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Review

» Conditional independence

X1Y|Z < ply,x|z) = p(x|z)p(y|z)
= p(x|y,z) = p(x|z)

» Directed acyclic graph (DAG) G: parents, children, descendants, non-descendants
» Bayes net: distribution is factorized. Each variable 7 “only depends on" it's parents

N
p(x) = HP(IL | xpa(i))
i=1
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Conditional Independence and Factorization

We assumed factorization in a Bayes net: p(x) = Hi]ilp(:ci | Xpa(sy)- What does this
have to do with conditional independence?

Claim: for a probability distribution p(x)

N
p(x) = Hp(zz [ Xpais) = X; L Xgq) | Xpag) forall i
i=1

factorization <= conditional independence

» RHS in words: X, is conditionally independent of its non-descendants given
its parents
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Conditional Independence Implies Factorization
Assume X; L X ) | Xpa(q for all i
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Review of Argument
0. Assume X; 1 X ) | Xy forall i
1. Number nodes according to a topological ordering: i — j = ¢ < j. Then we
also have that de(é) C {i + 1,...,n}, and, as a consequence all nodes in
{1,...,9— 1} are non-descendants
2. Use the chain rule

p(x) = Hp($i|x{1 ..... i—l})

3. Split into parents and other non-descendants

N
p(x) = Hp(‘ri|xpa(i)7 X{l,...,i—l} pa(i))
=1

4. Simplify using conditional independence

N
p(x) = Hp(xi‘xpa(i))
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Factorization Implies Conditional Independence

To show this, first we'll argue that marginalizing descendants in a Bayes net is easy:
Warmup: suppose j is a node with no children in a Bayes net (a “leaf”). Then
p(x—j) = Hp(xi|xpa(i))
i35

In words: can marginalize = by dropping factor p(x,|x,,(;) to get a Bayes net with
one less node.

This is only true for leaf nodes. Marginalizing non-leaf nodes may be very hard!

9/13

Conditional Independence and Factorization

Bayesian Networks
ole 0000008000

Proof:
p(x,j) = ZP(ijv Ij)

= Z p(xj|xpa(j)) H p(z; |Xpa(i))
(E]

i
= [T p(@ilxpai) - Do)
i#j T
1

Pushing the sum inside in the last line is possible because j is a leaf.
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Marginalizing a Set of Descendants

Lemma: suppose A and B partition the nodes of a Bayes net and there is no path
from B to A. Then

p(x4) = ZP(XAaXB) = Hp('ri|xpa('i,))

i€cA

Proof idea: at least one node in B is a leaf. Eliminate it using the warmup lemma
and then repeat.
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Factorization Implies Conditional Independence
Assume p(x) = Hf\ilp(ll | Xpa(i))- Then for any i
p(z;, Xnd(i))
P Xna) = —————
4() P(Xnd(i))
_ P(T[Xpa(i)) - HjEnd(i)p(xj‘XPa(j))

Use lemma twice
HjEnd(i) P %005

= p(x1|Xpa(7))

This demonstrates that X; L X ;)| X for all .

pa(i)
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