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NP-Complete Problems So Far

Circuit-SAT

| Indept-Set | | Ham-Cycle |
| Vertex-Cover | | Traveling-Salesman |

v

Arrows show reductions discussed in class.
We could construct a polynomial reduction between any pair.

NP-Completeness and Reductions

Careful, direction of reduction matters!

A <p B: A reduces to B (A “no harder” than B)
From arbitrary instance of A, construct instance of B
Reduction and construction is one-way

Problem instances are equivalent (both ways):
YESy —> YESp
YESg = YESa (same as Noy = Nog)

B is NP-complete means:

1. B is in NP: can check solution in polynomial time
(“easy enough™)

2. B is NP-hard: some NP-complete A reduces to B: A <p B
(“hard enough”). We also say: reduce from A.

Clicker

Which of the following graph problems are in NP?

. Length of longest simple path is < k
. Length of longest simple path is = &
. Length of longest simple path is > &
. Find length of longest simple path.

. All of the above.
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Numerical problems
Subset Sum decision problem: given n items with weights wy, ..., w,, is there a subset
of items whose weight is exactly W7
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Dynamic programming: O(nW) pseudo-polynomial time algorithm (not polynomial in
input length nlog W)

Subset Sum Warmup

Does this instance have a solution?

wl
w2
w3
wé

W

1010
1001
0110
0101

1111

A. Yes
B. No

Subset Sum Warmup

For which nonzero values of y does this instance have a solution?

10010
10001
01001
01010
00111
00100

Subset Sum Warmup

For which nonzero values of y does this instance have a solution?

10010
10011
01001
01000
00111
00100

A y=1
B.y=1,
Cy=1




Subset Sum

Theorem. Subset sum is NP-complete.

Reduction from 3-SAT. (n variables, m clauses).

Subset Sum Reduction
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Iltem

variable digits clause digits

2

ty
f
to
fa
l3
f3

w
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» |tems t;, f; for each x;; correspond to truth assignment
» Weights = select exactly one

> (Numbers are base 10)

Subset Sum Reduction

(Il V —xo V 393) A (“1131 VxgV —‘1‘3) A (—\331 V —zo V Zf;)

variable digits clause digits
ltem |1 2 34 5 6
tn 1 0 01 0 0
A1 o offo 11
ta |0 1 0]J0 1 0
fo O 1 0|1 0 1
t3 0 0 11 0 1
fs 0 0 1]j0 1 0
wt 11?7 7

» Clause digit equal to 1 iff z; assignment satisfies C;
» Total for clause digit > 0 iff assignment satisfies C

» Goal: all clause digits > 0. How to set W to enforce this? Total could be 1, 2, 3

for satisfied clause.

Subset Sum Reduction

(Il V —xo V 1'3) AN (—\Q?l V 29 V —\Ig) A (—11‘1 V —xo V Ig)

variable digits clause digits
ltem |1 2 3[4 5 6
tp [T 0 0of1 0 0
fi T 000 11
ta O 1 0f0 1 0
fo O 1T 01 01
ts [0 0 1|1 0 1
fs Jo 0o 1o 1 0
w11 1]3 33

» Set all clause digits of W to 3... then add dummy items to increase total by at

most two.




Subset Sum Reduction Subset Sum Reduction: Details (Review on Own)

({Bl V xo V .1‘3) A (ﬁl‘l VxgV ﬁ.1‘3) A (ﬁl‘l V —zo V Ig)

> All weights have n + m digits

variable digits || clause digits variable digits || clause digits » For variable z;, create two items t;, f;

tem |1 2 3]4 5 6 lem |1 2 3[4 5 6

¢ 1 0 0l1 0 0 > Both have ith digit equal to 1

! n 0 0 0f1 00 > All other items have zero in this digit

fi 1.0 0p0 11 21 0 0 01 0 O > ith digit of W = 1 = select exactly one of ¢;, f;
to 0 1 00 1 O w |0 0 00 1 0 o

fa 0 1 01 0 1 2 00 o0lo 1 0 » The n + jth digit corresponds to clause Cj

ts |0 0 171 01 ys |0 0 00 0 1 > If 2; € C;, set n + jth digit of ; = 1

f3 0 0 10 1 0 = 0o 0 o0lo0 0 1 > If =2; € C;, set n + jth digit of f; = 1
w11 1]3 33 > Everything else 0.

» Two dummy items per clause = can increase total by up to 2
» Can make total exactly 3 iff total of non-dummy items is > 0

Subset Sum Proof

> Set n -+ jth digit of W = 3 » All numbers (including W) are polynomially long.

> Consider a subset of items corresponding to a truth assignment (exactly one of ¢;, f;) » If ® satisfiable,
> If C; is not satisfied, then total in position n + j is 0, otherwise it is 1, 2, or 3
> Create two “dummy” items y;, z; with 1 in position n + j

» Can select dummies to yield total of 3 in position n + j iff C; is satisfied

> Select t; if x; = 1 in satisfying assignment else select f;.
> Take y;,2; as needed.

» |If subset exists with sum W

» Either t; or f; is chosen. Assign x; accordingly.
P For each clause, at least one term must be selected, otherwise clause digit is < 3.




Graph Coloring

Def. A k-coloring of a graph G = (V, E) is a function f : V — {1,...,k} such that for
all (u,v) € E, f(u) # f(v).

Problem. Given G = (V, E) and number k, does G have a k-coloring?

Many applications

» Actually coloring maps!
» Scheduling jobs on machine with competing resources.
» Allocating variables to registers in a compiler.

Claim. 2-COLORING € P (equivalent to bipartite testing)

Theorem. 3-COLORING is NP-Complete.

3-Color: Gadget for Variables

» Reduce from 3-SAT.

3 colors: True, False, “Base”

3 special nodes in a clique T, F, B.
For each variable z;, two nodes v;g, v;;.
Edges (vio, B), (vi1, B), (vio, vi1)-

Either v;g or v;1 colored T, the other colored F.

Reduction: Clause Gadget

For clause z; V -z V x,

Top node can be colored iff not all three v-nodes are F'.

Proof

» Graph is polynomial in n + m.
> If satisfying assignment

» Color B, T, F then v;; as T if ¢(x;) = 1.
> Since clauses satisfied, can color each gadget.

» If graph 3-colorable

» One of v;p,v;1 must get T color.
> Clause gadget colorable iff clause satisfied.

Question. What about k-coloring?




Clicker Question

Which of the following is true?

A. If we can reduce 3-coloring to k-coloring, then k-coloring is NP-complete
B. k-coloring is NP-complete since any 3-coloring is also a k-coloring for k > 3

C. k-coloring is not NP-complete since 3-coloring is the hardest case, for k > 3 the
coloring is easier

D. k-coloring is not NP-complete because the 4-color theorem has been proved

NP-Completeness Recap
Types of hard problems:

Circuit-SAT
Constraint satisfaction

3-SAT
Packing

Indept-Set Ham-Cycle - Graph-Coloring

* Partitioning
Traveling-Salesman 0-1 Knapsack
Sequencing Numerical

Covering

...any many others. See book or other sources for more examples. You can use any
known NP-complete problem to prove a new problem is NP-complete.




