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Variational Inference (VI) Overview

> Variational inference is an approximate inference approach (alternative to MCMC)

» Variational inference is at the core of a large family of techniques, all of which
start with the same mathematical idea

mean-field and structured VI

black-box VI /

expectation maximization (EM) \/

variational EM

variational Bayes

variational auto-encoders \/

loopy belief propagation and advanced message-passing algorithms
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Problem Setting flz) —caw eualuate at any Z

Assume we have an unnormalized probability model/\over z. Two examples:

1. Bayesian model p(z|z) for latent z, observed x, unknown p(z)

2. Unnormalized model p(z) = %ﬁ(z) with unknown Z (e.g., loopy MRF)
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U@ p(x< (=)

For concreteness, henceforth we'll assume the Bayesian model setting:

Variational Inference Variational Learning
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> p(zix) = p(z)p(x|z) easy to compute
» We observe z, but not 2

» We want to approximate anno ria lized

(z(2) demsity plz)

p

but don't know the normalization constant p(x)
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General Strategy
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1. Let g4(2) be a “simple” distribution from some family with parameters ¢

2. Try to optimize ”pogff(lbfll

L

m;n KL(gs(2) || p(z]z)) (“reverse KL")

Then use gy(z) in place of p(z|z)
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VI W Gaussion

> Can often get reasonable apgroximations f:iter than MCMC
— ok fwinde (appo) dist inetead of sqmplos
» Gives a bound on p(z) (or "Z"), useful for learning (more later)

Jﬂ;llwésu due to é(bmplip\jnns ass‘uwp{';ov\
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P(2>= (=3
®
This is the math trick that is at the heart of all VI methods:
const.
log p(z) = Z% log
fuc)'z

+Z q¢(2) 1o %(‘Z))

KL(g4(2) | p(z12))

ELBO (g4 (2) Hp(z,z))

wnnocme (rzed

» ELBO: "Evidence Lower BOund” (will explain later)
» KL: what we want to minimize

10/22

nal Inference

The ELBO Decomposition
©0oe00

Derivation
Claim:

log p(x Z qs(2

Proof. Start with RHS and simplify:

RHS= j%(t)[ov) p(z %) —\f\ttzé&) H\TBL c)j P(Z[x)]

=S [ ogres) — (57 ¢ log ]
= 2 qel=) (o9 969

p(z, ) Noe J6Z
ORIy

= (:')c‘)P(*\Ezc[&(z)
= [03 ?(*)
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ELBO Significance e VL mes ELBO(q, Ip)
fouidenct 1’ (e AR
log p(z) = Zq¢ + Z as(2) 1o %(‘Z))

20 &

A\
KL(g5(2) l| p(z|z) .
(s I.),.Mﬁe)f "hard" {nomu[r;p.}\)

1. KL is “hard": can't evaluate the normalized distribution p(z|x)
2. ELBO is “easy"(ish). Uses unnormalized distribution p(z,x). Can often evaluate or
approximate it, e.g., by Monte Carlo:

ELBO(g4(2) | p(m))

(i)
, 2N~ g4(2), then compute % SN, log Z(j(z(;f))

sample z(D ...

3. KL is non-negative
4. Therefore log p(z) > ELBO (“Evidence lower bound")
5. Therefore, choosing ¢ to maximize the ELBO is the same as choosing ¢ to

minimize the KL (since log p(x) is constant with respect to ¢)
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ELBO Interpretation: Picture
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Uses of VI
There are two different uses of VI ‘ol
Yarget  simple

1. Approximate a posterior distribution: p(z|z) = ge(z)

2. Bound the log-likelihood: log py(x) > ELBO(g4(2) || pe(z,x)), usually in a learning
procedure for pg(x) (details to come)

MLE: ‘P(‘NQ B = mayx [gjps(x)
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Basic VI Algorithm

Yurget

1. Input: p(z{x) and fixed @ \Vout: P(Zl"‘)

2. Choose some approximating family g4(2)
3. Maximize ELBO(gy(2) || p(z, 2)) wrt ¢

4. Use g4(2) as a proxy for p(z|z)

Many choices for
B 'T'wrc,.+ p(z,%)
> Approximating family g
» How to estimate ELBO
> How to do optimization

Variational Learning
0000
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ELBO Intuition

(12
= 29y 4@

ELBO =Y " q4(2)logp(z, 2) = > ¢4(2) log g4 ()

energy entropy
energ + enfyo

> energy term encourages gy (z) to be high where p(z|z) is high
> entropy term encourages g, (z) to be spread out

Variational Learning
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Expectation Maximization (EM): VI + Learning
EM is a classical algorithm for maximum-likelihood learning with latent variables

Goal: choose 0 to maximize logps(z) = log ", pe(z, ) given observed z

l_@avn Q
EM Algorithm, Tt @ 3 £,(359)

Usual lower-bound derivation

loc) ‘)Q(x) = locj ?PQ(Z/")

~ A 2> > Set q(z) = po(z|z) (maximize ELBO
B rdcj zc(b() q:(z) wrt q)
!T(.\’VJ L—’E,"—I - > Maximize »  q(z) log pgq((xz,)z) wrt
Ee“j > ﬁ_\,_——//",
7 29,2 (0 9,05 Repeat %180

= ELBo

(Jensen's inequality)

Gives local maximum of log pg(x) wrt 0
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It is not always possible or practical to compute py(z|z) exactly in EM.

Variational EM is an extension where the ELBO is maximized jointly with respect the
the parameters ¢ of the approximating distribution and parameters  of the model
(“simultaneous inference and learning”)

Goal: choose # to maximize log py(x) = log >, pg(z, ) given observed z.
Define Frezd-
ps(l’,%)
_ _ po(z, )
L(¢,0) = ELBO(ay(2) [|po(2,2)) = D _ as(2) 10gm < log pg()

then jointly optimize £(¢, ) with respect to ¢ and 6, e.g.:
Tradttioral EM

> (Stochastic) gradient ascent

> Alternating (partial) optimization steps ——
2 e wit 9
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