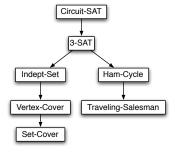
COMPSCI 311: Introduction to Algorithms

Lecture 24: More NP-Complete Problems

Dan Sheldon

University of Massachusetts Amherst

NP-Complete Problems So Far



Arrows show reductions discussed in class.

We could construct a polynomial reduction between any pair.

NP-Completeness and Reductions

Careful, direction of reduction matters!

 $A \leq_P B$: A reduces **to** B (A "no harder" than B) From arbitrary instance of A, construct instance of B Reduction and construction is **one-way**

Problem instances are equivalent (both ways):

 $\begin{array}{l} {\rm YES_A} \implies {\rm YES_B} \\ {\rm YES_B} \implies {\rm YES_A} \mbox{ (same as } {\rm No_A} \implies {\rm No_B)} \end{array}$

B is NP-complete means:

- B is in NP: can **check** solution in polynomial time ("easy enough")
- 2. B is NP-hard: some NP-complete A reduces **to** B: A \leq_P B ("hard enough"). We also say: reduce **from** A.

Clicker

Which of the following graph problems are in NP?

- A. Length of longest simple path is $\leq k$
- B. Length of longest simple path is = k
- C. Length of longest simple path is $\geq k$
- D. Find length of longest simple path.
- E. All of the above.

Numerical problems

Subset Sum decision problem: given n items with weights w_1, \ldots, w_n , is there a subset of items whose weight is exactly W?

MY HOBBY: Embedding np-complete problems in restaurant orders

Dynamic programming: O(nW) pseudo-polynomial time algorithm (not polynomial in input length $n\log W)$

Subset Sum Warmup

Does this instance have a solution?

w1 1010

w2 1001

w3 0110 w4 0101 A. Yes B. No

W 1111

Subset Sum Warmup

For which nonzero values of y does this instance have a solution?

10010

10001

01001

01010

A. y = 1B. y = 1, 2

00111

B. y = 1, 2C. y = 1, 2, 3

00100

1113y

Subset Sum Warmup

For which nonzero values of y does this instance have a solution?

10010

10011

01001

01001

01000

A. y = 1B. y = 1, 2

00111

C. y = 1, 2, 3

00100

1112y

Subset Sum

Theorem. Subset sum is NP-complete.

Reduction from 3-SAT. (n variables, m clauses).

Subset Sum Reduction

$$(x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_1 \vee x_2 \vee \neg x_3) \wedge (\neg x_1 \vee \neg x_2 \vee x_3)$$

	vari	iable di	gits	clause digits
Item	1	2	3	
t_1	1	0	0	
f_1	1	0	0	
t_2	0	1	0	
f_2	0	1	0	
f_2 t_3	0	0	1	
f_3	0	0	1	
\overline{W}	1	1	1	

- ltems t_i, f_i for each x_i ; correspond to truth assignment
- ► Weights ⇒ select exactly one
- Numbers are base 10)

Subset Sum Reduction

$$(x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_1 \vee x_2 \vee \neg x_3) \wedge (\neg x_1 \vee \neg x_2 \vee x_3)$$

	variable digits			cla	use dig	gits
Item	1	2	3	4	5	6
t_1	1	0	0	1	0	0
f_1	1	0	0	0	1	1
t_2	0	1	0	0	1	0
f_2	0	1	0	1	0	1
t_3	0	0	1	1	0	1
f_3	0	0	1	0	1	0
\overline{W}	1	1	1	?	?	?

- \triangleright Clause digit equal to 1 iff x_i assignment satisfies C_i
- ightharpoonup Total for clause digit > 0 iff assignment satisfies C_i
- ▶ Goal: all clause digits > 0. How to set W to enforce this? Total could be 1, 2, 3 for satisfied clause.

Subset Sum Reduction

$$(x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_1 \vee x_2 \vee \neg x_3) \wedge (\neg x_1 \vee \neg x_2 \vee x_3)$$

	variable digits			cla	use dię	gits
Item	1	2	3	4	5	6
t_1	1	0	0	1	0	0
f_1	1	0	0	0	1	1
t_2	0	1	0	0	1	0
f_2	0	1	0	1	0	1
t_3	0	0	1	1	0	1
f_3	0	0	1	0	1	0
\overline{W}	1	1	1	3	3	3

lackbox Set all clause digits of W to 3... then add dummy items to increase total by at most two.

Subset Sum Reduction

$$(x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_1 \vee x_2 \vee \neg x_3) \wedge (\neg x_1 \vee \neg x_2 \vee x_3)$$

	variable digits			clause digits		
Item	1	2	3	4	5	6
t_1	1	0	0	1	0	0
f_1	1	0	0	0	1	1
t_2	0	1	0	0	1	0
f_2	0	1	0	1	0	1
t_3	0	0	1	1	0	1
f_3	0	0	1	0	1	0
\overline{W}	1	1	1	3	3	3

	variable digits			clause digits		
Item	1	2	3	4	5	6
y_1	0	0	0	1	0	0
z_1	0	0	0	1	0	0
y_2	0	0	0	0	1	0
z_2	0	0	0	0	1	0
y_3	0	0	0	0	0	1
z_3	0	0	0	0	0	1

- **Two** dummy items per clause \Rightarrow can increase total by up to 2
- ightharpoonup Can make total exactly 3 iff total of non-dummy items is > 0

▶ Set n + jth digit of W = 3

- \triangleright Consider a subset of items corresponding to a truth assignment (exactly one of t_i, f_i)
- If C_i is not satisfied, then total in position n+j is 0, otherwise it is 1, 2, or 3
- ightharpoonup Create two "dummy" items y_i, z_i with 1 in position n+j
- \blacktriangleright Can select dummies to yield total of 3 in position n+j iff C_i is satisfied

Subset Sum Reduction: Details (Review on Own)

- \blacktriangleright All weights have n+m digits
- \triangleright For variable x_i , create two items t_i , f_i
 - ▶ Both have *i*th digit equal to 1
 - ► All other items have zero in this digit
 - ▶ ith digit of $W=1\Rightarrow$ select exactly one of t_i,f_i
- ▶ The n + jth digit corresponds to clause C_i
 - ▶ If $x_i \in C_j$, set n + jth digit of $t_i = 1$
 - ▶ If $\neg x_i \in C_j$, set n+jth digit of $f_i=1$
 - ► Everything else 0.

Subset Sum Proof

- \triangleright All numbers (including W) are polynomially long.
- ▶ If Φ satisfiable,
 - ▶ Select t_i if $x_i = 1$ in satisfying assignment else select f_i .
 - ightharpoonup Take y_i, z_i as needed.
- ▶ If subset exists with sum W
 - ightharpoonup Either t_i or f_i is chosen. Assign x_i accordingly.
 - \blacktriangleright For each clause, at least one term must be selected, otherwise clause digit is < 3.

Graph Coloring

Def. A k-coloring of a graph G=(V,E) is a function $f:V\to\{1,\ldots,k\}$ such that for all $(u,v)\in E, \ f(u)\neq f(v).$

Problem. Given G = (V, E) and number k, does G have a k-coloring?

Many applications

- ► Actually coloring maps!
- ► Scheduling jobs on machine with competing resources.
- ▶ Allocating variables to registers in a compiler.

Claim. 2-COLORING $\in P$ (equivalent to bipartite testing)

 $\textbf{Theorem.} \ \ 3\text{-}\mathrm{COLORING} \ \ \text{is} \ \ \text{NP-Complete}.$

3-Color: Gadget for Variables

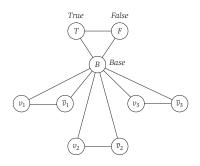
► Reduce from 3-SAT.

3 colors: True, False, "Base"

3 special nodes in a clique T, F, B. For each variable x_i , two nodes v_{i0}, v_{i1} .

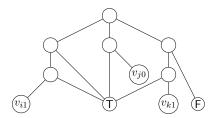
Edges $(v_{i0}, B), (v_{i1}, B), (v_{i0}, v_{i1}).$

Either v_{i0} or v_{i1} colored T, the other colored F.



Reduction: Clause Gadget

For clause $x_i \vee \neg x_j \vee x_k$



Top node can be colored iff not all three v-nodes are F.

Proof

- ▶ Graph is polynomial in n + m.
- ► If satisfying assignment
 - ▶ Color B, T, F then v_{i1} as T if $\phi(x_i) = 1$.
 - ► Since clauses satisfied, can color each gadget.
- ► If graph 3-colorable
 - ▶ One of v_{i0}, v_{i1} must get T color.
 - ► Clause gadget colorable iff clause satisfied.

Question. What about k-coloring?

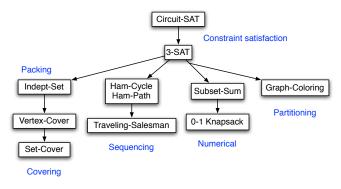
Clicker Question

Which of the following is true?

- A. If we can reduce 3-coloring to k-coloring, then k-coloring is NP-complete
- B. k-coloring is NP-complete since any 3-coloring is also a k-coloring for $k \geq 3$
- C. $k\mbox{-coloring}$ is not NP-complete since 3-coloring is the hardest case, for k>3 the coloring is easier
- D. k-coloring is not NP-complete because the 4-color theorem has been proved

NP-Completeness Recap

Types of hard problems:



...any many others. See book or other sources for more examples. You can use *any known NP-complete* problem to prove a new problem is NP-complete.