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Review
▶ P – class of problems with polytime algorithm.
▶ NP – class of problems with polytime certifier.
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Problem (X) Independent-Set
Instance (s) Graph G and number k
Algorithm (A) No poly-time algorithm known
Hint (t) Which nodes are in the answer?
Certifier (C) Are those nodes independent and size k?
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▶ NP-complete = a problem Y ∈ NP with the property that X ≤P Y for every
problem X ∈ NP!

NP-Complete

CIRCUIT-SAT

SAT3-SAT VC SC IS....

▶ Cook-Levin Theorem: In 1971, Cook and Levin independently showed that
particular problems were NP-Complete.

▶ We’ll look at Circuit-SAT as canonical NP-Complete problem.



Circuit-SAT

Problem: Given a circuit built of And, Or, and Not gates with some hard-coded
inputs, is there a way to set remaining inputs so the output is 1?

Satisfiable? Yes. Set inputs: 1, 1, 0.

Circuit-SAT
Cook-Levin Theorem Circuit-SAT is NP-Complete.

Proof Idea: encode arbitrary certifier C(s, t) as a circuit
▶ If X ∈ NP, then X has a poly-time certifier C(s, t):
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▶ s is Yes instance ⇔ ∃ t such that C(s, t) outputs Yes
▶ Construct a circuit where s is hard-coded, and circuit is satsifiable iff ∃ t that

causes C(s, t) to output Yes
▶ s is Yes instance ⇔ circuit is satisfiable
▶ Algorithm for Circuit-Sat implies an algorithm for X

A Circuit-SAT reduction

See Independent Set example in other slides

A Circuit-SAT reduction
▶ Vertex Cover – Does G have VC of size at most k? (Counting gadget is an example

for v3, v4 only)
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Proving New Problems NP-Complete

Suppose X is in NP.

Fact: If Y is NP-complete and Y ≤P X, then X is NP-complete.

Want to prove problem X is NP-complete
▶ Check X ∈ NP.
▶ Choose known NP-complete problem Y .
▶ Prove Y ≤P X.

Clicker

It’s easy to show that 3-SAT ≤P Circuit-SAT. What can we conclude from this?

A. 3-SAT is NP-complete.

B. 3-SAT is in NP.

C. If there is no polynomial time algorithm for 3-SAT, then there is no polynomial
time algorithm for Circuit-SAT.

Proving New Problems NP-Complete

Theorem: 3-SAT is NP-Complete.
▶ In NP? Yes, check satisfying assignment in poly-time.
▶ Can show that Circuit-SAT ≤P 3-SAT

From CIRCUIT-SAT to 3-SAT

To show that Circuit-SAT ≤P 3-SAT, we’ll show how to construct a 3-SAT formula
to model an arbitrary Circuit-SAT instance.

Example.
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Reduction: Circuit-Sat ≤P 3-Sat

▶ One variable xv per circuit node v plus clauses to enforce circuit computations
▶ Express Negation, OR, and AND nodes using several implications of the form

A ⇒ B (which is equivalent to the clause ¬A ∨ B)

▶ Negation node: xv = ¬xu

▶ xu ⇒ ¬xv

▶ ¬xu ⇒ xv

▶ OR node: xv = xu ∨ xw

▶ xu ⇒ xv

▶ xw ⇒ xv

▶ xv ⇒ xu ∨ xw

▶ AND node: xv = xu ∧ xw
▶ xv ⇒ xu

▶ xv ⇒ xw

▶ ¬xv ⇒ ¬xu ∨ ¬xw

Reduction: Circuit-Sat ≤P 3-Sat

▶ Clause C = xv for input bits v fixed to one
▶ Clause C = ¬xv for input bits v fixed to zero
▶ Clause C = xo for output bit
▶ This formula is satisfiable iff circuit is satisfiable.
▶ Deal with clauses of size 1 and 2 by introducing two new variables and clauses that

force them to be equal to zero.

Clicker

Which of the following statements is NOT true?

A. SAT ≤P 3-SAT

B. 3-SAT ≤P SAT

C. k-SAT ≤P SAT for all k ≥ 2

D. k-SAT is NP-complete for all k ≥ 2

NP-Complete Problems So Far

Theorem: IndependentSet, VertexCover, SetCover, SAT, 3-SAT are all
NP-Complete.

3-SAT

Indept-Set

Vertex-Cover

Set-Cover

Circuit-SAT

SAT



NP-Complete Problems: Preview

3-SAT

Indept-Set

Vertex-Cover

Set-Cover

Circuit-SAT

Ham-Cycle
Ham-Path

Traveling-Salesman

Subset-Sum

0-1 Knapsack

Graph-Coloring

Constraint satisfaction

Partitioning

NumericalSequencing

Packing

Covering

Traveling Salesman Problem

▶ TSP. Given n cities and distance function d(i, j), is there a tour that visits all
cities with total distance less than D?
▶ Tour: ordering of cities i1, i2, . . . , in with i1 = 1

▶ Distance is
n−1∑

j=1
d(ij , ij+1) + d(in, 1)

▶ Applications: traveling salesman, moving robotic arms
▶ Let’s prove a simpler problem is NP-complete, and then use it to show TSP is

NP-complete.

Hamiltonian Cycle Problem

▶ HamCycle – Hamiltonian Cycle. Given directed graph G = (V, E), is there a
cycle that visits each vertex exactly once?

v1

v2 v3

v4

v5v6

▶ v1, v3, v2, v5, v4, v6 is a Hamiltonian Cycle

Ham-Cycle

Theorem. Ham-Cycle is NP-Complete.
▶ It is in NP.
▶ Need to reduce from some NP-Complete problem. Which one?

Claim. 3-SAT ≤P Ham-Cycle.

Reduction has two main parts.
▶ Make a graph with 2n Hamiltonian cycles, one per assignment.
▶ Augment graph with clause gadgets to ensure assignments satisfy all clauses



Reduction: Graph skeleton476 Chapter 8 NP and Computational Intractability
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Hamiltonian cycles correspond to
the 2n possible truth assignments.
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Figure 8.7 The reduction from 3-SAT to Hamiltonian Cycle: part 1.

We hook these paths together as follows. For each i = 1, 2, . . . , n − 1, we
define edges from vi1 to vi+1,1 and to vi+1,b. We also define edges from vib to
vi+1,1 and to vi+1,b. We add two extra nodes s and t; we define edges from s
to v11 and v1b; from vn1 and vnb to t; and from t to s.

The construction up to this point is pictured in Figure 8.7. It’s important
to pause here and consider what the Hamiltonian cycles in our graph look like.
Since only one edge leaves t, we know that any Hamiltonian cycle C must use
the edge (t , s). After entering s, the cycle C can then traverse P1 either left to
right or right to left; regardless of what it does here, it can then traverse P2
either left to right or right to left; and so forth, until it finishes traversing Pn
and enters t. In other words, there are exactly 2n different Hamiltonian cycles,
and they correspond to the n independent choices of how to traverse each Pi.

xi = 1 ⇐⇒ traverse Pi from L → R

Reduction: Clause Gadgets478 Chapter 8 NP and Computational Intractability

s

P1

P2

P3

c1 can only be visited if the
cycle traverses some path
in the correct direction.
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Figure 8.8 The reduction from 3-SAT to Hamiltonian Cycle: part 2.

the nodes immediately before and after cj in the cycle C are joined by an edge e
in G; thus, if we remove cj from the cycle and insert this edge e for each j, then
we obtain a Hamiltonian cycle C′ on the subgraph G − {c1, . . . , ck}. This is our
original subgraph, before we added the clause nodes; as we noted above, any
Hamiltonian cycle in this subgraph must traverse each Pi fully in one direction
or the other. We thus use C′ to define the following truth assignment for the
3-SAT instance. If C′ traverses Pi left to right, then we set xi = 1; otherwise we
set xi = 0. Since the larger cycle C was able to visit each clause node cj, at least
one of the paths was traversed in the “correct” direction relative to the node
cj, and so the assignment we have defined satisfies all the clauses.

C1 = x1 ∨ x̄2 ∨ x3

Reduction: High-Level

▶ Correspondence between Hamiltonian cycles and truth assignments
▶ xi = 1: traverse path Pi from L → R
▶ xi = 0: traverse path Pi from R → L

▶ Node cj for clause Cj must be visited in middle of some Pi
▶ xi ∈ Cj =⇒ can visit cj during L → R traversal of Pi. xi = 1 satisfies Cj

▶ x̄i ∈ Cj =⇒ can visit cj during R → L traveral of Pi. xi = 0 satisfies Cj

▶ There is a Hamiltonian cycle
⇐⇒ can visit all clause nodes
⇐⇒ there is a truth assignment that satisfies all clauses

Reduction: Details

▶ n rows (bidirected paths) P1, . . . , Pn (one per variable)
▶ Row has 3m + 3 vertices, connected to neighbors in forward/backward direction
▶ First and last vertex of row i connected to first and last of i + 1.
▶ Source s connected to first and last of row 1.
▶ First and last of row n connected to t.
▶ Edge (t, s)
▶ Skeleton has 2n possible Hamiltonian Cycles, corresponding to truth assignments to

x1, . . . , xn
▶ Traverse Pi L to R ⇐⇒ xi = 1
▶ Traverse Pi R to L ⇐⇒ xi = 0



Reduction: Clause Gadgets

For each clause Cℓ construct gadget to restrict possible truth assignments
▶ New node cℓ

▶ If xi ∈ Cℓ
▶ Add edges (vi,3ℓ, cℓ) and (cℓ, vi,3ℓ+1)
▶ cℓ can be visited during L to R traversal of Pi

▶ If ¬xi ∈ Cℓ
▶ Add edges (vi,3ℓ+1, cℓ) and (cℓ, vi,3ℓ)
▶ cℓ can be visited during R to L traversal of Pi

Proof of Correctness

Given a satisfying assignment, construct Hamiltonian Cycle
▶ If xi = 1 traverse Pi from L → R, else R → L.
▶ Each Cℓ is satisfied, so one path Pi is traversed in the correct direction to “splice”

cℓ into our cycle
▶ The result is a Hamiltonian Cycle

Given Hamiltonian cycle, construct satisfying assignment:
▶ If cycle visits cℓ from row i, it will also leave to row i because of “buffer” nodes
▶ Therefore, ignoring clause nodes, cycle traverses each row completely from L → R

or R → L
▶ Set xi = 1 if Pi traversed L → R, else xi = 0
▶ Every node cj visited ⇒ every clause Cj is satisfied

Traveling Salesman

TSP. Given n cities and distance function d(i, j), is there a tour that visits all cities
with total distance less than D?

Theorem. TSP is NP-Complete
▶ Clearly in NP.
▶ Reduction? From Ham-Cycle

Clicker

We want to show that Ham-Cycle ≤P TSP. How can we do so?

Given a HamCycle instance G = (V, E) make TSP instance with one city per vertex
and. . .

A. d(vi, vj) = 1 if (vi, vj) ∈ E, else 2. Tour distance: ≤ n?

B. d(vi, vj) = 2 if (vi, vj) ∈ E, else 1. Tour distance: ≤ n?

C. d(vi, vj) = 1 if (vi, vj) ∈ E, else 2. Tour distance: ≤ m?



Reduction from Ham-Cycle to TSP

Given HamCycle instance G = (V, E) make TSP instance
▶ One city per vertex
▶ d(vi, vj) = 1 if (vi, vj) ∈ E, else 2

Claim: there is a tour of distance ≤ n if and only if G has a Hamiltonian cycle
▶ A Hamiltonian cycle clearly gives a tour of length n
▶ A tour of length n must travel n hops of length 1, which corresponds to a

Hamiltonian cycle

Ham-Path

Similar to Hamiltonian Cycle: is there a path that visits every vertex exactly once?

Theorem. Ham-Path is NP-Complete.

Two proofs:
▶ Modify 3-SAT to Ham-Cycle reduction.
▶ Show that Ham-Cycle reduces to Ham-Path

NP-Complete Problems

3-SAT

Indept-Set

Vertex-Cover

Set-Cover

Circuit-SAT

Ham-Cycle

Traveling-Salesman


