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Learning in Pairwise MRFs Learning in Pairwise MRFs
Let's consider the problem of learning in a pairwise MRF with only edge potentials: The learning problem is: given a data set x(V), ..., x™), find 0 to maximize
1
po(x) = 0] I @ijlai zj:0), 20)=>" [[ ¢izix;:6) LN
(i.§)€E X (ij)eE £0) = — S "1 (n)
(0) = 5 2 ogm(x™)
. n=1
Parameterized as
b
ij(a,b;0) = exp(67}) To solve this, we need to compute derivatives of £(f).
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Log-Likelihood of Single Datum

Let's start by reformulating the log-likelihood of a single datum x. Write
(x) L (—Ep(x))
po(x) = exp(—Ep(x
o Z(0) o

where —FEjy(x) is the negative energy:

ng(x):log H ¢ij(.'L'i,.’L'j;9)= Z H?jﬂj

(i.g)ek (.)€l

The log-likelihood of datum x is:

log pg(x) = —Eg(x) — log Z(0)
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The derivative with respect to a generic parameter % is

0 1ogpp(x) =~ (—Ep(x))

__9
202k 002k 003k

We'll treat each term separately.
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log Z(9)
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Negative Energy Derivative Log-Partition Function Derivative
The derivative of the log-partition function has a special form.
Recall the negative energy definition:
T2 0 1 0
—By(x)= Y 05" 2 _log Z(0) = ————27(8)
GaeE 005, Z(0) 00,
1 0
= o exp(—Ey(xX))
Its derivative is easy, because it is linear in the parameters Z(6) 0053 X/
1 0
= 75 > oy Xp(—Ep(x'))
d d zi; Z(0) Z 9043,
Y (_E -7 07 =Ty = a,zp = b x
8052 ( 9(X)) 8032 (Z%E ij [ﬁ a, T } ) , 5 /
’ = m ;eXP(—Ee(X DE m(—EH(X )
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- Z(0)
= Zpg(x') I[z;, = a, 2}, = b]

The derivative of the log-partition function is exactly a marginal probability!

There is a very general underlying principle, which we will see more about when we
study exponential families.
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Put Together

Put together, the derivative of the log-likelihood of a single datum is

0
nglm(x) =l[zy = a,7, =] — Pp(Xy = a, X, = b)

uv
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Log-Likelihood of N Data Points Computing the Derivatives
With N data points, the derivative of the log-likelihood is
o o1 n 9 _#(Xu=0a,X, =) B _
89“26( ) = 8052 N Z lngg(X( )) 0032‘6(9) = N - PS(Xu =a, Xy = b)
w n=1
1 o
_ <N Z JI[;vq(L") — a,xffl) - b]) — Py(Xy, =a,X,=0) How do we compute the derivative?
#(Xn:i 0, X, = b) The data marginal is easy. We do inference in Py to compute the model marginal.
= % —Py(Xy=a,X,=0b) Learning uses inference as (the key) subroutine.
The derivative is data marginal minus a model marginal.
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Moment-Matching

Each partial derivative must be zero at a maximum. This gives the moment-matching
condition, which asserts the data marginal should match the model marginal:

#(Xu=0a, X, =b)

N =FP(Xy=0a,X,=0)

This is similar to counting in Bayes net learning, but the marginal Py(X, = a, X, =)

depends on all parameters, not just the “local parameters” ¢;,,, because of the global
normalization constant Z(6).

The moment matching conditions for all parameters form a system of equations. It has a
“unique” solution (the distribution is unique, not the parameters), but it's not easy to
solve directly.
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Learning via Optimization

Instead, we can numerically maximize the log-likelihod, for example by gradient ascent:

> Initialize 6 (e.g. 6 < 0)
> Repeat
> 0+ 0+ aVyL(0)

We saw above how to compute the entries of the gradient VyL(9).

The key subroutine is inference in the MRF.
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What is a Conditional Random Field?
Before we describe a CRF informally as an MRF where the x variables are always
observed.
What is a Conditional Random Field? )=~
Here's a better definition. A CRF defines an MRF over y for every fixed value of x:
1
pylx) = —— H Be(%,¥e), Z(x) = Z H de(x,¥e)
Z(x)
ceC Y ceC
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Notes:

No distribution over x

Normalized separately for each x

Each potential ¢. can depend arbitrarily on x (often designed with “local”
connections to selected entries of x, but not necessary)

» Cliques c are subsets of the y indices

vvyy
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Learning in CRFs
In CRFs, we maximize the conditional log-likelihood:

1 N
1 () |5 (n)
max Y " log pa(y™[x!™)

n=1

Some aspects are similar to learning in MRFs. A key difference is that the “model
marginals” are different for each data case, because the normalization constant Z(x("))
is different.

(see HW2, HW3)
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Discussion Example: Logistic Regression
Logistic regression is a simple CRF with y € {0,1}.
Why CRFs?
log pg(y|x) = Lex (0Tx- Ty =1))
> It's often better not to learn a model for p(x) if it is not needed, e.g., if you only 08 PolYIX) = Z(x) p v=
want to predict p(y|x). This is especially true if we have lots of data.
> But it may be better to use an MRF and learn a full model p(x,y) for the joint Z(x) = exp(0'x) + 1
distribution, especially if the model is “correct” and with smaller data sets.
(Intuition: the x data can help you learn the correct model faster.)
( 1) exp(0'x)
=1Xx)= ———
Py 1+expfTx
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Example: Chain CRF

One way to view a chain-structured CRF is as a sequence of logistic regression models,
with pairwise connctions between adjacent y variables to encourage a particular
sequential structure in predicted labels:
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Overflow/Underflow and Log-Sum-Exp
» When factor values are small or large, or with many factors, messages can

underflow or overflow since they are products of many terms. A common solution is
to manipulate all factors and messages in log space.

» Example: consider the common factor manipulation

A(w) = B(z,y)C(y)
Y

Let's compute a(z) = log A(z) from B(z,y) = log B(z,y) and v(y) = log C(y)

» Step 1: multiplication of factors is addition of log-factors

A, y) = log(B(z,y)C(y)) = Bz, y) +v(v)
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> Step 2: marginalization requires exponentiation (*“log-sum-exp”)

a(z) = log <Z exp A(z, y))

Y
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Numerically Stable log-sum-exp

Before exponentiating, we need to be careful to shift values to avoid overflow/underflow
logsumexp(az, ..., ax):

> C < max; a;
> return ¢ + log Y, exp(a; — ¢)

See scipy.special.logsumexp

(Comment: log-space implementation probably not needed in HW2, probably needed in
HWS3.)
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