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COMPSCI 688: Probabilistic Graphical Models
Lecture 6: Undirected Graphical Models
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Markov Properties for Undirected Graphical Model

Undirected graphical models are probability distributions that satisfy a set of conditional
independence properties with respect to a dependence graph G. Formally:

> Let G = (V, E) be a graph with nodes V = {1,...,n}
» For A, B, S C V, say that S separates A from B if all paths from A to B in G go
through S, written sepg (4, B[S).

The joint distribution of random variables X7, ..
property with respect to G if

., X, satsifes the global Markov

Sepg(A,B|S) = X4 1L Xp | Xs (G)

What form of distribution p(z1,...,2,) has this property?
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Warmup: Characterization of Conditional Independence

Recall the definition of conditional independence

X 1LY |Z < p(x,y|z) = p(x|z)p(y|z)

Today we'll use two other properties of conditional independence:

L. X1Y|Z <= p(x,y,2) = ¢1(x,2)d2(y, z) for some ¢1, pa
2 X1 (Y,W)|Z = X LY|Z

Proofs: exercise

Note: (1) says that conditional independence holds iff the joint distribution factorizes in
a certain way, which is very important.
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Markov Random Field Example

Example: p(z1, 2,3, 74) = ¢12(1, T2)P23(2, ©3)P34(3, T4) Pr4(T1, T4)
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Markov Random Fields

A Markov random field is a probability distribution that factorizes over a set of “cliques”

C:
p) = 5 [[ontx). 2= T o)

ceC X ceC

» Each ¢ CV ={1,...,n} is a set of indices, or “clique”

» The function ¢, is a non-negative factor or potential. It only depends on z; for
i € c. We say it has scope ¢ and define Scope(¢.) := ¢

» 7 is the normalizing constant or “partition function”
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Dependence Graph

The dependence graph G = (V, E) of the MRF p(x) = % [Teec ¢e(xc) is the graph
where nodes i and j are connected by an edge if they appear together in some factor:

V={l,...,n}, E={(i,j):i€candje cfor some c € C}

With this definition, every ¢ € C is a clique (fully connected set) in G.
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Factorization
Let G be a graph. A distribution p(x) factorizes with respect to G if
1 .
p(x) = A H ¢c(xc), C = cliques(G) (F)
ceC
In other words, it is an MRF with dependence graph G.

As in Bayes nets, there is a close relationship between factorization and Markov
properties obtained from graph separation.
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Markov Properties

The global Markov property (G), the local Markov Property (L) and pairwise Markov
property (P) are three different properties of a distribution that hold relative to a graph
g.

Sepg(A7B|S) :>XAJ_XB |X5 (G)
i€V = X; L Xy\mb@)u{i}) | Xnb(i) L
(4,J) ¢ B = Xi L X; | Xv\pigy (P)

Above, nb(i) is the set of neighbors of node i in G.
Claim: (G) = (L) = (P)

It's easy to see (G) = (L) and (G) = (P) by taking the appropriate choices of A, B, S.
We leave (L) = (P) as an exercise.
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Factorization Implies Markov
Like in Bayes nets, factorization implies conditional independencies (Markov properties).
Claim: (F) = (G) = (L) = (P)
Proof (“by example"): We only need to show (F) = (G).
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Factorization Implies Markov Proof

Suppose p(x) = [[.cc de(xc) (assume 1/Z is included in one of the factors) and
sepg (A, B; S). We'll show that X4 L Xp | Xs.

First, remove S from G. The resulting graph is disconnected and has no paths from A
to B

» Let A be the union of all connected components containing a node from A
» let B=V\ A

Then each ¢ € C is a subset of either AUS or BU S

> Let C4 be the cliques contained in {i us
> Let Cp be the cliques contained in BU S

Factorization and Markov Properties

20/22




vation Markov

Factorization and Markov Properties

Random Fields
O 00000000080

Then
p(x) = H bo(xc) H de(xc) = h(x 4,%5)k(x g, xs)

ceCy ceCp
- XA 1 XB ‘ Xg
= (XA, X54) L (X5, Xp5) | Xs
= X4 L Xp|Xs
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Markov Implies Factorization: Hammersley-Clifford Theorem

There is a famous partial converse. For a positive distribution, (P) = (F), which implies
all the conditions are equivalent:

Theorem (Hammersley-Clifford). If p(x) > 0 for all x, then

(F) <= (6) = (L) < (P)

The theorem holds for a very general class of distributions, e.g., ones with continuous,
discrete, or both types of random variables.
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