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Markov Properties for Undirected Graphical Model

Undirected graphical models are probability distributions that satisfy a set of conditional
independence properties with respect to a dependence graph G. Formally:

▶ Let G = (V, E) be a graph with nodes V = {1, . . . , n}
▶ For A, B, S ⊆ V , say that S separates A from B if all paths from A to B in G go

through S, written sepG(A, B|S).

The joint distribution of random variables X1, . . . , Xn satsifes the global Markov
property with respect to G if

sepG(A, B|S) =⇒ XA ⊥ XB | XS (G)

What form of distribution p(x1, . . . , xn) has this property?
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Warmup: Characterization of Conditional Independence

Recall the definition of conditional independence

X ⊥ Y | Z ⇐⇒ p(x, y|z) = p(x|z)p(y|z)

Today we’ll use two other properties of conditional independence:

1. X ⊥ Y | Z ⇐⇒ p(x, y, z) = ϕ1(x, z)ϕ2(y, z) for some ϕ1, ϕ2
2. X ⊥ (Y, W) | Z =⇒ X ⊥ Y|Z

Proofs: exercise

Note: (1) says that conditional independence holds iff the joint distribution factorizes in
a certain way, which is very important.
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Markov Random Field Example
Example: p(x1, x2, x3, x4) = ϕ12(x1, x2)ϕ23(x2, x3)ϕ34(x3, x4)ϕ14(x1, x4)

8 / 22



Motivation Markov Random Fields Factorization and Markov Properties

Markov Random Fields

A Markov random field is a probability distribution that factorizes over a set of “cliques”
C:

p(x) = 1
Z

∏

c∈C
ϕc(xc), Z =

∑

x

∏

c∈C
ϕc(xc)

▶ Each c ⊆ V = {1, . . . , n} is a set of indices, or “clique”
▶ The function ϕc is a non-negative factor or potential. It only depends on xi for

i ∈ c. We say it has scope c and define Scope(ϕc) := c
▶ Z is the normalizing constant or “partition function”
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Dependence Graph
The dependence graph G = (V, E) of the MRF p(x) = 1

Z

∏
c∈C ϕc(xc) is the graph

where nodes i and j are connected by an edge if they appear together in some factor:

V = {1, . . . , n}, E = {(i, j) : i ∈ c and j ∈ c for some c ∈ C}

With this definition, every c ∈ C is a clique (fully connected set) in G.
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Factorization
Let G be a graph. A distribution p(x) factorizes with respect to G if

p(x) = 1
Z

∏

c∈C
ϕc(xc), C = cliques(G) (F)

In other words, it is an MRF with dependence graph G.

As in Bayes nets, there is a close relationship between factorization and Markov
properties obtained from graph separation.
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Markov Properties
The global Markov property (G), the local Markov Property (L) and pairwise Markov
property (P) are three different properties of a distribution that hold relative to a graph
G.

sepG(A, B|S) =⇒ XA ⊥ XB | XS (G)
i ∈ V =⇒ Xi ⊥ XV \(nb(i)∪{i}) | Xnb(i) (L)

(i, j) /∈ E =⇒ Xi ⊥ Xj | XV \{i,j} (P)

Above, nb(i) is the set of neighbors of node i in G.

Claim: (G) ⇒ (L) ⇒ (P)

It’s easy to see (G) ⇒ (L) and (G) ⇒ (P) by taking the appropriate choices of A, B, S.
We leave (L) ⇒ (P) as an exercise.
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Factorization Implies Markov
Like in Bayes nets, factorization implies conditional independencies (Markov properties).

Claim: (F) ⇒ (G) ⇒ (L) ⇒ (P)

Proof (“by example”): We only need to show (F) ⇒ (G).
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Factorization Implies Markov Proof
Suppose p(x) = ∏

c∈C ϕc(xc) (assume 1/Z is included in one of the factors) and
sepG(A, B; S). We’ll show that XA ⊥ XB | XS .

First, remove S from G. The resulting graph is disconnected and has no paths from A
to B

▶ Let Ã be the union of all connected components containing a node from A
▶ Let B̃ = V \ Ã

Then each c ∈ C is a subset of either Ã ∪ S or B̃ ∪ S

▶ Let CA be the cliques contained in Ã ∪ S
▶ Let CB be the cliques contained in B̃ ∪ S
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Then
p(x) =

∏

c∈CA

ϕc(xc)
∏

c∈CB

ϕc(xc) = h(xÃ, xS)k(xB̃, xS)

=⇒ XÃ ⊥ XB̃ | XS

⇐⇒ (XA, XÃ\A) ⊥ (XB, XB̃\B) | XS

=⇒ XA ⊥ XB | XS
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Markov Implies Factorization: Hammersley-Clifford Theorem

There is a famous partial converse. For a positive distribution, (P) ⇒ (F), which implies
all the conditions are equivalent:

Theorem (Hammersley-Clifford). If p(x) > 0 for all x, then

(F) ⇐⇒ (G) ⇐⇒ (L) ⇐⇒ (P).

The theorem holds for a very general class of distributions, e.g., ones with continuous,
discrete, or both types of random variables.
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