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COMPSCI 688: Probabilistic Graphical Models
Lecture 12: Learning in Exponential Families
Exponential Families
Dan Sheldon
Manning College of Information and Computer Sciences
University of Massachusetts Amherst
Partially based on materials by Benjamin M. Marlin (marlin@cs.umass.edu) and Justin Domke (domke@cs.umass.edu)
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Exponential Families X vaviable Interpretation (h(x) = 1) Tl = (%, ¥ > "Seove’ pR+ @K
5= (8,8
_ po(x) = exp(0 T (x) — A(0))
An exponential family defines a set of distributions with densities of the form
wragrwalizd proo
» 07T (x) is a real-valued “score” (positive or negative), defined in terms of
po(z) = h(z) exp(@ T(z) — (@) features” T'(z) and parameters 6
» exp(fTT(x)) is an unnormalized probability
» 0: “(natural) parameters” B ) o
> T(z): “sufficient statistics” > The log-partition function A(6) = log Z() ensures normalization
> [A(6): “log-partition function” T
exp(0' T'(x
> h(z): "base measure” (we'll usually ignore) (vqua' to D po(z) = M, A(0) =log Z(0) = log/exp(@TT(x))dx
exp(A(9)) .
» Valid parameters are the ones for which the integral for A(6) is finite.
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Applications and Importance Preview: Graphical Models
xe®
» We can get many different families of distributions by selecting different “features”
T(x) for a variable z in some sample space: For some intuition why exponential families could be relevant for graphical models,
> Bernoulli, Binomial, Multinomial, Beta, Gaussian, Poisson, MRFs, ... observe that the unnormalized probability factors over “simpler” functions, just like
. . . graphical models:
» There is a general theory that covers learning and other properties of all of these
distributions! exp(0'T(x)) = exp Y 0:T3(z) = [ [ exp(6:Ti(x))
» A good trick to seeing that a distribution belongs to an exponential family is to ¢ K
match its log-density to po(x) = h(z) exp(87T(x) —[A(0))
(Think: what could T'(z) look like to recover a graphical model?)
log po(z) = log h(z) + 0 T(x) — A(6)
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Example: Bernoulli Distribution TS = (I[’)@fj) I[xco@
The B lli distributi ith ter u € [0,1] has densit f _ 2 = -
e Bernoulli distribution with parameter p € [0, 1] has density (pmf) Q= CG{J@}) e ((03 w, [@5 ( .M}\
oy =3" T . . O xet
A e (BT T(I) = expl, M=) «BTIx=e)) = 3 g
e K=o
One way to write the log-density is
AL =l F o0 < o e 1 5)
log pu(z) =1z = 1]log p + I[z = 0] log(1 — 1) b 3
= - 6 8
To match this to an exponential family PS(K) e"P<9,IB<=fX + 8,1[5@-{{ — [cﬂj (€ te ‘))
logpa(e) = Bph(Q) +07T(w) ~ A0,
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Review: Bernoulli Distribution
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To match this to an exponential family log pg(x) = log h(x) + 07T () — A(0), take

v

h(z)=1
T(z) = (Ilz = 1], I[z = 0])
0 = (log p,log(1 — p))

0
exp(0T () = {

vy

et =1
e =0

v
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log pe) = —_I[[w@]

Example: Bernoulli, Single Parameter . IE%«:’S( (-0

We can also write the Bernoulli as a single-parameter exponential family. Rewrite the
log-density as

log p () =-+wlog : o
AR
TG =%
pelR (= l°7 ‘7’%»\)
eyP(e.x\) = %eg x=(
1

> A(6) = log(e®t 4 %2)
> It's easy to check that A(8) = 0 when 8 = (log u, log(1 — p)) K=o
o-GEED
Eo\s\/ fo check A[9) = rdj(/+ ¢ ): —[03({'&\) / O= Iovcj (=
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Review: Bernoulli, Single Parameter Example: Normal Distribution e¥
1 1 2
Puo2 (@) = WGXP (= goz(@—p)7)
> h(z)=1 (
- 2 2
DZ(.’L‘)IZ]IE;’L':l]:x [end \/—J_—_TFE,_QXP(—";}Q(K B)XLM"'JA))
> = qu
2 —
T ¢ x=1 [°'3 (%,M*S =% a9 t ‘/v‘?;
> exp(f'x) =
1 220 T T.6) ~A(®)
> A(6) = log(1 +¢%) >
» It's easy to check that log(1 + e”) = —log(1 — 1) when 6 = log ﬁ Tl¥)= (% 7(>
’(@U B}) e{R (" 3.6 ) G
1
A
Als) = [c)o) §ex@ (¥6, £xG)dx = . = 5a+ 107 ame
. L &
ced §,<0 O,B=~”‘>
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Review: Normal Distribution

1
Puo2(¥) = o5 exp (= 307 (= 1)?)
1
= Vg2 exp (— W(Z’?Q —2rp+ .“2))
! _ 2. L [T v
ngu,o'2(m)—x ﬁ-l-w;—@—og( TI'O')
> h(z)=1
. T(2) = (22,2)
> 0= (52, 2)
» A(0) = log [ exp(x201 + zb2)dr = ... = % + log(V2mo?)

Note: we need 61 < 0; why?
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Properties of Log-Partition Function First Derivative of A(f) = First Moment of T'(X)
K~ Pe
9 A() = By, [T(X)] compure T(X)
fele meavy
Proof: (assume h(z) =1) 5
The log-partition function A(6) has two critical properties that relate its derivatives to = | iQKP(QTT(K)) = m» "8 ie"fJ(e’rﬂ"))
moments (expectations) of the sufficient statistics T'(X). 99 03 X i) b
L U 2o
- 2 Seplo 1) 35 (6770)
. ) - - (©'T<) —
eraJafiueg = ﬂf[—mecﬁc»\ of /(X)’) — €% Tl
y £ o) & S g, 7,
- j): pa()- Tlx)
= E[T]
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Second Derivative of A(f) = Seconadwlg(loment of T'(X)
’T(KAC(T(“"\)“')/{](*% et rlces

(fessian \J
0?
o0 89T A(a) Varpﬂ [T(X)]

Notation: %A(G) is the Hessian matrix of A(6). The (i,j)th entry is 80?269]/1(9).
Proof: algebra
Important consequence: A(6) is convex

» Variance is PSD = Hessian is PSD =— A convex
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Log-Likelihood X geey R Polx)= hls) e"f)/@TT(y)—A(SD

The average Iog-likelihood in an exponential family is

2]_(@)_ L 7_ [dC)f) (x('“)
- &2 ()

~ o (B BT ~ AlB) 4 153 1)
e S

congd wrt o

— /\[6) + {c? L\(*““))

sufficient
sétistics

> All we need to know about the data for estimation is the average value of T(z(™)

i.e., the “sufficient statistics”
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Moment-Matching
At the maximum-likelihood parameters, 86,£(t9) =0

0= %L@'gé(@ L’ET( ) - A6 + (WT)
= J,\TZ%J”) — FE%[TM]

= at maximum-likelihood parameters, we have the moment-matching conditions:

ZT( ™)

Ep, [T(X)] E[T(X]

> “model expectation equals data expectation”
> sometimes we can easily solve for the maximume-likelihood parameters; other times

numerical routines are needed 20/28
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Concavity of Log-Likelihood %};@T j_[s) =~ e A[,9>
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G

N G e
L) =067 (% > T(z("))) — A(6) +const
n=1
linear in 6 convex .7\(53 / ;

(onca
The log-likelihood is concave

= every zero-gradient point is a global optimum

= the moment-matching conditions are necessary and sufficient for optimality
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Summary So Far

> po(z) = 71)@&) exp(0TT(x) — A(9))

>

>

Properties of Exponential Families
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Bernoulli, normal, Poisson, MRF, ... Ne 7“;1
First property: %A(@) =E,, [T(X)]

Second property: %TA(G) = Var,, [T'(X)]

(o - _
Like?ihood: L£(0) =0T = A(6) + const where T = & S T(2(™) are the
average sufficient statistics over the data

L(0) is concave 7@

Moment-matching conditions are necessary and sufficient for parameters 6 to
maximize the likelihood: E,,[T'(X)] =T = E[T(X)]
mode| erplctoion data o_xpecf'nf{uv\
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p(x) = ¢1,2(9617$2)¢2,3(9;2,$3)¢3,4(7€37$4)

0000000

Pairwise MRFs as an Exponential Family

Consider the chain model on z1,z2,x3, 24 € {0,1}:
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Pairwise MRFs as an Exponential Family: Review

p(x) = ¢1,2(I1,12)452,3(3;2713)%,4(13»14)

The log-density is

log p(x) = log ¢1,2(w1,72) + log ¢2,3(x2, 23) + 0g P3.4(w3,24) —log Z

~ log ¢1,5(0, 0) +10g 91.2(0,1) T = 0,22 = 1)
+logoro(1.1) M= Ta =1

+10g 91,5(1,0)
+log¢23 0 0) _+

+ log ¢3.4( 0,0)_+~-
—logZ
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This is an exponential family with
T(x) = (]I[a:lz(),mg:O],
]I[:CgZO,.’L‘g:O], ey
H[$3:O,1'4:0], ey

T(x) = (][[x, =a,z; = b])

(i,§)E€E, a€Val(X;), beVal(X;) %

_ ab
0= (Gij )(i,j)eE,aEVal(X,‘),beVal(Xj)

logpy(x) = 0'x — A(6) = ( oo Y e dai=ax; = b]) — A(6)

(i,§)€E a€Val(X;) beVal(X;)

The final three lines are accurate fofigeneral pairwise/MRFs)
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Moment-Matching for Pairwise-MRFs

If we apply the moment-matching conditions to pairwise MRFs, we recover our previous

result. At the maximum-likelihood parameters:
wmodel ey = dota exp

Ey, [T(X)] = E[T(X)),

Ep, [1[X; = a,X; = b]] = E[[[X; = a, X; =8]] V(i,4) € E,a,b,

Pg(X-—aX =b) = M

N
madf\ V‘j__‘\_"j‘,"‘_"‘.‘ data Vvvrgl"\"\\
(we still have to solve for § numerically; recall that the RHS minus the LHS is the
gradient of £(6))

V(’i?j) 6 E’ a? b7
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préﬁ_( |
= (2%, 2) ‘EP‘IX’B (Epe[}e]

o 248 SR

We know E,,[X] =

Moment-Matching for Gaussians

For a normal distribution, we had T'(x

wand E, [X?] = 42 + o2

Moment-matching says the max-likelihood parameters satisfy:

Ep[X]=E[X] = p=E[X]
By, (X =E[X? = p®+0° =E[X?
= o? = R[X?] — 12

We can easily solve for the maximum-likelihood i, o2
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