maximize the ELBO is the same as choosing ¢ to
minimize the KL (since log p(z) is constant with respect to ¢)
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ELBO Interpretation: Picture
Variational Inference
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Uses of VI Basic VI Algorithm
1. Input: p(z,z) and fixed x
2. Choose some approximating family g4 (z)
There are two different uses of VI 3. Maximize ELBO(qy(2) | plz, 2)) wrt ¢
1. Approximate a posterior distribution: p(z|z) ~ g4(2) 4. Use gs(2) as a proxy for p(z|)
2. Bound the log-likelihood: log pg(z) > ELBO(gy(2) || pa(2,z)), usually in a learning
procedure for py(z) (details to come) Many choices for
> Approximating family g,
» How to estimate ELBO
» How to do optimization
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ELBO Intuition ELBO Intuition
ELBO = > qy(2)logp(z,2) = qs(2) log g4 (2)
r4 z
energy entropy
ELBO = Z qs(2)logp(z,x) — Z 4s(2)log qe(2)
z z
energy entropy
> energy term encourages g4(z) to be high where p(z|z) is high
> entropy term encourages g4(z) to be spread out
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Expectation Maximization (EM): VI + Learning

EM is a classical algorithm for maximum-likelihood learning with latent variables
Goal: choose # to maximize logpp(z) = log Y, pe(z, ) given observed z

Usual lower-bound derivation

EM Algorithm
log pg(z) =log Y pe(x, 2) &
z

> Set ¢(2) = pg(z|z) (maximize ELBO

=log Z q(z)pg(w7 ?) wrt q)
" q(2) po(, 2)
(z,2) » Maximize Zq(z) log “=2 wrt
>3 g(2)log P00 z a(z)
Z q(z) > Repeat
= ELBO

Gives local maximum of log py(z) wrt 0

(Jensen’s inequality)
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Variational EM

It is not always possible or practical to compute py(z|z) exactly in EM.

Variational EM is an extension where the ELBO is maximized jointly with respect the
the parameters ¢ of the approximating distribution and parameters  of the model
(“simultaneous inference and learning”)

Goal: choose 0 to maximize log pp(z) = log Y, pe(z,x) given observed .
Define

po(z,x
£(6.60) = ELBO(35(2) [ (. 2)) = 3 au(2)low P275) < ogpo(a)
then jointly optimize £(¢,6) with respect to ¢ and 0, e.g.:

> (Stochastic) gradient ascent
» Alternating (partial) optimization steps
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