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COMPSCI 688: Probabilistic Graphical Models
Lecture 14: Markov Chain Monte Carlo
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Markov Chains
A discrete Markov chain is a set of states with transition probabilities between each
pair of states. Example (note: not a graphical model!)
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Transition Matrix

» The probabilistic transitions in the state diagram can also be represented by an
equivalent matrix of transition probabilities.

» The “from" states are rows and the"to" states are columns.
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Markov Chains: Simulation and State Sequences

> To simulate a Markov chain, we draw zg ~ po, then repeatedly sample z given
the current state x; according to the transition probabilities 7.

X X X X Xao Xs
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Markov Chain: Formal Definition

By repeatedly making random transitions from a starting state, we generate a chain of
random variables X, X1, Xo, X3,....

Formally, a Markov chain is specified by:

> A set of states {1,2,...,D}
» A starting distribution py with po(i) = P(Xo = i).
> Transition probabilities T;; = P(Xi41 = j| X¢ =14) for all 4,5 € {1,2,...,D}

A Markov chain assumes the Markov property:

P(Xi=x¢| Xo=w0, X1 =21,..., Xpm1=24-1) = P(Xy = a4 | Xy—1 = w41)
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Markov Chain Questions

Three important questions:
1. What is the joint probability of a sequence of states of length N7

2. What is the marginal probability distribution over states after a given number of
steps t?

3. What happens to the probability distribution over states in the limit as ¢ goes to
infinity?
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Markov Chain Factorization

Question: What is the joint probability over the state sequence zg, ..., Zn?

Answer: by the Markov property:

P(Xy=uw1,..., Xy =2N|Xo = x0) = P(X1 = 21| X0 = x0) X P(Xo = 23| Xy =21) X ---

XP(XN = IN|XN,1 = 1’1\],1)

ﬁ: PO [4)p (e %, ) p(3 [k o) - -+

- @N|wo) = p(21|z0)p(22|21) - . . p(TN|TN-1)

= Tzom X Tzlrz X X TzN—lzN

Shorter version:

p(z1, 22, ..
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The t-Step Distribution for Fixed To , %, Xy, Ky o e

Question: What is the marginal probability distribution after ¢ steps given that the
chain starts at z0? l.e., what is p(a|z0)?

Examples:

plaifo) = Tiy,
p(z2|z0) = Ep(x.)quﬂ) = zp(x, ﬁ)p(‘fq >

In general, we have the recursive expression:

2 p O elXy) = 2 g0, 1 p (k) %)
Yewt i
= ?H?(Ke—r[")j;ﬁxt

p(xilzo) =

(assawe (cnow p(%eq b‘«\)
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The t-Step Distribution for Random X
w\mrc)'\m\j 0 (%) /Q(%QJ .

Question: What is the marginal probability distribution after ¢ steps given that
Xo ~ po? le., whatis p(x;)?

By similar logic:

!

p(z1) = E ‘)(&ﬁQ)
%o

Plaa) = 2 6 (%,%)
X

2 0.0 T,
? P(*') Tx,m

f)

In general: focarence

"P‘"‘r qv\awsmh\s
p(%e)

p(xe) = ? (“e—D 7; ke
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t-Step Recurrence as Matrix-Vector Multiplication Yot P \Zﬁ*ﬁ
(7‘&3 > = %, =D = \ = . =D)
y 106 - [P0 - - R%ed) - |eliks P("D) Trge
The recurrences for the t-step distributions can be expressed using matrix-vector Pe = Pem Tw
multiplciation. Let p; be the row-vector <
' T P(*e“‘e) =D P(%e Xé*ty-(;@xe :
Then, since Tj; = P(X¢ = j|X;—1 = 1), we can write the above recursive relationship as L T
D¥e
pt=prT. +
Pe= PHT
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t-Step Distribution as Matrix Power

Pe= PmT

By unrolling the recurrence, the t-step distribution can be obtained as a matrix power

pt=ptT
= (pe-1)T
= (p—2T)T
= (pe2)IT
= (pt—3T)TT

=pIT...T. =

t times

13/34

Markov Chain Theon Ur

y \ding MCMC
00000000000 0e00000000 )

Thus

This also implies that T is the t-step transition matrix
(T%)ij = P(X; = j|Xo = i) = P(Xops = j| X, =)

\
Qra&; T(rans'!“'léh -praw\ ( to ) ‘n T 51’*,1)5
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One-Slide Summary So Far

» Markov chain: defined by initial distribution pg € RP, transition matrix T' € RP*P

po(i) = P(Xo = 1), Tij=P(X; =7 Xi—1=17)

v

Defines distribution of chain Xo, X1, Xa,..., X},... (with Markov assumption)
Joint probability

7;7 Y —T;*‘I —T?‘Nﬁ Y

s |zo) = p(z1]wo)p(2lz1) - p(wN-1]N)

\{

p(z1,x9, . ..

v

Recurrence for t-step distribution: p(x¢) = 3", | p(@t-1)Te,_a,
» Recurrence as matrix-vector multiplication. Let p; € RP with p;(i) = P(X; = i).

Then

v

Next: what happens as t — 00?
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Limiting Distribution
What happens as t becomes large? Does p, converge to a some limiting distribution 7?7
That is, is there some 7 such that the following is true?

lim py =7
t—o0

The algorithmic idea of Markov chain Monte Carlo is:

(limiting distribution)

» Suppose 7 is hard to sample from directly

» If we can design a Markov chain such that lim;_,, p; = 7, then we can draw
samples by simulating the Markov chain for many time steps

> It's remarkable that this could be possible, but it can be done for very general
target distributions!

> We need to reason about limiting distributions their properties
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Stationary Distribution
T

Suppose a chain converges exactly, so that p; = p.r1 = 7. Since pry1 = piT, this
implies
m=xT (stationary distribution)

» we call any such 7 a stationary distribution of the Markov chain

> |If you start from 7 and run the chain for any number of steps, the distribution is
unchanged.
» If 7 is a limiting distribution, it is a stationary distribution

v

(Linear algebra connection: = is an eigenvector of T with eigenvalue 1. Useful for
computing stationary distributions.)
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Stationary and Limiting Distributions

We reason about limiting distributions via stationary distributions:

» If a Markov chain: (1) converges, and (2) has a unique stationary distribution 7,
then it converges to 7.

» When can we guarantee (1) and (2)? What could go wrong?
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What Could Go Wrong: Periodicity

A Markov chain can fail to converge by being periodic:

&
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What Could Go Wrong: Reducibility

A Markov chain can fail to have a unique stationary distribution by being reducible:
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Regularity

A Markov chain is regular if there exists a ¢ such that, for all 7, pairs,

Pe (XeKz ) ‘Xfl) = (T_t)ij >0,

» Recall that T is the t-step transition probability matrix. This means it is possible
to get from any state ¢ to any state j in exactly ¢ steps.

> A regular Markov chain cannot be periodic or reducible (why?), and guarantees the
desired computational property

Theorem: A regular Markov chain has a unique stationary distribution 7 and
_
limy_,o0 pt =  for all starting distributions py.

I
(We can sample from the unique stationary distribution by simulating the chain.)
I
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Summary: Markov Chain Theory

» t-step distribution: Distribution of X}, obtained by repeated multiplication with
transition matrix: p; = poT*

» Limiting distribution: the distribution of lim;_, pt, if it exists

» Stationary distribution: a distribution 7 such that 77 = 7. If you start from 7
and run the chain for any number of steps, the distribution is unchanged. Every
limiting distribution is a stationary distriltéution.

> Regularity: if there is a ¢ such that (T"%);; > 0 for all 4,5, a Markov chain is
regular. It is possible to get from any state i to any state j in exactly ¢ steps.

» Convergence to stationary distribution: if 7" is regular, the chain converges to a
unique stationary distribution 7 for any starting distribution.

alance
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Kuow:  p(x): C
Suppose we want to sample from p, but can't do so directly. Instead, we can
. > Design a Markov chain that has p as a stationary distribution
Understanding MCMC —
> Run it for a long time to get a sequence of states x1,%3,...,Tg
> Approximate an expectation as
15
E,c[f(X)] = 3 > f@y).
t=1
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If we run the chain long enough, the approximation will be good! We can often make
the following guarantees:

> Asymptotically correct: limg_,o0 & SF L fla) = Epx)[f(X)]

» Variance decreases like 1/5
(wwe,l'mc\lg PQ
» The chain converges exponentially quickly to the stationary distribution, so bias
decreases quickly. (But in practice, we almost never know the rate!)

could ke blas n 99994°
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Some concerns:

> X, X5, ... are not true samples from p, especially early in the chain
Mre not independent
How to create a Markov chain with p as a stationary distribution?

» How long to run the chain ?
» How to initialize the chain?
» What is the best Markov chain?

(mcf; G [
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MCMC for Multivariate Distributions
X‘(%‘/"'J\(D)
J
» To sample from a multivariate distribution p(x) for x € R, an MCMC algorithm
generates a sequence of states

000 le1 Il
X1,X2,X3,...,Xg

» Each x; = (241,...,2p) is a full vector — with a setting for each variable

> The state space of the Markov chain is the full domain x € Val(X). E.g., with D
binary variables, the Markov chain has 2D states. —> "r e [Ri X2

» Because state spaces are huge, MCMC algorithms specify rules for random
transitions between states without materializing the full transition matrix.
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Example: Binary MRF

Markov Chain: One Random
Variable with Four states

O— ==

MRF: Two Binary-Valued
Random Variables
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The Burning Question
3|‘V€V‘
How to design a Markov chain with a stationary distribution 7(x)?

We will first introduce detailed balance, a sufficient condition for 7(x) to be a
stationary distribution of a Markov chain T’

Then we will design sampling algorithms (i.e., Markov chains) that, by construction

1. Are regular
2. Satisfy detailed balance with respect to 7(x)

These together will imply that the chain converges to 7, which is the unique stationary
distribution

Detailed Balance
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Detailed Balance

A Markov chain T satisfies detailed balance with respect to a distribution 7 if Vz, 2/,

Pe

7(2)T (' |z) = ()T (z|z").

N
ﬁuppose \(E ~ T {(-ﬂo\d =¥

LHs= Prlxe ) Pl 1% = B (s, %)
RS = Pe(%ex ) Ko=)

Plow # %"
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Detailed Balance Interpretation
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Detailed Balance — Stationary

Theorem: If T satisfies detailed balance with respect to 7 then 7 is a stationary
distribution of T'.

Proof: Let ' = 7T be the result of running the Markov chain for 1 iteration. Then
o /
TH) = 2T TR N oled ullane
= M) T(x(%)
b
= 'Tr(‘ﬁ() ZT{*(*ﬁ

c ’[T(cﬁ)
D
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