Review Joint Distributions

tions Rules of Probability

Conditional Independence

Bayesian Networks

Joint Distributions 00000 Rules of Probability

Conditional Independence

Bayesian Networks

### COMPSCI 688: Probabilistic Graphical Models

Lecture 2: More Probability and Directed Graphical Models

#### Dan Sheldon

Manning College of Information and Computer Sciences University of Massachusetts Amherst

Partially based on materials by Benjamin M. Marlin (marlin@cs.umass.edu) and Justin Domke (domke@cs.umass.edu)

Review

2/37

Review

Joint Distributions

Rules of Probability

Conditional Independence

Bayesian Networks

1/37

Joint Distributions

Rules of Probability

Conditional Independence

Bayesian Networ

#### Discrete Distributions

- ightharpoonup Sample space  $\Omega$
- ▶ Atomic probability  $p(\omega)$  for all  $\omega \in \Omega$

$$p(\omega) \geq 0, \quad \sum_{\omega \in \Omega} p(\omega) = 1$$

 $\blacktriangleright$  Events  $A \subseteq \Omega$  (only things that have probabilities!)

$$P(A) = \sum_{\omega \in A} p(\omega)$$

ightharpoonup Random variable  $X:\Omega \to \mathrm{Val}(X)$  has probability mass function (PMF)

$$p_X(x) = P(X(\omega) = x) = P(X = x)$$

Events vs Random Variables

- $\blacktriangleright$  A random variable X is a a mapping from  $\Omega$  to  $\mathrm{Val}(X)$
- ▶ But: for any random variable X, we can also define the probability distribution with sample space  $\Omega = \mathrm{Val}(X)$  and atomic probabilities  $p_X(x)$ . This is the distribution of X.
- ▶ If we only care about events involving *X*, it's easier to just define the distribution of *X* without using a different underlying probability space
- If we care about multiple random variables, we can similarly define their joint distribution

4/37

### Joint Distributions

#### Random Variables and Data Sets

In ML and stats, probability distributions are defined over records described by multiple attributes modeled as random variables. This leads to joint distributions.

| Gender | Blood Pressure | Cholesterol | Heart Disease |
|--------|----------------|-------------|---------------|
| Male   | Med            | Low         | No            |
| Male   | Hi             | Hi          | Yes           |
| Male   | Med            | Med         | Yes           |
| Male   | Med            | Hi          | No            |
| Female | Med            | Low         | No            |
| Male   | Low            | Med         | No            |

6/37

Rules of Probability

Conditional Independence

layesian Networks

5 / 37

Joint Distributions

Rules of Probability

Conditional Independence

Bayesian Networks

# Joint Probability Distributions

- lacktriangle The joint distribution of random variables  $X_1,\dots,X_N$  is a probability distribution over their canonical sample space
- $\begin{tabular}{ll} \hline \textbf{F} & \textbf{The } \textit{canonical sample space } \Omega & \textbf{of } X_1,\ldots,X_N & \textbf{is the Cartesian product of their} \\ & \textbf{domains } \Omega = \mathrm{Val}(X_1) \times \ldots \times \mathrm{Val}(X_N). \\ \hline \end{tabular}$
- ▶ An element of  $\Omega$  is a joint assignment  $(x_1, \dots, x_N)$
- $\blacktriangleright$  The joint probability mass function of  $X_1,\dots,X_N$  is

$$p(x_1, \dots, x_N) = P(X_1 = x_1, \dots, X_N = x_N)$$

### Joint Distributions: Heart Disease Example

**Example**: The joint distribution over random variables *Gender*, *BloodPressure*, *Cholesterol* and *HeartDisease* is given by a table like this:

| Gender | BloodPressure | Cholesterol | HeartDisease | Р      |
|--------|---------------|-------------|--------------|--------|
| F      | L             | L           | N            | 0.0127 |
| F      | L             | L           | Υ            | 0.0007 |
| F      | L             | M           | N            | 0.0098 |
| F      | L             | M           | Υ            | 0.0009 |
| F      | L             | Н           | N            | 0.0087 |
| F      | L             | Н           | Υ            | 0.0010 |
|        |               |             |              |        |

8/37

#### Random Vectors

It's convenient to use vector-valued random variables  $\mathbf{X}=(X_1,...,X_N)$  (or "random vectors") and assignments  $\mathbf{x}=(x_1,...,x_N)$ :

$$P(\mathbf{X} = \mathbf{x}) = P(X_1 = x_1, ..., X_N = x_N)$$

- ▶ The PMF is  $p_{\mathbf{X}}(\mathbf{x})$  or just  $p(\mathbf{x})$
- $\blacktriangleright$  This is just notation: it means the same thing as a joint distribution over  $(X_1,\dots,X_N)$
- **Notation**: use  $\mathbf{X}_{-i}$  and  $\mathbf{x}_{-i}$  for vectors excluding  $X_i$  or  $x_i$

Rules of Probability

10 / 37

Review

Joint Distributions

Rules of Probability

Conditional Independence

Bayesian Networks

9/37

Joint Distributions

Rules of Probability

Conditional Independence

Bayesian Networks

# Marginal Distributions

- ▶ Suppose we have a joint distribution  $P(\mathbf{X} = \mathbf{x}, \mathbf{Y} = \mathbf{y})$ .
- ▶ P(X = x) is called a *marginal distribution*. How can we find P(X = x)?

$$\begin{split} P(\mathbf{X} = \mathbf{x}) &= \sum_{\mathbf{y} \in \text{Val}(\mathbf{Y})} P(\mathbf{X} = \mathbf{x}, \mathbf{Y} = \mathbf{y}) \\ &= \sum_{y_1 \in \text{Val}(Y_1)} \cdots \sum_{y_M \in \text{Val}(Y_M)} P(X_1 = x_1, ..., X_N = x_N, Y_1 = y_1, ..., Y_M = y_M) \end{split}$$

# Marginal Distributions: Heart Disease Example

Given a joint distribution on G,BP,C,HD, we obtain the marginal probability P(G=M,BP=H,C=H) as follows:

$$\begin{split} P(G = M, BP = H, C = H) &= \sum_{h \in \{Y, N\}} P(G = M, BP = H, C = H, HD = h) \\ &= P(G = M, BP = H, C = H, HD = Y) \\ &+ P(G = M, BP = H, C = H, HD = N) \\ &= 0.050 + 0.005 \end{split}$$

| Gender | BloodPressure | Cholesterol | HeartDisease | Р     |
|--------|---------------|-------------|--------------|-------|
| M      | Н             | Н           | Υ            | 0.050 |
| M      | Н             | Н           | N            | 0.005 |
| M      | Н             | M           | Υ            | 0.045 |
| M      | Н             | M           | N            | 0.008 |
|        |               |             |              |       |

12/37

#### Conditional Distributions

▶ Joint distributions are useful because we can use them to answer queries like "What is the probability that Y = y given that I observed X = x?":

$$\begin{split} P(\mathbf{Y} = \mathbf{y} | \mathbf{X} = \mathbf{x}) &= \frac{P(\mathbf{X} = \mathbf{x}, \mathbf{Y} = \mathbf{y})}{P(\mathbf{X} = \mathbf{x})} \\ &= \frac{P(\mathbf{X} = \mathbf{x}, \mathbf{Y} = \mathbf{y})}{\sum_{\mathbf{y} \in \mathrm{Val}(\mathbf{Y})} P(\mathbf{X} = \mathbf{x}, \mathbf{Y} = \mathbf{y})} \end{split}$$

 $lackbox{V}$  Write  $p(\mathbf{y}|\mathbf{x})$  to denote the PMF of  $\mathbf{Y}$  given  $\mathbf{X}=\mathbf{x}$ 

### Conditional Distributions: Heart Disease Example

$$\begin{split} P(HD=Y|G=M,BP=H,C=H) &= \frac{P(G=M,BP=H,C=H,HD=Y)}{P(G=M,BP=H,C=H)} \\ &= \frac{0.050}{0.050+0.005} = 0.91 \end{split}$$

| Gender | BloodPressure | Cholesterol | HeartDisease | Р     |
|--------|---------------|-------------|--------------|-------|
| M      | Н             | Н           | Υ            | 0.050 |
| M      | Н             | Н           | N            | 0.005 |
| M      | Н             | М           | Υ            | 0.045 |
| M      | Н             | M           | N            | 0.008 |
|        |               |             |              |       |

14 / 37

Review

Joint Distributions

Rules of Probability

Conditional Independence

Bayesian Networks

13 / 37

Joint Distributions

Rules of Probabi

Conditional Independen

Bayesian Networ

### Chain Rule

▶ By rearranging the definition of conditional probability, we get the chain rule:

$$p(\mathbf{x}, \mathbf{y}) = p(\mathbf{y}|\mathbf{x})p(\mathbf{x})$$

▶ Applying the chain rule repeatedly to a random vector X gives:

$$\begin{split} p(\mathbf{x}) &= p(x_N|x_1,...,x_{N-1})p(x_1,...,x_{N-1}) \\ &\vdots \\ &= p(x_N|x_1,...,x_{N-1})p(x_{N-1}|x_1,...,x_{N-2})\cdots p(x_3|x_2,x_1)p(x_2|x_1)p(x_1) \end{split}$$

# Chain Rule: Heart Disease Example

We can apply the chain rule using any ordering of the variables:

$$\begin{split} p(g,bp,c,hd) &= p(hd|c,bp,g)p(c|bp,g)p(bp|g)p(g) \\ p(g,bp,c,hd) &= p(g|bp,c,hd)p(bp|c,hd)p(c|hd)p(hd) \\ p(g,bp,c,hd) &= p(c|hd,g,bp)p(hd|g,bp)p(g|bp)p(bp) \end{split}$$

16 / 37

## Bayes' Rule

▶ By using the definition of conditional probability twice, we obtain one of the most important equations in probability theory, Bayes' Rule:

$$p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{x}, \mathbf{y})}{p(\mathbf{y})} = \frac{p(\mathbf{y}|\mathbf{x})p(\mathbf{x})}{p(\mathbf{y})}$$

▶ Bayes' rule lets us compute  $p(\mathbf{x}|\mathbf{y})$  from a joint distribution specified by  $p(\mathbf{x})$  and  $p(\mathbf{y}|\mathbf{x})$ .

Conditional Independence

18 / 37

Review

Joint Distributions

Rules of Probability

Conditional Independence

Bayesian Networks

17 / 37

riew Joint Distributions

Rules of Probability

Conditional Independence

Bayesian Network

#### Probabilistic Models

The solution to the problem of exponential-sized joint distributions is the use of **compact** probabilistic models.

- ▶ Bayesian networks achieve compactness by exploiting the chain rule and asserting (conditional) independence relations
- ▶ As a result, Bayesian networks can express high-dimensional distributions as products of simpler factors.

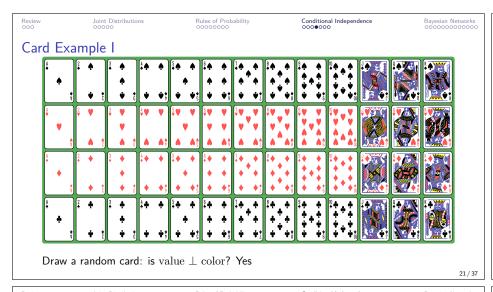
# Marginal Independence

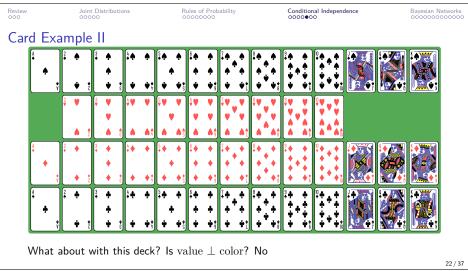
$$\mathbf{X} \perp \mathbf{Y} \iff p(\mathbf{x}, \mathbf{y}) = p(\mathbf{x})p(\mathbf{y})$$

$$\mathbf{X} \bot \mathbf{Y} \iff p(\mathbf{x}|\mathbf{y}) = p(\mathbf{x})$$

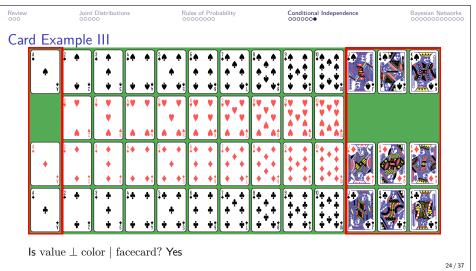
$$\mathbf{X} \perp \mathbf{Y} \iff p(\mathbf{y}|\mathbf{x}) = p(\mathbf{y})$$

20 / 37





Review ooo Joint Distributions ooooo Rules of Probability coooooo Conditional Independence  $\mathbf{X} \perp \mathbf{Y} | \mathbf{Z} \iff p(\mathbf{y}, \mathbf{x} | \mathbf{z}) = p(\mathbf{x} | \mathbf{z}) p(\mathbf{y} | \mathbf{z})$   $\mathbf{X} \perp \mathbf{Y} | \mathbf{Z} \iff p(\mathbf{y}, \mathbf{x} | \mathbf{z}) = p(\mathbf{x} | \mathbf{z}) p(\mathbf{y} | \mathbf{z})$   $\mathbf{X} \perp \mathbf{Y} | \mathbf{Z} \iff p(\mathbf{y} | \mathbf{y}, \mathbf{z}) = p(\mathbf{x} | \mathbf{z})$   $\mathbf{X} \perp \mathbf{Y} | \mathbf{Z} \iff p(\mathbf{y} | \mathbf{x}, \mathbf{z}) = p(\mathbf{y} | \mathbf{z})$ 



Review Joint Distributions Rules of Probability Conditional Independence Bayesian Networks ecococco

### Compactness from Independence

Suppose we have a joint distribution p(a,b,c) and we know that the independence relation  $C \perp A|B$  holds. How can we exploit this fact to simplify p(a,b,c)?

$$p(a,b,c) = p(a)p(b|a)p(c|a,b) \qquad \qquad \text{chain rule}$$
 
$$= p(a)p(b|a)p(c|b) \qquad \text{conditional independence}$$

25 / 37

Review Joint Distributions

Rules of Probability

Conditional Independence

Bayesian Networks

Joint Distributions

Rules of Proba

Conditional Independen

Bayesian Network

26 / 37

# Bayesian Networks: Main Idea

- ▶ The main idea of Bayesian networks is conceptually simple:
- 1. Order the variables and apply the chain rule
- 2. Drop some dependencies, which corresponds to conditional independence assumptions
- **Example**: variables G, C, HD, CP, assume: (1)  $G \perp C$ , (2)  $CP \perp G, C|HD$

## Bayesian Networks: Main Idea

- ▶ This idea has several consequences:
  - ▶ The variables can be arranged in a directed acyclic graph (DAG). (Sometimes interpreted causally, but beware.)
  - ▶ The distribution satisfies certain (local and global) conditional independence properties that can be derived from the graph
- We'll next introduce Bayesian networks formally and start discussing their properties

28 / 37

Review Joint Distributions

Rules of Probability

Conditional Independence

Joint Distributions

Rules of Probability

Conditional Independenc

Bayesian Networks

### Bayesian Networks: Nodes

Formally, a Bayesian network consists of a directed acyclic graph (DAG)  $\mathcal G$  and a joint distribution  $p(\mathbf x)=p(x_1,\dots,x_N)$  for random variables  $X_1,\dots,X_N$ 

The vertex set V has one node i for each random variable  $X_i$ 

 $\mbox{\bf Warning:}$  it's also common to use the random variable itself, i.e.,  $X_i$  as the node

Example:

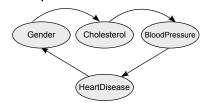




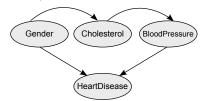
### Bayesian Networks: Edges

The DAG constraint means that  $\mathcal{G}$  can't contain any directed cycles  $i \to j \to \cdots \to i$ .





Example:



Not a valid DAG Directed Cycle **A valid DAG.**No directed cycle

30 / 37

Review

Joint Distributions

Rules of Probability

Conditional Independence

Bayesian Networks

31 / 37

Bayesian Networks

Joint Distributions

Rules of Probability

Conditional Independen

Bayesian Network

# Bayesian Networks: Parents/Children

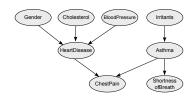
If there is a directed edge  $i \rightarrow j$ :

- $\triangleright$  i is a parent of j
- j is a child of i
  (sometimes: X<sub>i</sub> is a parent of X<sub>j</sub>, and so on)

Define

- ightharpoonup pa(i) = set of all parents of i
- ightharpoonup ch(i)= set of all children of i

### Example:



$$pa(CP) = \{HD, A\}$$
$$ch(A) = \{CP, SB\}$$

Bayesian Networks: Descendants/Non-Descendants

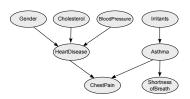
If there is a directed path from i to j:

- $\triangleright$  j is a descendant of i.
- ightharpoonup Else j is a non-descendent of i.

Define

- ightharpoonup de(i) = set of all descendants of i
- $ightharpoonup \operatorname{nd}(i) = \operatorname{set}$  of i

### Example:



$$\begin{aligned} & \operatorname{de}(I) = \{A, SB, CP\} \\ & \operatorname{nd}(BP) = \{G, C, I, A, SB\} \end{aligned}$$

Review Joint Distributions

Rules of Probability

Conditional Independence

Conditional Independence

Bayesian Networks

33 / 37

35 / 37

Joint Distributions

Rules of Probability

Conditional Independenc

Bayesian Networks

### Bayesian Networks: Joint Distribution

The joint distribution implied by a Bayesian network is **factorized** into a product of local conditional probability distributions.

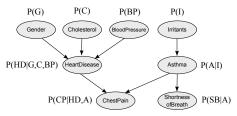


Figure 1: image

The joint distribution is the product of the conditional distributions:

$$p(\mathbf{x}) = \prod_{i=1}^{N} p(x_i \mid \mathbf{x}_{\mathsf{pa}(i)}).$$

## Bayesian Networks: CPDs and CPTs

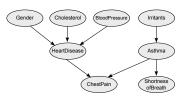
- ▶ The individual factors  $p(x_i \mid \mathbf{x}_{\mathsf{pa}(i)})$  in a Bayesian network are referred to as conditional probability distributions or CPDs.
- ▶ The CPD for node i must specify the probability that  $X_i$  takes any value  $x_i$  in its domain when conditioned on each joint assignment  $\mathbf{x}_{\mathsf{pa}(i)}$  of its parents
- ▶ For discrete random variables, we can represent the CPD of each node using a look-up table called a conditional probability table or CPT.

34 / 37

Rules of Probability

# Bayesian Networks: CPT Example

| hd  | g | bp  | ch  | p(hd g,bp,ch) |
|-----|---|-----|-----|---------------|
| No  | М | Low | Low | 0.95          |
| Yes | М | Low | Low | 0.05          |
| No  | F | Low | Low | 0.99          |
| Yes | F | Low | Low | 0.01          |
| ÷   |   |     |     |               |



# Bayesian Networks: Storage Complexity

- ightharpoonup What is the minimum amount of space needed to store the probability distribution for a single discrete random variable that takes V values? V-1
- $\blacktriangleright$  How much space does it take to store the CPT for a binary-valued variable with D binary-valued parents?  $2^D$
- ▶ Suppose there are D binary variables connected in a chain  $X_1 \to X_2 \to ... \to X_D$ . What is the total storage cost? 1+2(D-1) How large is the full joint?  $2^D-1$

# Next Time

Next time, we'll discuss factorization and conditional independence in Bayesian networks.