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Markov Random Fields Markov Properties

A Markov random is a distribution that factors over a set of “cliques” C: The global Markov property (G) connects conditional indpendence to graph separation.
p(x) = = H be(xe), Z= Z H be(xe) Distribution p(x) satisfies the global Markov property with respect to G if
Z ceC X ceC
Sepg(A7B|S) = X4 1 Xp |X5 (G)
The dependence graph G = (V, E) is the graph where nodes i and j are connected by
an edge if they appear together in some factor. There are two other Markov properties (local and pairwise) implied by the global Markov
roperty.
We say that p(x) factors over G, and denote this property as (F). property
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Factorization and Markov Properties

It's easy to show that factorization implies Markov: (F) = (G). Examples

There is a famous partial converse. For a positive distribution: (G) = (F)

Theorem (Hammersley-Clifford). If p(x) > 0 for all x, then (F) < (G)
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Example: Ising Model Example: Ising Model
> G is a lattice and X; € {—1,1}
» Have unary potential 3; for each node i and
pairwise potential (3;; for each edge (i, j)
> In general, Markov networks can be seen as
1 expressing preferences for certain local
p(x) = Z Hﬁl(mz) H Bij (i, ;) configurations of the variables.
i (i.5)€E
Bi(z;) = exp(bz;) » Joint configurations with high probability
Bij(xs, ;) = exp(byziz;) balance the preferences of all factors.
» by >0 = X likes to be positive
> bj; >0 = X and X like to be the
same
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Example: Simulating an Ising Model

Demo: Ising Model
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Example: Statistical Image Models

The Ising model with b;; > 0 prefers smoothness, and can be used as a model for images
in denoising procedures:
original image

noisy image reconstructed image
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Example: Image Denoising
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Conditional Random Fields
The image denoising model was an example of a conditional random fields (CRFs), a

very important model class in machine learning. A CRF is essentially a Markov network
where one set of nodes is always conditioned on.
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The y nodes are labels, and the x nodes are features.
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Example: Image Segmentation
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Example: 3D Mesh Segmentation Example: Bayes Nets as MRFs
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Example: Bayes Nets as MRFs

Some structure is lost in this transformation. When we replace p(alb, ¢) by ¢(a,b,c), we
“forget” that a Bayes net is locally normalized

Y ¢la,bc) =1 Vb,e.

This is a special property of Bayes nets and is central to V-structures, explaining away,
and D-separation. It occurs “internally” to the factor ¢(a,b, ¢) and is not represented in
the MRF graph structure.

Similarly, when we replace [T; p(zi|Xpa(:)) by % [Teee Pe(xc), we “forget” that a Bayes
net is globally normalized:

Yl ¢elxe)=1 = z=1.

T ceC

This is another special property of Bayes nets that makes learning easy.
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