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Discrete Distributions

» Sample space (2
» Atomic probability p(w) for all w € Q2

plw) >0, Y pw) =1

we

» Events A C Q (only things that have probabilities!)

P(4)= 3" p(w) = plu)+Plw + pu)

weA
» Random variable X : Q — Val(X) has probability mass function (PMF)
>
rx(x) = P(X(w) = 2) = P(X = z)
[J€N)

orks
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Events vs Random Variables

» A random variable X is a a mapping from 2 to Val(X)

» But: for any random variable X, we can also define the probability distribution
with sample space 2 = Val(X) and atomic probabilities py (). This is the
distribution of X.

» If we only care about events involving X, it's easier to just define the distribution
of X without using a different underlying probability space

» If we care about multiple random variables, we can similarly define their joint
distribution
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Random Variables and Data Sets

In ML and stats, probability distributions are defined over records described by multiple
attributes modeled as random variables. This leads to joint distributions.

Actbeiuntes /\;o\ulo\\e(& Yo
% Gender\l\‘BIood Pressure Y\tholesterol Heart ’Disease
Male Med Low No
Male Hi Hi Yes
¢ € o Male Med Med Yes
Male Med Hi No
Female Med Low No
Male Low Med No
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Joint Probability Distributions

» The joint distribution of random variables X, ..., X is a probability distribution
over their canonical sample space

» The canonical sample space €2 of X, ..., X is the Cartesian product of their

domains 2 = Val(X;) x ... x Val(Xy).
» An element of Q is a joint assignment (z,...,2y)

» The joint probability mass function of X, ..., X is

p(wlv"' 7wN) = P(Xl = x17'--7XN = xN)

|
B Ko ¥o8) = P(D5T g5
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Joint Distributions: Heart Disease Example

Example: The joint distribution over random variables Gender, BloodPressure,
Cholesterol and HeartDisease is given by a table like this:
U

Gender BloodPressure Cholesterol HeartDisease P
F L L N 0.0127
F L L Y 0.0007
a\l F L M N 0.0098
S<Me F L M Y 0.0009
qecods | ¢ L H N 0.0087
F L H Y 0.0010

O

eyeavxmﬁ;},\\ dze o # Jow lableg
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Random Vectors )
P(\Au-")*N Q(X
» It's convenient to use vector-valued random variables X = (X1, ..., Xp) (or
“random vectors”) and assignments x = (2, ..., T ):
Rules of Probability
PX=x)=P(X;=x,... Xy =xx)
» The PMF is px(x) or just p(x)
» This is just notation: it means the same thing as a joint distribution over
(X1, Xn)
» Notation: use X_; and x_; for vectors excluding X or x;
I
(XU,.., Y(._() Yeer _..,X,\,)
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Marginal Distributions (Yiyeey K, Y(,w,Ym>
» Suppose we have a joint distribution P(X =x,Y =y).

» P(X = x) is called a marginal distribution. How can we find P(X = x)?

Plx=)= 2. Q(W—*/Y“D ‘ IY >
\{e\fq\(\()

e

2|3

e

‘ l H b
L

S
\/\|

L
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Marginal Distributions: Heart Disease Example

Given a joint distribution on G, BP,C, HD, we obtain the marginal probability
P(G=M,BP=H,C = H) as follows:

‘O(G:N\/ B@=H,C=H\): 0.050 + 0,005 = 0,054

o}

eartDisease -
; H Y 7 0.050\
H 0.005
——

0.045
0.008

=L

H

i SZT T
z <|z
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» Joint distributions are useful becau an—use—them to answer queries like
“What is the probability that Y =y given that | observed X = x?":
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Conditional Distributions: Heart Disease Example

P(G=M,BP=H,C=H,HD=Y)

P(HD=Y|G=M,BP=H,C=H) = PG = BP =T .C =)

ik _ 0.050 091
PIY —yX=x) = PX=xY=y) joo T 0.050+0.005
P(X =x) (regcin )

PX=x,Y=y) Gender BloodPressure  Cholesterol  HeartDisease P
: 5, koY= e

e d eVal(Y) :

14€Q ot y
{ﬂo sened YA Py ("»/) =Pl M H M Y 0.045
» Write p(y|x) to denote the PMF of Y given X = x =y M H M N 0.008
Py (Y1) P(r=y] X=0) ¥ Y Pree(xly)
P\rly(\/h‘) 13/37 14/37
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Chain Rule p(y1N)= 9% Chain Rule: Heart Disease Example
(4
» By rearranging the definition of conditional probab lit we get the chain rule:
P(X;E;;;\I (y‘rx);():; Y- \‘IXﬂO We can apply the chain rule using any ordering of the variables:
2 34
» Applying the chain rule repeatedly to a random vector X gives: p(g, bp'ic vhd) = p(hd|c, bp, g)p(c|bp, 9)p(bplg)p(9)
p(g7 bp, c hd) p(glbp, ¢, hd)p(bplc, hd)p(c|hd)p(hd)
p(x) =p@y|ry, ..oy )p(@, s Ty ) '—f
p(g:bp, . hd) = p(c|hd, g, bp)p(hdlg, bp)p(glbp)p(bp)

= P($N| K(J"'}YN"I) P(XN—I ( K(J,.‘IXJ-))P(K‘J"' )*N—Q

=p(@n|@y, o Tn_)P(@ N [Ty s Ty_g) - p(25]|T0, T )p(Ts]2 )p(21)
TT e (%] Ko Y
=l
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m
¥ Y p(x) Pyl

, Pl
» By using the definition of con\é?tional probability twice, we obtain one of the most
important equations in probability theory, Bayes' Rule: priov
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p(hlddu\\o‘ocewad ‘L (1906
. [s0) p(<
postedor  —5 p(xly) = PY) _ POBOPGO Plyopeey
p(y) p(y) 2 (A p)
%
» Bayes' rule lets us compute p(x|y) from a joint distribution specified by, p(x) and
p(y[x).
- D play) = 2 plylpld
pl)= 2 pley) = L plybp
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Probabilistic Models

The solution to the problem of exponential-sized joint distributions is the use of
compact probabilistic models.

» Bayesian networks achieve compactness by exploiting the chain rule and asserting
(conditional) independence relations

» As a result, Bayesian networks can express high-dimensional distributions as
products of simpler factors.
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{'7< i< (ndegt, of *(”

{2

=

=

i
XY < f(%lx,) = plx)

e( %=, Y“/) = Plx=)P( 7"\/)

X1Y <= p(x,y) = p(x)p(y)

V%
S p(plyl)

V“‘)\/
e

XLY = p(yhd) =p(y) vy
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Draw a random card: is value L color? \{Qﬁ What about with this deck? Is value L color? P((e vale 653
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Compactness from Independence
Suppose we have a joint distribution p(a, b, ¢) and we know that the independence
relatiod C' LA|B holds. How can we exploit this fact to simplify p(a, b, ¢)?
Bayesian Networks e (bl p (el 2NN
C hatn Ceb,e) = p(a) plbla) plelgb a —
rale ’ )
condhion) 0G) = gD ) ByD
tadep-
25/37 2637
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Bayesian Networks: Main Idea m ¥ C %5’@

» The main idea of Bayesian networks is conceptually simple:

1. Order the variables and apply the chain rule

2. Drop some dependencies, which corresponds to conditional independence
assumptions CPLGIHD

» Example: variables G,C, HD,CP, assume: (1) G L C, (2) CP J_@, C)HD
@ gc:) [ 9(31 ¢, hd; cp) = @@P(cli)p(\nd fjjc) P(CP%/;\""O
¥ “

(@

2. p(9,¢,Wdyep) = ONORG [9,<) e hd)
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Bayesian Networks: Main Idea

» This idea has several consequences:

» The variables can be arranged in a directed acyclic graph (DAG). (Sometimes
interpreted causally, but beware.)

» The distribution satisfies certain (local and global) conditional independence
properties that can be derived from the graph

» We'll next introduce Bayesian networks formally and start discussing their
properties
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Formally, a Bayesian network consists of a directed ic graph (DAG) G and a joint

distribution p(x) = p(x, ..., x ) for random variables X, ..., Xy

The vertex set V' has one node ¢ for
each random variable X

Warning: it's also common to use the
random variable itself, i.e., X; as the
node

VeSl, ), N}

Example:

+L 3
Cholesterol BloodPressure
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Bayesian Networks: Edges

The DAG constraint means that G can't contain any directed cycles ¢ — j — --- — .

Example: Example:

Cholesterol

HeartDisease

BloodPressure Cholesterol

HeartDisease

BloodPressure

Not a valid DAG
Directed Cycle

A valid DAG.
No directed cycle
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If there is a directed eégé T — J
» i is a parent of j
» jis a child of i
> (sometimes: X is a parent of X,
and so on)

Define
> pa(i) = set of all parents of 4
» ch(i) = set of all children of 4

Conditional Independence Bayesian Networks

000000@000000

Example:

BloodPressure

Cholesterol

HeartDisease

Shortness
ofBreath

pa(CP)={HD, A}
ch(A) = {CP,SB}

31/37

Joint Distributions Bayesian Networks

0000000800000

Conditional Independence

Bayesian Networks: Descendants/Non-Descendants

If there is a directed path from i to j:

Example:

» jis a descendant of i.
» Else j is a non-descendent of i.

BloodPressure

de(I) = {A, SB,CP}
nd(BP) = {G,C,1, A, SB}

Define
» de(i) = set of all descendants of i
» nd(i) = set of all non-descendants
of 4

ChestPain
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Bayesian Networks: Joint Distribution Bayesian Networks: CPDs and CPTs

The joint distribution implied by a Bayesian network is factorized into a product of
local conditional probability distributions.

P(G) P(C) P(BP) P(I)
> The individual factors p(; | Xpa(;)) in a Bayesian network are referred to as
@ conditional probability distributions or CPDs.

» The CPD for node ¢ must specify the probability that X; takes any value z; in its

P(HD|G,C,BP H D P(A[l . o o . .
(D] ) i (Al domain when conditioned on each joint assignment x,, ;) of its parents
P(CPIHD.A) N » For discrete random variables, we can represent the CPD of each node using a
. ChestPai o e
- @ look-up table called a conditional probability table or CPT.

gure 1: imag

p(g,c,lop, ... 5"3 ’P()PCCBP(EP)PI(()P(M[ :bo)P(q ) pCepl hd a}P@blo\)

The joint dlstrlbutlon is the product of the conditional distributions:
(X) - Hizl p(xi | Xpa(i))'
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Bayesian Networks: CPT Example Bayesian Networks: Storage Complexity

Choles(erol

HeartDlsease

D
P
[ » What is the minimum amount of space needed to store the probability distribution

@ for a single discrete random variable that takes V' values? \J —|
» How much space does it take to store the CPT for a binary valued variable with
D binary-valued parents? P(”‘ 0 b'D> 9\ (\} ,') — ; V=
» Suppos }there are D bmary variables connected in a chain

@ VX, - — % p- What is the total storage cost? Q.- (D ,> ~1= QD )
How large is the full joint? D\D

BloodPressure

hd g bpl ch  p(hdlg.bp,ch)
No
Yes )
No Low Low
Yes Low Low

ChestPain

}<Pav‘em‘h‘a\ (W @:(‘PG"V\JN {'(>
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Next Time

Next time, we'll discuss factorization and conditional independence in Bayesian
networks.

Bayesian Networks
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