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The Big Picture

Summary of course so far
▶ compact representations of high-dimensional distributions

▶ Bayes nets, MRFs, CRFs
▶ conditional independence, graph structure, factorization

▶ inference
▶ conditioning, marginalization
▶ variable elimination, message passing

▶ learning
▶ Bayes nets: counting
▶ MRFs/CRFs: numerical optimization of log-likelihood, inference is key subroutine
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What’s left?

▶ Inference (and therefore learning) not tractable for many models
→ approximate inference

▶ Other types of probability distributions (continuous, parametric, . . . )
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Today

▶ A bit of probability: continuous distributions, expectations
▶ Exponential families: very general class of distributions

▶ includes MRFs
▶ “redo” learning in much more general way
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Continuous Distributions
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Continuous Random Variables and Density Functions

How to define the distribution of a random variable X ∈ Rd?

The random variable X ∈ Ω has density function p : Ω → R+ if

P (X ∈ A) =
∫

A
p(x)dx

Implies p(x) ≥ 0,
∫

Ω p(x) = 1.

Note: a pmf is a density function (integral over finite set ≡ sum)
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Example: Normal Distribution
The univariate normal (or Gaussian) distribution is the most well known continuous
distribution. It has density

p(x; µ, σ2) = 1√
2πσ2

exp
( − 1

2σ2 (x − µ)2)

▶ µ ∈ R: location, mean, mode
▶ σ2 ≥ 0: spread, scale,

variance
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How to Think About a Density

A density is “like” a probability. For X ∈ R with density p(x)

P (X ∈ [x, x + ϵ]) =
∫ x+ϵ

x
p(x)dx ≈ ϵp(x)

p(x) = lim
ϵ→0

1
ϵ

P (X ∈ [x, x + ϵ])

The density can be though of as the probability of X landing in a tiny interval around x
(divided the width of the interval).

The standard rules of probability (conditioning, marginalization) usually translate to
densities in a straightforward way.
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Example: Multivariate Normal Distribution

A multivariate normal (or Gaussian) random variable X ∈ Rn has density

p(x; µ, Σ) = 1
|2πΣ|1/2 exp

( − 1
2(x − µ)T Σ−1(x − µ)

)

▶ µ ∈ Rn: mean, mode
▶ Σ ∈ Rn×n: covariance matrix, defines scale and orientation

▶ Must be positive definite (PSD): x⊤Σx > 0 for all x ∈ Rn. (Equivalently, all
eigenvalues positive).
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Visualization

Sequence of examples due to Andrew Ng / Stanford
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Marginal and Conditional Densities

▶ Definitions from pmfs usually translate to densities
▶ Suppose p(x, y) is a density for (X, Y). The marginal and conditional densities are

p(y) =
∫

p(x, y)dx

p(x|y) = p(x, y)
p(y) = p(x, y)∫

p(x, y)dx
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Expectations
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Expectations

Given a random variable X with pmf or density p(x) and a function f(X), the expected
value E[f(X)] is

E[f(X)] =
∑

x
p(x)f(x) discrete

E[f(X)] =
∫

p(x)f(x)dx continuous

The sum/integral is over all possible values of x.

We often write this as Ep(x)[f(X)] to make the distribution clear.
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Mean and Variance

The moments of a distribution are expectations of polynomials, e.g. f(x) = (x − c)d for
scalars.

The mean is
E[X] =

∫
p(x)x dx

Let µ = E[X]. The variance is

Var(X) = E[(X − µ)2] X scalar
Var(X) = E[(X − µ)⊤(X − µ)] X vector
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Marginal and conditional means use marginal and conditional densities:

Ep(x,y)[Y] = Ep(y)[Y] marginal
Ep(x,y)[X|Y = y] = Ep(x|y)[X] conditional

In the vector case, Var(X) is the covariance matrix.
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Linearity of Expectation

For X, a, b ∈ R:
E[aX + b] = aE[X] + b

For vectors X and b and matrix A

E[AX + b] = AE[X] + b

Proof: write out expectation, use linearity of sum/integral

22 / 38

Big Picture Continuous Distributions Expectations Exponential Families

Variance is Positive (Semi-Definite)

A covariance matrix Var(X) is always positive semi-definite.

Proof (scalar): E[(X − µ)2] ≥ 0 because the integrand is non-negative

Proof (vector): let z be any vector and µ = E[X]. Then

z⊤ Var(X)z = z⊤ E[(X − µ)⊤(X − µ)] z
= E[z⊤(X − µ)⊤(X − µ) z]

= E
[(

(X − µ) z
)⊤(X − µ) z

]

= E
[∥(X − µ)z∥2]

≥ 0

23 / 38

Big Picture Continuous Distributions Expectations Exponential Families

Significance

Expectations are important! But, like many important things, they can be hard to
compute:

Example: suppose p(x) is an MRF, then

P (Xu = a, Xv = b) = Ep(x)
[
I[Xu = a, Xv = b]

]

Inference = computing expectations = hard in general

We will come back to approximating expectations and approximate inference
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Exponential Families
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Exponential Families

An exponential family defines a set of distributions with densities of the form

pθ(x) = h(x) exp(θ⊤T (x) − A(θ))

▶ θ: “(natural) parameters”
▶ T (x): “sufficient statistics”
▶ A(θ): “log-partition function”
▶ h(x): “base measure” (we’ll usually ignore)
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Interpretation (h(x) = 1)

pθ(x) = exp(θ⊤T (x) − A(θ))

▶ θ⊤T (x) is a real-valued “score” (positive or negative), defined in terms of
“features” T (x) and parameters θ

▶ exp(θ⊤T (x)) is an unnormalized probability
▶ The log-partition A(θ) = log Z(θ) function ensures normalization

pθ(x) = exp(θ⊤T (x))
exp(A(θ)) , A(θ) = log Z(θ) = log

∫
exp(θ⊤T (x))dx

▶ Valid parameters are the ones for which A(θ) is finite.
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Applications and Importance

▶ We can get many different families of distributions by selecting different “features”
T (x) for a variable x in some sample space:

▶ Bernoulli, Binomial, Multinomial, Beta, Gaussian, Poisson, MRFs, . . .

▶ There is a general theory that covers learning and other properties of all of these
distributions!

▶ A good trick to seeing that a distribution belongs to an exponential family is to
match its log-density to

log pθ(x) = log h(x) + θ⊤T (x) − A(θ)
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Preview: Graphical Models

For some intuition why exponential families could be relevant for graphical models,
observe that the unnormalized probability factors over “simpler” functions, just like
graphical models:

exp(θ⊤T (x)) = exp
∑

i

θiTi(x) =
∏

i

exp(θiTi(x))

(Think: what could T (x) look like to recover a graphical model?)
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Example: Bernoulli Distribution

The Bernoulli distribution with parameter µ ∈ [0, 1] has density (pmf)

pµ(x) =
{

µ x = 1
1 − µ x = 0

One way to write the log-density is

log pµ(x) = I[x = 1] log µ + I[x = 0] log(1 − µ)

To match this to an exponential family

log pθ(x) = log h(x) + θ⊤T (x) − A(θ),
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Review: Bernoulli Distribution

To match this to an exponential family log pθ(x) = log h(x) + θ⊤T (x) − A(θ), take
▶ h(x) = 1
▶ T (x) = (I[x = 1], I[x = 0])
▶ θ = (log µ, log(1 − µ))

▶ exp(θ⊤T (x)) =
{

eθ1 x = 1
eθ2 x = 0

▶ A(θ) = log(eθ1 + eθ2)
▶ It’s easy to check that A(θ) = 0 when θ = (log µ, log(1 − µ))
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Example: Bernoulli, Single Parameter
We can also write the Bernoulli as a single-parameter exponential family. Rewrite the
log-density as

log pµ(x) = log(1 − µ) + x log µ

1 − µ
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Review: Bernoulli, Single Parameter

▶ h(x) = 1
▶ T (x) = I[x = 1] = x
▶ θ = log µ

1−µ

▶ exp(θ⊤x) =
{

eθ x = 1
1 x = 0

▶ A(θ) = log(1 + eθ)
▶ It’s easy to check that log(1 + eθ) = − log(1 − µ) when θ = log µ

1−µ
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Example: Normal Distribution

pµ,σ2(x) = 1√
2πσ2

exp
( − 1

2σ2 (x − µ)2)
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Review: Normal Distribution

pµ,σ2(x) = 1√
2πσ2

exp
( − 1

2σ2 (x − µ)2)

= 1√
2πσ2

exp
( − 1

2σ2 (x2 − 2xµ + µ2)
)

log pµ,σ2(x) = x2 · −1
2σ2 + x · µ

σ2 − µ2

2σ2 − log(
√

2πσ2)

▶ h(x) = 1
▶ T (x) = (x2, x)
▶ θ = ( −1

2σ2 , µ
σ2 )

▶ A(θ) = log
∫

exp(x2θ1 + xθ2)dx = . . . = µ2

2σ2 + log(
√

2πσ2)

Note: we need θ1 < 0; why?
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Pairwise Markov Random Field

Will revisit later. . .
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Next Time

▶ graphical models are exponential families
▶ derive important properties of exponential families
▶ general treatment of maximum likelihood learning in exponential families
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