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The Big Picture

Summary of course so far

» compact representations of high-dimensional distributions
> Bayes nets, MRFs, CRFs
> conditional independence, graph structure, factorization
» inference
> conditioning, marginalization
> variable elimination, message passing
> learning
> Bayes nets: counting
» MRFs/CRFs: numerical optimization of log-likelihood, inference is key subroutine
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What's left?

> Inference (and therefore learning) not tractable for many models
— approximate inference

» Other types of probability distributions (continuous, parametric, ...
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Today

» A bit of probability: continuous distributions, expectations

» Exponential families: very general class of distributions

> includes MRFs
> “redo” learning in much more general way

5/38

ture Continuous Distributions
©00000000000

Continuous Distributions
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Continuous Random Variables and Density Functions

How to define the distribution of a random variable X € R%?

The random variable X € Q has density function p: Q — R* if

P(X € A) = /A p(z)de

Implies p(z) >0, [op(z) = 1.

Note: a pmf is a density function (integral over finite set = sum)
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Example: Normal Distribution

The univariate normal (or Gaussian) distribution is the most well known continuous
distribution. It has density

> 1 € R: location, mean, mode
> 02 >0: spread, scale,
variance
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How to Think About a Density

A density is “like” a probability. For X € R with density p(z)

T+e

P(X € [z,x+¢€]) = / p(z)dr =~ ep(z)

x

1
z)=1lim —P(X € [z,
p(z) = lim -P(X € [z,2 + ¢])
The density can be though of as the probability of X landing in a tiny interval around x
(divided the width of the interval).

The standard rules of probability (conditioning, marginalization) usually translate to
densities in a straightforward way.
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Example: Multivariate Normal Distribution

A multivariate normal (or Gaussian) random variable X € R" has density

Lk — = x - )

exp(—2

1
p(x;p, B) = [2ro[72
> 1 € R™ mean, mode
> 3 € R™ ™: covariance matrix, defines scale and orientation

> Must be positive definite (PSD): x " $x > 0 for all x € R™. (Equivalently, all
eigenvalues positive).
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Visualization

Sequence of examples due to Andrew Ng / Stanford
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Multivariate Gaussian

p(z; 0, %) = W exp (*%(I -w)'E Nz~ H)) .

<p

ntial Families
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<ponential Families

Examples: Symmetric Examples: Non-Symmetric
== 1] 5 =061, 5=
=1
13/38 14 /38
Contours Mean
I * Change mu: move mean of density around
] . :
- % - )
10 1 05 1 08
2:[0 1]’2:{05 1]’22[08 1]
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Marginal and Conditional Densities
» Definitions from pmfs usually translate to densities
> Suppose p(x,y) is a density for (X,Y). The marginal and conditional densities are Expectations
ply) = / p(x,y)dx
p(xly) = pixy) _ pxy)
ply)  Jp(xy)dx
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Expectations Mean and Variance
Given a random variable X with pmf or density p(x) and a function f(X), the expected The moments of a distribution are expectations of polynomials, e.g. f(z) = (x — ¢)® for
i scalars.
value E[f(X)] is
E[f(X)] = Zp(x)f(x) discrete The mean is
x E[X] = / p(x)x dx
E[f(X)] = /p(x)f(x)dx continuous Let 1 = E[X]. The variance is
The sum/integral is over all possible values of x. Var(X) = E[(X — p)?] X scalar
We often write this as |, [f(X)] to make the distribution clear. Var(X) = E[(X — 1) (X — p)] X vector
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Marginal and conditional means use marginal and conditional densities:

Epixy) [Y] = Epy) [Y]
Epoey) (XY = y] = Ep(xjy)[X]  conditional

marginal

In the vector case, Var(X) is the covariance matrix.

Expectations Exponentia
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Linearity of Expectation

For X,a,b € R:
ElaX +b] = aE[X] +b

For vectors X and b and matrix A

E[AX +b] = AE[X] + b

Proof: write out expectation, use linearity of sum/integral
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Variance is Positive (Semi-Definite) Significance
A covariance matrix Var(X) is always positive semi-definite.
Proof (scalar): E[(X — 12)?] > 0 because the integrand is non-negative Expectations are important! But, like many important things, they can be hard to
Proof (vector): let z be any vector and = E[X]. Then compute:
Example: suppose p(x) is an MRF, then
T T _NTw
z Var(X)z =z I‘Er[(X H)T (X —p)lz P(X, = a,X, = b) = By [I[X, = a, X, = b]]
— Bl (X - ) (X~ )7
—E[(X - p) z)T(X — Wil Inference = computing expectations = hard in general
=E[|(X - M)Z||2] We will come back to approximating expectations and approximate inference
>0
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Exponential Families

An exponential family defines a set of distributions with densities of the form

po(x) = h(z) exp(0 T (x) — A(0))

> 6: “(natural) parameters”

> T'(x): “sufficient statistics”
> A(0): “log-partition function”
>

h(z): “base measure” (we'll usually ignore)
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Interpretation (h(z) = 1)

v
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po(x) = exp(6T(z) — A(9))
0T T(x) is a real-valued “score” (positive or negative), defined in terms of
“features” T'(z) and parameters 6
exp(0TT(x)) is an unnormalized probability
The log-partition A(6) = log Z(0) function ensures normalization

_ exp(0TT(x))

po(x) = “exp(A(0) A(0) =log Z(0) = 10g/exp(9TT(:L'))d$

Valid parameters are the ones for which A(0) is finite.

Exponential Families
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Applications and Importance

> We can get many different families of distributions by selecting different “features”
T'(x) for a variable  in some sample space:

» Bernoulli, Binomial, Multinomial, Beta, Gaussian, Poisson, MRFs, ...

> There is a general theory that covers learning and other properties of all of these
distributions!

» A good trick to seeing that a distribution belongs to an exponential family is to
match its log-density to

log pg(z) = log h(z) + 0T T(x) — A(6)
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Preview: Graphical Models

For some intuition why exponential families could be relevant for graphical models,
observe that the unnormalized probability factors over “simpler” functions, just like
graphical models:

exp(07T(x)) = exp 3 0,T;(x) = [ exp(6:T;()

(Think: what could T'(z) look like to recover a graphical model?)
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Example: Bernoulli Distribution

The Bernoulli distribution with parameter 1 € [0, 1] has density (pmf)

p,,,(x) = {/L

1—p

r=1
=0

One way to write the log-density is

log pyu(z) = I[z = 1]log p + I[z = 0] log(1 — p)

To match this to an exponential family

log pg(x) = log h(z) + 0" T(x) — A(6),
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Review: Bernoulli Distribution

To match this to an exponential family log pg(x) = log h(z) + 07T (z) — A(9), take
h(z)=1
T(x) = (I[z = 1], Tz = 0])

0 = (log p1,log(1 — 1))
01

exp(67T(x)) = {;2

A(0) = log(e? + %)
It's easy to check that A(f) = 0 when 6 = (log p, log(1 — p))

v

v

v

r=1

v

=0

v

v
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Example: Bernoulli, Single Parameter

We can also write the Bernoulli as a single-parameter exponential family. Rewrite the
log-density as

log pu(z) = log(1 — p) + zlog — p
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Review: Bernoulli, Single Parameter

h(z) =1
> T(z)=Iz=1==
> 0 =log ﬁ
T e r=1
> exp(f'x) {1 0
> A(0) = log(1 + €%)
> It's easy to check that log(1 + ¢’) = —log(1 — p) when 6 = log 1{‘7

Exponential Families
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Example: Normal Distribution

p%[,z(fc) = Wexp ( — #(.L _ H)Z)
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Review: Normal Distribution

1 1 2
pu,az(‘l’) - \/Wexp ( - W(l - H) )
1
= 5= (- o (2% = 2zp + 11?))
) _ 2. 1 [T v
ng/%(,-Q(z)—.l’ ﬁ+zﬁiﬁi Og( 7{'0’)
> h(z) =1
> T(z) = (2, 2)
0= (%7}%) )
> A(0) = log [exp(x?0; + zbs)dr = ... = % + log(vV2mo?)

Note: we need 6, < 0; why?
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Pairwise Markov Random Field

Will revisit later. . .
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Next Time

» graphical models are exponential families
» derive important properties of exponential families
> general treatment of maximum likelihood learning in exponential families

Exponential Families
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