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COMPSCI 688: Probabilistic Graphical Models

Lecture 1: Course Overview

Dan Sheldon

Manning College of Information and Computer Sciences
University of Massachusetts Amherst

Partially based on materials by Benjamin M. Marlin (marlin@cs.umass.edu) and Justin Domke (domke@cs.umass.edu)
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Motivating Example: Typo Corrector

Suppose we have a database of words with at most D letters, such as
duck, pile,an % %, dive,

where « is used to pad words with less than D letters (in this example D = 4)
Problem:

» We see “noisy” words: each letter has a 25% chance of corrupted to any random
letter

» Given a noisy word, what is original clean work?

A probabilistic approach will have 3 steps...
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Step 1: Distribution of Words p[X> cove
» Build a distribution p(z) over all Iength D sequences in the database
» Each sequence represented by z = (xl,xQ, ‘-,% ) with z; € {a,b, -,z *}
» p(x) is a measure of how likely z is tS occur as an Engllsh word &_] 1r 7
Example M‘ ¥ ¥y \ P “)
p(a,a,a,a) = 0.000001 o O o @ |.0p..\
pla, a,a,b) = 0.000002 A a o b [.povo-2
. @ a G C -
p(t, a,c,0) = 0.00531 2| %
: *
v b o
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Step 2: Conditional Distribution of Noisy Words

\ﬁz{ode — \1-’—(01
(ovd
We build a conditional distribution p(y|z) of the “noisy” sequences y given “clean”
ones x. In this case, the conditional distribution is

o (4c1%0)

1
p(ylx) = H (0.75 x My; = z;] +0.25 x 2—7) .

Pe (\/;=m) ><;=o\) =078 + o.)g.%
Priyizlxi=a) = oas. =

Py 1)

» [[-] is indicator

» Each position ¢ corrupted independently:
P with probability 0.75, keep x; /V\/L
P with probability 0.25, select a random letter
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Step 3: Combine to Make Predictions
\{:(mF

Given noisy sequence y, want to predict a clean sequence x. Bayes' rule says:

()p(ylz) caan
plaly) = BEPHE
P cocf j coed

Predict the most likely = as cove

PO, PO = plxly)

cock
arg max p(zly) = argmax p(z)p(ylz), o
x x f\-(Y"F
E.g., use brute force to search over all x. But wait:

» how much time?
» how big does our data set need to be?
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Brute Force Algorithm
g\.rO)W\As( PC*BP(\/W)
(V2

=

For all z, compute score(z) = p(z)p(y|x).

2. Return x with highest score.

» How much time? 1'71)

» Is there a smarter algorithm? w O D

» How many free parameters in p(z)? 27 =] D
» How big would our data set need to be to estimate it? 77 27

Lesson: for large D, we need structure
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270 is big

D 7P

1 27

2 729

5 14, 348,489

10 | 205,891, 132,094, 649
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Graphical Models = Factorized |str|but|on2 P&K\f;@) %, % Pl %)
D%, %o, %o, Y1) -

G|
Suppose p(z) has a factorized form:
%
0iR C o o r . e :
plz) = (1’1>~’U2 Ji(%»% xD 1ZD)- '
4o

. s =
What would this buy us? Q'—L@ (\}—~©
> Statistics: only ~ (D — 1)(27)? free parameters
» Computation: can find the MAP solution in ~ (D — 1)(27)?2 operations (dynamic
programming) o\\rc]\/.\m/ ()(x(v7:>
7(

Factorization is great! But when is it “valid"?

when digt SC\T(.ﬁ'FI.E& fOV\(Q'\“’l’CN"—'\\ r"/\dél)cno(cvve .
propertes
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Probabilistic Graphical Models @’@’_@i@
» Main Al tool for representing, constructing and reasoning about large-scale, high
dimensional systems under uncertainty.

» Model large-scale, complex systems as collection of simpler, locally
interacting subsystems

» Apply probabilistic modeling (cf. typo corrector) to a range of problems in high
dimensions

» Many applications: speech recognition, image recognition and labeling, image
modeling, action recognition, modeling sensor networks, social network analysis,
recommender systems, evolutionary biology, proteomics and genomics, medical
decision making, information extraction, text modeling, and many more..
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Main idea
f £
GG Rw

» Represent the structure of high-dimensional joint probability distributions using
graphs (graph structure models conditional indpendencies)

» Learn the distribution from data

» Perform inference to efficiently answer probability queries (i.e., compute
conditional distributions) using the graph structure

o(y (=) e(*,!ﬁf)
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Bayesian Networks and Markov Networks

The two most common types of probabilistic graphical models are Bayesian Networks
and Markov Networks.

Bayesian Networks Markov Random Fields

P(A) f(A,D)

P(B|A) P(C|A)
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Probabilistic Graphical Models vs Machine Learning

» Probabilistic graphical models (PGMs) are a sub-topic of machine learning

» PGM models exist for essentially all main ML tasks: classification, regression,
clustering, dimensionality reduction, .. ’

los (sté req recs)on
/e
CRF

» Knowledge of PGMs allows you to build customized models for dealing with
complex, uncertain, and partially observed data.

» Many classical ML models are special cases of PGMs
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Course Goals Prerequisites
The? alm of this course is to develop_t_he. knowlec.ige and skills necessary to effectively Formally, none. However, we will move quickly through a lot of material. Familiarity
design, implement and apply probabilistic graphical models to solve real-world . . P .
. with the following material is highly recommended:
problems. The course will cover:
. » Probability and statistics
» Bayesian and Markov networks .
» Calculus and linear algebra
» Exact and approximate inference methods for answering probability queries and » Basic algorithms and data structures
making predictions Mackov chaln Montc Covlo (MCMC) » Numerical optimization
. ) Ja ¢ (ation, (nfeden VT_}I » Machine Learnin
» Estimation of the parameters and st?ugf\tlre o} grap‘ﬁicgl models from data &
16/31
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Programming and Computing

> Need access to computing to complete regular assignments (any moderately LOgIStICS

recent laptop/desktop should do).
» Python strongly recommended. | recommend using an Anaconda distribution.
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Logistics and course details: Textbooks

» Instructor: Dan Sheldon ) ) ) ) ) ) )

» TAs: Jinlin Lai, Shakir Sahibul 'brheLe.ls no required book, but optional supplementary readings will be assigned in two

» Lectures: Tu/Th 4:00-5:15pm OOKs:

» Instructor Office Hours: TBD » MLPP: Machine Learning: A probabilistic Perspective. Murphy. (Primary; free

» Course Website: eBook for UMass students)

https://people.cs.umass.edu/~sheldon/teaching/cs688/index.html . . )
; SR » PGM: Probabilistic Graphical Models by Koller and Friedman. (Supplemental)

» Discussion: Piazza

» Homework Submission: Gradescope The readings will cover similar material.

» Course e-Mail: Piazza private message

(a nJes
Echo3eQ
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Evaluation

The evaluation for the course will be based on quizzes, assignments, and a final exam.
» Homework Assignments 60%
» Final Exam 30%
» Quizzes 10%

Course O Logistics
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Course Policies

This is a large class. Course policies are applied with exceptions only in exceptional
situations. Read the course syllabus for details of:

» Homework submission and late days 5 (afe dq7/8
» Homework collaboration
» Academic honesty

» Regrading
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Echo360 Lecture Capture
> Lectures are recorded and will be available after 3-4 days Probability Review
» There is form to request access sooner (see course webpage)
» Usually 1-2 recordings per semester fail
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Discrete Probability Distribution
N=94,T3 0=%1,%-,63

» A discrete distributionfmodels a random experiment (e.g., a coin flip, roll of the
die, shot of an arrow) with a finite or countable number of outcomes

» The sample space €2 is the set of outcomes

» A probability distribution P on € assigns a non-negative real number or atomic
probability p(w) to each outcome w € Q, such that

pw) >0, Y pw) =1

we
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even — A= ?:1/ q/g%
» An event A C Q) is a subset of the sample space
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» The probability of an event if the sum of the probabilities of its outcomes:

PA) =Y p)  Plever) = A(53453

Events

weA — _JZ _‘,—é +Z
» Note: events are the only things that have probabilities, ever = '[5’

» When (2 is not discrete, we need to be more careful about defining events and
their probabilities (measure theory)

P(%\ P(\,)
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Example

Imagine the random experiment of rolling a fair six-sided die:
» Sample Space: Q2 ={1,2,3,4,5,6}
» Consider the events A = {1,2} and B = {2}.
» Then P(A)=1/3, P(B)=1/6
» Also, P(ANB)=1/6, P(AUB)=1/3

0 (8) (A
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Random Variables

Events can be cumbersome. With PGMs, we'll
A random variable X is a mapping X : Q — D

» D is some set (e.g., the integers)
» Notation: D = Val(X), the set of values of X

A random variable partitions :

» For each zz € D, we have the event [X = z] =
» It's probability is

PX=z)=P{w: X(w)=ah)= Y pw)
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Example: Rolling two Six-Sided Dice

w=(w,, W)
Say X is the sum of the two fair dice. Then
» Sample Space: Q = %((l I)j ((/'l)/ ey (l/Q,)J(lj,,.) ciry (Q/G)%
> Domain =\al ()= 3, ..., (23
> Mapping: X(w)= (w,ws) = W, + W
» Example Event: {X =4} = % ([fg)/ ()./ P /(3)\> §
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Probability Mass Function
py(o) Py, o p%((:)

The probability mass function (PMF) of a discrete random variable X is a function py
that gives the probability of the event [X = z] for every z € Val(X):

px(z) = P(X =)

Thought experiment: the PMF also satisfies the defintion of a discrete probability

distribution
> pla)=1
zeVal(X)

Why didn't we just use Val(X) as the sample space?
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Next Time

» A bit more probability
P joint distributions
P rules of probability
P independence and conditional independence

» Bayes' nets
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