Review

Joint Distributions

Rules of Probability

Conditional Independence

Bayesian Networks

Joint Distributions

Rules of Probability

Conditional Independence

Bayesian Networks

COMPSCI 688: Probabilistic Graphical Models

Lecture 2: More Probability and Directed Graphical Models

Dan Sheldon

Manning College of Information and Computer Sciences University of Massachusetts Amherst

Partially based on materials by Benjamin M. Marlin (marlin@cs.umass.edu) and Justin Domke (domke@cs.umass.edu)

1/37

Review

2/37

Review

Joint Distributions

Rules of Probability

Conditional Independence

Bayesian Networks

Joint Distributions

Rules of Probability

Conditional Independence

Bayesian Networks

Discrete Distributions

- ightharpoonup Sample space Ω
- \blacktriangleright Atomic probability $p(\omega)$ for all $\omega\in\Omega$

$$p(\omega) \geq 0, \quad \sum_{\omega \in \Omega} p(\omega) = 1$$

ightharpoonup Events $A\subseteq\Omega$ (only things that have probabilities!)

t have probabilities!)
$$P(A) = \sum_{\omega \in A} p(\omega) = \rho(\omega) + \rho(\omega) + \rho(\omega)$$

ightharpoonup Random variable $X:\Omega o \operatorname{Val}(X)$ has probability mass function (PMF)

$$p_X(x) = P(X(\omega) = x) = P(X = x)$$

$$\rho(x)$$

Events vs Random Variables

- lacktriangle A random variable X is a mapping from Ω to Val(X)
- ▶ But: for any random variable X, we can also define the probability distribution with sample space $\Omega = \mathrm{Val}(X)$ and atomic probabilities $p_X(x)$. This is the distribution of X.
- If we only care about events involving X, it's easier to just define the distribution of X without using a different underlying probability space
- ▶ If we care about multiple random variables, we can similarly define their **joint** distribution

Joint Distributions

Random Variables and Data Sets

In ML and stats, probability distributions are defined over records described by multiple attributes modeled as random variables. This leads to joint distributions.

6 / 37

Review Joint Distributions Rules of Probability

Conditional Independence

Bayesian Networks

5/37

eview Joint Distributions

Rules of Probability

Conditional Independence

Bayesian Networks

Joint Probability Distributions

- \blacktriangleright The joint distribution of random variables X_1,\ldots,X_N is a probability distribution over their canonical sample space
- ▶ The canonical sample space Ω of X_1,\ldots,X_N is the Cartesian product of their domains $\Omega=\mathrm{Val}(X_1)\times\ldots\times\mathrm{Val}(X_N)$.
- ▶ An element of Ω is a joint assignment (x_1, \dots, x_N)
- ▶ The joint probability mass function of $X_1, ..., X_N$ is

$$p(x_1,\dots,x_N) = P(X_1 = x_1,\dots,X_N = x_N)$$

$$P(X_1 = x_1,\dots,X_N = x_N)$$

$$P(X_2 = x_1,\dots,X_N = x_N)$$

Joint Distributions: Heart Disease Example

Example: The joint distribution over random variables *Gender*, *BloodPressure*, *Cholesterol* and *HeartDisease* is given by a table like this:

					<u>U</u>
	Gender	BloodPressure	Cholesterol	HeartDisease	Р
all	<u></u> F	L	L	N	0.0127
	(F	L	L	Υ	0.0007
	F	L	M	N	0.0098
possible records	F	L	M	Υ	0.0009
1659102	/ F	L	Н	N	0.0087
\mathcal{L}	_ F	L	Н	Υ	0.0010

exponential size in # variables

Random Vectors

$$\rho(x_1,...,x_N)$$
 $\rho(x)$ $\chi=(x_1,...,x_N)$

▶ It's convenient to use vector-valued random variables $\mathbf{X} = (X_1,...,X_N)$ (or "random vectors") and assignments $\mathbf{x} = (x_1,...,x_N)$:

$$P(\mathbf{X} = \mathbf{x}) = P(X_1 = x_1, ..., X_N = x_N)$$

- ▶ The PMF is $p_{\mathbf{X}}(\mathbf{x})$ or just $p(\mathbf{x})$
- \blacktriangleright This is just notation: it means the same thing as a joint distribution over (X_1,\dots,X_N)
- \blacktriangleright Notation: use \mathbf{X}_{-i} and \mathbf{x}_{-i} for vectors excluding X_i or x_i

$$(\chi_{i_1...,i_r},\chi_{i-i_1},\chi_{i(i_1...,i_r)},\chi_{N})$$

9 / 37

Rules of Probability

Rules of Probability

10 / 37

Review 000 Joint Distributions

Rules of Probability

Conditional Independence

Bayesian Networks

view Joint Distributions

Joint Distributions

Rules of Probability

Conditional Independence

Bayesian Networks

Marginal Distributions

- ▶ Suppose we have a joint distribution $P(\mathbf{X} = \mathbf{x}, \mathbf{Y} = \mathbf{y})$.
- $ightharpoonup P(\mathbf{X}=\mathbf{x})$ is called a *marginal distribution*. How can we find $P(\mathbf{X}=\mathbf{x})$?

$$P(X=x) = \sum_{y \in Val(Y)} P(X=x, Y=y)$$

Marginal Distributions: Heart Disease Example

Given a joint distribution on G,BP,C,HD, we obtain the marginal probability P(G=M,BP=H,C=H) as follows:

$$P(G=M, BP=H, C=H) = 0.050 + 0.005 = 0.055$$

Gender	BloodPressure	Cholesterol	HeartDisease -	Р
/ M	Н	Н	Y	0.050
М	Н	Н	N /	0.005
M	H	М	Y	0.045
M	Н	M	N	0.008

Conditional Distributions

▶ Joint distributions are useful because we can use them to answer queries like "What is the probability that Y = y given that I observed X = x?":

$$P(\mathbf{Y} = \mathbf{y} | \mathbf{X} = \mathbf{x}) = \frac{P(\mathbf{X} = \mathbf{x}, \mathbf{Y} = \mathbf{y})}{P(\mathbf{X} = \mathbf{x})} \quad \text{fourther}$$

$$P(\mathbf{X} = \mathbf{x})$$

$$= \frac{P(\mathbf{X} = \mathbf{x}, \mathbf{Y} = \mathbf{y})}{\sum_{\mathbf{y} \in Val(\mathbf{Y})} P(\mathbf{X} = \mathbf{x}, \mathbf{Y} = \mathbf{y})}$$

$$P(\mathbf{X} = \mathbf{x}, \mathbf{Y} = \mathbf{y})$$

$$P(\mathbf{X} = \mathbf{x}, \mathbf{Y} =$$

Conditional Distributions: Heart Disease Example

$$\begin{split} P(HD=Y|G=M,BP=H,C=H) &= \frac{P(G=M,BP=H,C=H,HD=Y)}{P(G=M,BP=H,C=H)} \\ &= \frac{0.050}{0.050+0.005} = 0.91 \end{split}$$

Gender	BloodPressure	Cholesterol	HeartDisease	Ρ,
M	Н	Н	Y	0.050
M	Н	Η/	N	0.005
М	Н	М	Υ	0.045
М	Н	M	N	0.008

14 / 37

Review

Joint Distributions

Conditional Independence

Bayesian Networks

Joint Distributions

Rules of Probability

Bayesian Networks

Chain Rule

$$b(\lambda|x) = \frac{b(x)}{b(x^2\lambda)}$$

▶ By rearranging the definition of conditional probability, we get the chain rule: P(x=x, y=y) = P(x=x) P(y=y|x=x)

$$P(\mathbf{x} = \mathbf{y}, \mathbf{y} = \mathbf{p}(\mathbf{x} = \mathbf{y})) = P(\mathbf{x} = \mathbf{y}) P(\mathbf{y} = \mathbf{y} = \mathbf{y}) P(\mathbf{y} = \mathbf{y}) P(\mathbf{y}) P$$

▶ Applying the chain rule repeatedly to a random vector X gives:

$$\begin{split} p(\mathbf{x}) &= p(x_N|x_1,...,x_{N-1})p(x_1,...,x_{N-1}) \\ &\vdots &= \mathsf{p}(\forall_{\mathbf{x}_1}|\mathbf{x}_1,...,\mathbf{x}_{N-1})\,\mathsf{p}(\mathbf{x}_1,...,\mathbf{x}_{N-1})\,\mathsf{p}(\mathbf{x}_2,...,\mathbf{x}_{N-2})\,\mathsf{p}(\mathbf{x}_2,...,\mathbf{x}_{N-2}) \\ &= p(x_N|x_1,...,x_{N-1})p(x_{N-1}|x_1,...,x_{N-2})\cdots p(x_3|x_2,x_1)p(x_2|x_1)p(x_1) \\ &= \prod_{i \in I}^{\mathsf{N}} \mathsf{p}(\mathbf{x}_i^*|\mathbf{x}_1,...,\mathbf{x}_{N-2}^*) \\ &= \prod_{i \in I}^{\mathsf{N}} \mathsf{p}(\mathbf{x}_i^*|\mathbf{x}_1,...,\mathbf{x}_{N-2}^*) \\ \end{split}$$

Chain Rule: Heart Disease Example

We can apply the chain rule using any ordering of the variables:

Joint Distributions

Rules of Probability

Conditional Independence

Bayesian Networks

Bayes' Rule

hidden

model P(41x)

measurement

▶ By using the definition of conditional probability twice, we obtain one of the most important equations in probability theory, Bayes' Rule: prior

posterior
$$p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{x}, \mathbf{y})}{p(\mathbf{y})} = \frac{p(\mathbf{y}|\mathbf{x})p(\mathbf{x})}{p(\mathbf{y})} = \frac{p(\mathbf{y}|\mathbf{x})p(\mathbf{x})}{\sum_{\mathbf{x}} p(\mathbf{y}|\mathbf{x})p(\mathbf{x})}$$

b Bayes' rule lets us compute $p(\mathbf{x}|\mathbf{y})$ from a joint distribution specified by $p(\mathbf{x})$ and $p(\mathbf{y}|\mathbf{x})$.

$$p(y) = \sum p(x,y) = \sum p(y|x)p(x)$$

Conditional Independence

18 / 37

Joint Distributions

Joint Distributions

Rules of Probability

Conditional Independence

Bayesian Networks

17 / 37

Joint Distributions

Rules of Probability

Conditional Independence

Bayesian Networks

Probabilistic Models

The solution to the problem of exponential-sized joint distributions is the use of compact probabilistic models.

- ▶ Bayesian networks achieve compactness by exploiting the chain rule and asserting (conditional) independence relations
- As a result, Bayesian networks can express high-dimensional distributions as products of simpler factors.

Marginal Independence

P(X=x, Y=y) = P(X=x)P(Y=y)

"X is indept. of y"

 $\mathbf{X} \bot \mathbf{Y} \iff p(\mathbf{x}, \mathbf{y}) = p(\mathbf{x}) p(\mathbf{y})$

 $\mathbf{X} \perp \mathbf{Y} \iff \rho(\gamma | \mathbf{x}) = \rho(\gamma) \qquad \forall \mathbf{x}, \mathbf{y}$

Review Joint Distributions

Rules of Probability

Bayesian Networks

Conditional Independence

Bayesian Networks

Joint Distributions

Rules of Probability

Conditional Independence

Bayesian Networks

Compactness from Independence

Suppose we have a joint distribution p(a,b,c) and we know that the independence relation $C \perp A \mid B$ holds. How can we exploit this fact to simplify p(a,b,c)?

Chain
$$p(a,b,c) = p(a) p(b|a) p(c|g,b)$$
 and

conditional
$$p(a,b,c) = p(a)p(b(a)p(c|b)$$

indep.

25 / 37

Review Joint Distributions

Rules of Probability

Conditional Independence

Bayesian Networks

Joint Distributions

Rules of Probability

Conditional Independence

Bayesian Networks

26 / 37

Bayesian Networks: Main Idea

- ▶ The main idea of Bayesian networks is conceptually simple:
- 1. Order the variables and apply the chain rule
- 2. Drop some dependencies, which corresponds to conditional independence assumptions < P \(\text{P} \(\text{S} \) \(\text{IMD} \)
- **Example**: variables G, C, HD, CP, assume: (1) $G \perp C$, (2) $CP \perp G, CHD$

1. p(g,c,hd,cp) = p(g)p(c|g)p(hd|g,c)p(cp|g,x,hd)1. p(g,c,hd,cp) = p(g)p(c)p(hd|g,c)p(cp|hd) Bayesian Networks: Main Idea

- ▶ This idea has several consequences:
 - ▶ The variables can be arranged in a directed acyclic graph (DAG). (Sometimes interpreted causally, but beware.)
 - ▶ The distribution satisfies certain (local and global) conditional independence properties that can be derived from the graph
- We'll next introduce Bayesian networks formally and start discussing their properties

Joint Distributions

Rules of Probability

Conditional Independence

Joint Distributions

Rules of Probability

Bayesian Networks

Bayesian Networks: Nodes

Formally, a Bayesian network consists of a directed acyclic graph (DAG) ${\mathcal G}$ and a joint distribution $p(\mathbf{x}) = p(x_1, \dots, x_N)$ for random variables X_1, \dots, X_N

The vertex set V has one node i for each random variable X_i

Warning: it's also common to use the random variable itself, i.e., X_i as the node

V= {1, ..., N}
Example:

Bayesian Networks

Bayesian Networks: Edges

The DAG constraint means that \mathcal{G} can't contain any directed cycles $i \to j \to \cdots \to i$.

Example:

Example:

Not a valid DAG Directed Cycle

A valid DAG. No directed cycle

30 / 37

Review

Joint Distributions

Rules of Probability

Conditional Independence

Bayesian Networks

31 / 37

Joint Distributions

Rules of Probability

Conditional Independence

Bayesian Networks

Bayesian Networks: Parents/Children

If there is a directed edge $i \rightarrow j$:

- \triangleright i is a parent of j
- \triangleright j is a child of i
- lacksquare (sometimes: X_i is a parent of X_j , and so on)

Define

- ightharpoonup pa(i) = set of all parents of i
- ightharpoonup ch(i)= set of all children of i

Example:

$$pa(CP) = \{HD, A\}$$
$$ch(A) = \{CP, SB\}$$

Bayesian Networks: Descendants/Non-Descendants

If there is a directed path from i to j:

- \triangleright *j* is a descendant of *i*.
- ightharpoonup Else j is a non-descendent of i.

Define

- ightharpoonup de(i) = set of all descendants of i
- ightharpoonup nd(i) = set of all non-descendants of i

Example:

$$\begin{aligned} & \operatorname{de}(I) = \{A, SB, CP\} \\ & \operatorname{nd}(BP) = \{G, C, I, A, SB\} \end{aligned}$$

Joint Distributions

Rules of Probability

Bayesian Networks

Rules of Probability

Bayesian Networks

Bayesian Networks: Joint Distribution

The joint distribution implied by a Bayesian network is factorized into a product of local conditional probability distributions.

Figure 1: image $P(g,c,b_p,...,s_b) = P(g) p(c) p(bp) p(i) p(hd|q,c,b_p) p(a|i) p(sp|hd,a) p(sb|a)$ The joint distribution is the product of the conditional distributions:

$$p(\mathbf{x}) = \prod_{i=1}^{N} p(x_i \mid \mathbf{x}_{\mathsf{pa}(i)}).$$

Bayesian Networks: CPDs and CPTs

- lacktriangle The individual factors $p(x_i \mid \mathbf{x}_{pa(i)})$ in a Bayesian network are referred to as conditional probability distributions or CPDs.
- ▶ The CPD for node i must specify the probability that X_i takes any value x_i in its domain when conditioned on each joint assignment $\mathbf{x}_{\mathsf{pa}(i)}$ of its parents
- ▶ For discrete random variables, we can represent the CPD of each node using a look-up table called a conditional probability table or CPT.

34 / 37

Bayesian Networks Review Joint Distributions Rules of Probability Conditional Independence

Bayesian Networks: CPT Example

P(hd, q 1 bp)

exponential in (# parents +1)

33 / 37

Joint Distributions

Rules of Probability

Conditional Independence

Bayesian Networks

Bayesian Networks: Storage Complexity

- ▶ What is the minimum amount of space needed to store the probability distribution for a single discrete random variable that takes V values? V - V
- ▶ How much space does it take to store the CPT for a binary-valued variable with $\rho(a[b_1,...,b_D) \quad \lambda^{D} \cdot (V-I) = \lambda^{D}$ D binary-valued parents?
- ▶ Suppose there are D binary variables connected in a chain
- $X_1 \to X_2 \to ... \to X_D$. What is the total storage cost? $\lambda'(D-I) + I = \lambda D-I$ How large is the full joint?

Next Time

Next time, we'll discuss factorization and conditional independence in Bayesian networks.