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Discrete Distributions

» Sample space 2
» Atomic probability p(w) for all w € Q

p@) 20, Y pw)=1

we

» Events A C Q (only things that have probabilities!)

P(A) =) pw)

weA

» Random variable X :  — Val(X) has probability mass function (PMF)

px(z) = P(X(w) = z) = P(X = x)

3/37

Review Joint Distributions

f Probability
ooe o

Events vs Random Variables

» A random variable X is a a mapping from 2 to Val(X)

» But: for any random variable X, we can also define the probability distribution
with sample space 2 = Val(X) and atomic probabilities py(z). This is the
distribution of X.

» If we only care about events involving X, it's easier to just define the distribution
of X without using a different underlying probability space

» If we care about multiple random variables, we can similarly define their joint
distribution

Independence ayesian Networks
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Random Variables and Data Sets

In ML and stats, probability distributions are defined over records described by multiple
attributes modeled as random variables. This leads to joint distributions.

Joint Distributions Gender Blood Pressure Cholesterol Heart Disease
Male Med Low No
Male Hi Hi Yes
Male Med Med Yes
Male Med Hi No
Female Med Low No
Male Low Med No
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Joint Probability Distributions Joint Distributions: Heart Disease Example
Example: The joint distribution over random variables Gender, BloodPressure,
» The joint distribution of random variables X, ..., X is a probability distribution Cholesterol and HeartDisease is given by a table like this:
over their canonical sample space
» The canonical sample space Q of X,,..., Xy is the Cartesian product of their Gender  BloodPressure  Cholesterol  HeartDisease P
domains = Val(X;) x ... x Val(Xy). F L L N 0.0127
F L L Y 0.0007
» An element of Q is a joint assignment (zy,...,Zy) F L M N 0.0098
» The joint probability mass function of X, ..., X is F L M Y 0.0009
F L H N 0.0087
p(zy,...,zy)=P(X, =2,...., Xy =2x) F L H Y 0.0010
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Conditional Independence

Random Vectors

» It's convenient to use vector-valued random variables X = (X, ..., X ) (or
“random vectors”) and assignments x = (2, ..., Ty):

PX=x)=P(X,=xz,.. Xy =zy)

» The PMF is px(x) or just p(x)

» This is just notation: it means the same thing as a joint distribution over
(X17 AR XN)

» Notation: use X_; and x_; for vectors excluding X, or x;
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Marginal Distributions
» Suppose we have a joint distribution P(X =x,Y =y).

> P(X = x) is called a marginal distribution. How can we find P(X = x)?

P(X =x) = PX=x,Y =y)
yeVal(Y)
= Z Z PXy=ay,... Xy =25, Y1 =y1, . Yy = yns)
y1€Val(Yy) ypEVal(Yyy)
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Marginal Distributions: Heart Disease Example

Given a joint distribution on G, BP,C, HD, we obtain the marginal probability
P(G=M,BP=H,C = H) as follows:

P(G=M,BP=H,C=H) = P(G=M,BP=H,C=H,HD = h)
he{Y,N}
P(G=M,BP=H,C=H,HD=Y)
+P(G=M,BP=H,C=H,HD=N)

= 0.050 + 0.005

Gender  BloodPressure  Cholesterol ~ HeartDisease P
M H H Y 0.050
M H H N 0.005
M H M Y 0.045
M H M N

0.008
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Review Joint Distributions

Conditional Distributions

» Joint distributions are useful because we can use them to answer queries like
“"What is the probability that Y =y given that | observed X = x?":

P(Y:y|X:x):M

P(X =x)
. PX=x,Y=y)
> PX=xY=y)
yeVal(Y)

» Write p(y|x) to denote the PMF of Y given X = x
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Conditional Distributions: Heart Disease Example

P(G=M,BP=H,C=H,HD=Y)

P(HD=Y|G=M,BP=H,C=H) = PG EP =T C—1)

0.050
"~ 0.050 +0.005 0.91
Gender BloodPressure Cholesterol HeartDisease P
M H H Y 0.050
M H H N 0.005
M H M Y 0.045
M H M N 0.008
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Chain Rule
» By rearranging the definition of conditional probability, we get the chain rule:
p(x,y) = p(y|x)p(x)

» Applying the chain rule repeatedly to a random vector X gives:

p(x) = p(xy|z)s s Tn1)P(T15 s Tnq)

=p@yly, ey )P@ N [T, Ty_g) o P(T5]T, T )P(25 |21 )p(21)
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Chain Rule: Heart Disease Example

We can apply the chain rule using any ordering of the variables:

p(g,bp, ¢, hd) = p(hd|c, bp, g)p(c|bp, g)p(bplg)p(9)
p(g,bp, ¢, hd) = p(glbp, ¢, hd)p(bp|c, hd)p(c|hd)p(hd)
p(g,bp, ¢, hd) = p(c|hd, g, bp)p(hd|g, bp)p(g|bp)p(bp)

16/37




Rules of Probability
,,,,, 00000008

Bayes' Rule

» By using the definition of conditional probability twice, we obtain one of the most
important equations in probability theory, Bayes' Rule:

p(xly) = p(xy) _ plylx)p(x)

p(y) p(y)

> Bayes’ rule lets us compute p(x|y) from a joint distribution specified by p(x) and
p(ylx).

Review Joint Distributions Rules of Probabili Conditional Independence Bayesian Networks
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Conditional Independence
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Probabilistic Models Marginal Independence
The solution to the problem of exponential-sized joint distributions is the use of X1Y < p(xy) =pX)p(y)
compact probabilistic models.
» Bayesian networks achieve compactness by exploiting the chain rule and asserting X1Y < pxly) =p(x)
(conditional) independence relations
» As a result, Bayesian networks can express high-dimensional distributions as
products of simpler factors.
XL1Y < p(ylx) =p(y)
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Compactness from Independence

Suppose we have a joint distribution p(a, b, c) and we know that the independence
relation C' L A|B holds. How can we exploit this fact to simplify p(a, b, c)?

p(a,b,c) = p(a)p(bla)p(c|a,b)

= p(a)p(bla)p(c|b)

chain rule

conditional independence
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Bayesian Networks: Main Idea
» The main idea of Bayesian networks is conceptually simple:

1. Order the variables and apply the chain rule
2. Drop some dependencies, which corresponds to conditional independence
assumptions

» Example: variables G,C, HD,CP, assume: (1) G L C, (2) CP L G,C|HD

Bayesian Networks
0080000000000
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Bayesian Networks: Main Idea

» This idea has several consequences:

» The variables can be arranged in a directed acyclic graph (DAG). (Sometimes
interpreted causally, but beware.)

» The distribution satisfies certain (local and global) conditional independence
properties that can be derived from the graph

» We'll next introduce Bayesian networks formally and start discussing their
properties
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Bayesian Networks: Nodes

Formally, a Bayesian network consists of a directed acyclic graph (DAG) G and a joint
distribution p(x) = p(x, ..., 2 ) for random variables X, ..., Xy

The vertex set V' has one node ¢ for

Example:
each random variable X

Cholesterol BloodPressure

Warning: it's also common to use the

random variable itself, i.e., X as the
node
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Bayesian Networks: Edges

The DAG constraint means that G can't contain any directed cycles i — j — -+ — .

Example: Example:

BloodPressure

HeartDisease HeartDisease

Not a valid DAG

A valid DAG.
Directed Cycle

No directed cycle

Rules of

Conditional Independence Bayesian Networks
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Bayesian Networks: Parents/Children

If there is a directed edge i — j:
» i is a parent of j
» jis a child of ¢
> (sometimes: X; is a parent of X,
and so on)

Example:

BloodPressure

Cholesterol

HeartDisease

Shortness
ofBreath

Define

» pa(i) = set of all parents of ¢
» ch(i) = set of all children of i

pa(CP)={HD, A}
ch(A) = {CP,SB}
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Bayesian Networks: Descendants/Non-Descendants

Cholesterol

HeartDisease

Example:
If there is a directed path from i to j:

» jis a descendant of i.
» Else j is a non-descendent of 1.

Define

> de(i) = set of all descendants of ¢

» nd(i) = set of all non-descendants
of 4

Shortness
ofBreath

de(I) = {A, SB,CP}
nd(BP) = {G,C,I,A,SB}
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Bayesian Networks: Joint Distribution

The joint distribution implied by a Bayesian network is factorized into a product of
local conditional probability distributions.

P(G) PC) P(BP) P(I)

Cholesterol BloodPressure

P(HD|G.C.BP) PCAID
Shorts
P(CP[HD,A) @ P(SBJA)

ChestPain
Figure 1: image
The joint distribution is the product of the conditional distributions:

p(x) =TT, p(@; | Xpa(i))-
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Bayesian Networks: CPDs and CPTs

> The individual factors p(; | x,,(;)) in a Bayesian network are referred to as
conditional probability distributions or CPDs.

» The CPD for node ¢ must specify the probability that X; takes any value z; in its
domain when conditioned on each joint assignment x,, ;) of its parents

» For discrete random variables, we can represent the CPD of each node using a
look-up table called a conditional probability table or CPT.
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Bayesian Networks: CPT Example

hd g bp ch  p(hdlg,bp,ch) o)
No M Low Low 0.95
Yes M Low Low 0.05 @
No F Low Low 0.99

F Low Low 0.01

Yes

Shortness
ofBreath
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Review Joint Distributions Rules of Probabilit

Bayesian Networks: Storage Complexity

» What is the minimum amount of space needed to store the probability distribution
for a single discrete random variable that takes V values? V' —1

» How much space does it take to store the CPT for a binary-valued variable with
D binary-valued parents? 2P

» Suppose there are D binary variables connected in a chain
X, - Xy, — ... & Xp. What is the total storage cost? 1+ 2(D — 1)
How large is the full joint? 20 —1
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Next Time

Next time, we'll discuss factorization and conditional independence in Bayesian
networks.
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