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The Metropolis-Hastings Sampler

I The Metropolis Hastings sampler is an extremely general sampler based on the idea
of “proposing” a new state with a proposal distribution q(xÕ|x), and then
“accepting” or “rejecting”

I Like the Gibbs sampler, it can be used with continuous or discrete distributions and
avoids computation of the partition function.

I Unlike the Gibbs sampler, it doesn’t require the ability to sample from the
conditional distributions.
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Proposal and Acceptance MCMC Illustration
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Proposal and Acceptance MCMC

Initialize x

for t = 1, 2, 3, . . . , S :
Sample xÕ ≥ q(xÕ|x)
Look at x and xÕ, and calculate a

probability –(x, xÕ) of keeping xÕ.

Choose r œ [0, 1] uniformly
If r < –(x, xÕ)then
x Ω xÕ

x(t) Ω x

return x(1), x(2), . . . , x(S)
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How to Choose Acceptance Probability?
The key missing step is how to set the acceptance probability –(x, xÕ). It can depend on
p and q. The transition probability density is

T (xÕ|x) =
I
q(xÕ|x)–(x, xÕ) if x ”= xÕ

? if x = xÕ

Our goal is to satisfy detailed balance, i.e., for all x, xÕ:

p(x)T (xÕ|x) = p(xÕ)T (x|xÕ)

≈∆ p(x)q(xÕ|x)–(x, xÕ) = p(xÕ)q(x|xÕ)–(xÕ, x)

We don’t care about T (xÕ|x) when x = xÕ, because the detailed balance condition is
always satsified for x = xÕ.
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There are di�erent acceptance rules –(x, xÕ) that ensure detailed balance.
Metropolis-Hastings is based on the adjusting the larger “flow” to be equal to the
smaller one.

p(x)q(xÕ|x)¸ ˚˙ ˝
x æ xÕ flow

–(x, xÕ)¸ ˚˙ ˝
adjustment

= p(xÕ)q(x|xÕ)¸ ˚˙ ˝
xÕ æ x flow

–(xÕ, x)¸ ˚˙ ˝
adjustment

The rule is

I If x æ xÕ flow > xÕ æ x flow, set –(x, xÕ) equal to their ratio, and set –(xÕ, x) = 1

I If p(x)q(xÕ|x) > p(xÕ)q(x|xÕ), set –(x, xÕ) = p(xÕ)q(x|xÕ)
p(x)q(xÕ|x) and set –(xÕ, x) = 1.
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By symmetry, the general Metropolis-Hastings acceptance rule is:

–(x, xÕ) = min
;

1, p(x
Õ)q(x|xÕ)

p(x)q(xÕ|x)

<
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Proof of Detailed Balance

Claim: detailed balance holds with –(x, xÕ) = min
;

1, p(x
Õ)q(x|xÕ)

p(x)q(xÕ|x)

<

Proof: First, consider when p(x)q(xÕ|x) > p(xÕ)q(x|xÕ).

Then –(x, xÕ) = p(xÕ)q(x|xÕ)
p(x)q(xÕ|x)

and –(xÕ, x) = 1, and we have

p(x)T (xÕ|x) = p(x)q(xÕ|x)–(x, xÕ)

= p(x)q(xÕ|x)p(x
Õ)q(x|xÕ)

p(x)q(xÕ|x)
= p(xÕ)q(x|xÕ)
= p(xÕ)q(x|xÕ)–(xÕ, x)
= p(xÕ)T (x|xÕ).
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For the second case, we have p(xÕ)q(x|xÕ) > p(x)q(xÕ|x). The proof is the same as the
first case, with x and xÕ swapped.
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Metropolis-Hastings Algorithm

Initialize x

for t = 1, 2, 3, . . . , S :
Sample xÕ ≥ q(xÕ|x)
Choose r œ [0, 1] uniformly

if r <
p(xÕ)Q(x|xÕ)
p(x)Q(xÕ|x) then

x Ω xÕ

x(t) Ω x

return x(1), x(2), . . . , x(S)
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Gaussian Random Walk Sampler

A simple proposal uses a Gaussian random walk as the proposal distribution:

xÕ ≥ N (xÕ|x, ‡2I)

By symmetry, the acceptance probability simplifies

–(xÕ,x) = p(xÕ)N (x|xÕ, ‡2I)
p(x)N (xÕ|x, ‡2I) = p(xÕ)

p(x)
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Demo: Gaussian Random Walk Sampler
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MCMC Practical Aspects
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Issues with MCMC

I Burn-in: The underlying Markov chains take time to converge to the distribution
of interest. The time needed to reach the stationary distribution of the chain is
called the burn-in time.

I Autocorrelation: Consecutive samples drawn from the chain at equilibrium may be
highly correlated with each other. The time lag between samples that are
approximately independent of each other is called the autocorrelation time of the
chain.
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Burn-in Time

I The most fundamental issue with burn-in is that, in the absence of a theoretical
lower bound, you can never be exactly sure that the chain has converged to the
equilibrium distribution.

I MCMC practitioners usually rely on heuristic convergence diagnostics to assess
burn-in time.

I One of the most useful heuristics is to run multiple chains from di�erent starting
points and track one or more scalar functions of the state of the chain (the log
probability of the data is often a good choice).

I The distribution of values of these functions will all converge to the same mean and
variance at equilibrium.
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Example: Burn-in Time
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Example: Burn-in Time
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Autocorrelation Time

I At or near equilibrium, di�erent samplers can traverse the state space at di�erent
rates.

I The autocorrelation time of a sampler is the number of sampling iterations we must
apply at equilibrium to obtain two samples that are approximately independent.

I Practitioners sometimes use estimates of autocorrelation at di�erent lags to
estimate an “e�ective sample size” of S MCMC samples
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Practical Aspects Summary

I There are many di�erent diagnostics
I It’s often easy to diagnose clear failures
I It’s basically impossible to diagnose success
I Some practitioners advocate just running one chain for a very long time
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