

NP-Complete

- NP-complete $=$ a problem $Y \in \mathrm{NP}$ with the property that $X \leq_{P} Y$ for every problem $X \in \mathrm{NP}$!

Review

- P - class of problems with polytime algorithm.
- NP - class of problems with polytime certifier

Example

Problem (X) Independent-SET
Instance (s) Graph G and number k
Algorithm (A) No poly-time algorithm known
Hint (t) Which nodes are in the answer?
Certifier $(C) \quad$ Are those nodes independent and size k ?

NP-Complete

- Cook-Levin Theorem: In 1971, Cook and Levin independently showed that particular problems were NP-Complete.
- We'll look at Circuit-SAT as canonical NP-Complete problem.

Circuit-SAT

Problem: Given a circuit built of And, Or, and Not gates with some hard-coded inputs, is there a way to set remaining inputs so the output is 1 ?

Satisfiable? Yes. Set inputs: $1,1,0$.

A Circuit-SAT reduction

See Independent Set example in other slides

Circuit-SAT

Cook-Levin Theorem Circuit-SAT is NP-Complete.
Proof Idea: encode arbitrary certifier $C(s, t)$ as a circuit

- If $X \in \mathrm{NP}$, then X has a poly-time certifier $C(s, t)$:

- s is Yes instance $\Leftrightarrow \exists t$ such that $C(s, t)$ outputs Yes
- Construct a circuit where s is hard-coded, and circuit is satsifiable iff $\exists t$ that causes $C(s, t)$ to output Yes
- s is Yes instance \Leftrightarrow circuit is satisfiable
- Algorithm for Circuit-Sat implies an algorithm for X

A Circuit-SAT reduction

- Vertex Cover - Does G have VC of size at most k ? (Counting gadget is an example for v_{3}, v_{4} only)

Proving New Problems NP-Complete

Suppose X is in NP.
Fact: If Y is NP-complete and $Y \leq_{P} X$, then X is NP-complete.

Want to prove problem X is NP-complete

- Check $X \in$ NP
- Choose known NP-complete problem Y.
- Prove $Y \leq_{P} X$.

Proving New Problems NP-Complete

Theorem: 3-SAT is NP-Complete.

- In NP? Yes, check satisfying assignment in poly-time.
- Can show that Circuit-SAT $\leq_{P} 3$-SAT

Clicker

It's easy to show that 3 -SAT \leq_{P} Circuit-SAT. What can we conclude from this?
A. 3-SAT is NP-complete.
B. 3 -SAT is in NP.
C. If there is no polynomial time algorithm for 3-SAT, then there is no polynomial time algorithm for Circuit-SAT.

From CIRCUIT-SAT to 3-SAT

To show that Circuit-SAT $\leq_{P} 3$-SAT, we'll show how to construct a 3-SAT formula to model an arbitrary Circuit-SAT instance.

Example.

Reduction: Circuit-SAT $\leq_{P} 3$-SAT

- One variable x_{v} per circuit node v plus clauses to enforce circuit computations
- Express Negation, OR, and AND nodes using several implications of the form $A \Rightarrow B$ (which is equivalent to the clause $\neg A \vee B$)
- Negation node: $x_{v}=\neg x_{u}$
- $x_{u} \Rightarrow \neg x_{v}$
- $\neg x_{u} \Rightarrow x_{v}$
- OR node: $x_{v}=x_{u} \vee x_{w}$
- $x_{u} \Rightarrow x_{v}$
- AND node: $x_{v}=x_{u} \wedge x_{w}$
- $x_{v} \Rightarrow x_{u}$
- $x_{v} \Rightarrow x_{w}$
- $\neg x_{v} \Rightarrow \neg x_{u} \vee \neg x_{u}$
- $x_{w} \Rightarrow x_{v}$
- $x_{v} \Rightarrow x_{u} \vee x_{w}$

Clicker

Which of the following statements is NOT true?
A. SAT $\leq_{P} 3$-SAT
B. $3-\mathrm{SAT} \leq_{P} \mathrm{SAT}$
C. k -SAT \leq_{P} SAT for all $k \geq 2$
D. k-SAT is NP-complete for all $k \geq 2$

Reduction: Circuit-SAt $\leq_{P} 3$-SAT

- Clause $C=x_{v}$ for input bits v fixed to one
- Clause $C=\neg x_{v}$ for input bits v fixed to zero
- Clause $C=x_{o}$ for output bit
- This formula is satisfiable iff circuit is satisfiable.
- Deal with clauses of size 1 and 2 by introducing two new variables and clauses that force them to be equal to zero.

NP-Complete Problems So Far

Theorem: IndependentSet, VertexCover, SetCover, SAT, 3-SAT are all NP-Complete.

NP-Complete Problems: Preview

Hamiltonian Cycle Problem

- HamCycle - Hamiltonian Cycle. Given directed graph $G=(V, E)$, is there a cycle that visits each vertex exactly once?

- $v_{1}, v_{3}, v_{2}, v_{5}, v_{4}, v_{6}$ is a Hamiltonian Cycle

Traveling Salesman Problem

- TSP. Given n cities and distance function $d(i, j)$, is there a tour that visits all cities with total distance less than D ?
- Tour: ordering of cities $i_{1}, i_{2}, \ldots, i_{n}$ with $i_{1}=1$
- Distance is $\sum_{j=1}^{n-1} d\left(i_{j}, i_{j+1}\right)+d\left(i_{n}, 1\right)$
- Applications: traveling salesman, moving robotic arms
- Let's prove a simpler problem is NP-complete, and then use it to show TSP is NP-complete

Ham-Cycle

Theorem. Ham-CyCle is NP-Complete.

- It is in NP.
- Need to reduce from some NP-Complete problem. Which one?

Claim. 3 -SAT \leq_{P} Ham-Cycle.
Reduction has two main parts.

- Make a graph with 2^{n} Hamiltonian cycles, one per assignment.
- Augment graph with clause gadgets to ensure assignments satisfy all clauses

Reduction: Graph skeleton

$x_{i}=1 \Longleftrightarrow$ traverse P_{i} from $L \rightarrow R$

Reduction: High-Level

- Correspondence between Hamiltonian cycles and truth assignments
- $x_{i}=1$: traverse path P_{i} from $L \rightarrow R$
- $x_{i}=0$: traverse path P_{i} from $R \rightarrow L$
- Node c_{j} for clause C_{j} must be visited in middle of some P_{i}
- $x_{i} \in C_{j} \Longrightarrow$ can visit c_{j} during $L \rightarrow R$ traversal of $P_{i} . x_{i}=1$ satisfies C_{j}
- $\bar{x}_{i} \in C_{j} \Longrightarrow$ can visit c_{j} during $R \rightarrow L$ traveral of $P_{i} . x_{i}=0$ satisfies C_{j}
- There is a Hamiltonian cycle
\Longleftrightarrow can visit all clause nodes
\Longleftrightarrow there is a truth assignment that satisfies all clauses

Reduction: Clause Gadgets

Reduction: Details

- n rows (bidirected paths) P_{1}, \ldots, P_{n} (one per variable)
- Row has $3 m+3$ vertices, connected to neighbors in forward/backward direction
- First and last vertex of row i connected to first and last of $i+1$.
- Source s connected to first and last of row 1.
- First and last of row n connected to t.
- Edge (t, s)
- Skeleton has 2^{n} possible Hamiltonian Cycles, corresponding to truth assignments to
x_{1}, \ldots, x_{n}
- Traverse $P_{i} \mathrm{~L}$ to $\mathrm{R} \Longleftrightarrow x_{i}=$

Traverse $P_{i} \mathrm{R}$ to $\mathrm{L} \Longleftrightarrow x_{i}=0$

Reduction: Clause Gadgets

For each clause C_{ℓ} construct gadget to restrict possible truth assignments

- New node c_{ℓ}
- If $x_{i} \in C_{\ell}$
- Add edges $\left(v_{i, 3 \ell}, c_{\ell}\right)$ and $\left(c_{\ell}, v_{i, 3 \ell+1}\right)$
- c_{ℓ} can be visited during L to R traversal of P_{i}
- If $\neg x_{i} \in C_{\ell}$
- Add edges $\left(v_{i, 3 \ell+1}, c_{\ell}\right)$ and $\left(c_{\ell}, v_{i, 3 \ell}\right)$
- c_{ℓ} can be visited during R to L traversal of P_{i}

Proof of Correctness

Given a satisfying assignment, construct Hamiltonian Cycle

- If $x_{i}=1$ traverse P_{i} from $L \rightarrow R$, else $R \rightarrow L$.
- Each C_{ℓ} is satisfied, so one path P_{i} is traversed in the correct direction to "splice" c_{ℓ} into our cycle
- The result is a Hamiltonian Cycle

Given Hamiltonian cycle, construct satisfying assignment:

- If cycle visits c_{ℓ} from row i, it will also leave to row i because of "buffer" nodes
- Therefore, ignoring clause nodes, cycle traverses each row completely from $L \rightarrow R$ or $R \rightarrow L$
- Set $x_{i}=1$ if P_{i} traversed $L \rightarrow R$, else $x_{i}=0$
- Every node c_{j} visited \Rightarrow every clause C_{j} is satisfied

Clicker

We want to show that Ham-Cycle \leq_{P} TSP. How can we do so?
Given a HamCycle instance $G=(V, E)$ make TSP instance with one city per vertex and. .
A. $d\left(v_{i}, v_{j}\right)=1$ if $\left(v_{i}, v_{j}\right) \in E$, else 2 . Tour distance: $\leq n$?
B. $d\left(v_{i}, v_{j}\right)=2$ if $\left(v_{i}, v_{j}\right) \in E$, else 1. Tour distance: $\leq n$?
C. $d\left(v_{i}, v_{j}\right)=1$ if $\left(v_{i}, v_{j}\right) \in E$, else 2 . Tour distance: $\leq m$?

Reduction from Ham-Cycle to TSP

Given HamCycle instance $G=(V, E)$ make TSP instance

- One city per vertex
- $d\left(v_{i}, v_{j}\right)=1$ if $\left(v_{i}, v_{j}\right) \in E$, else 2

Claim: there is a tour of distance $\leq n$ if and only if G has a Hamiltonian cycle

- A Hamiltonian cycle clearly gives a tour of length n
- A tour of length n must travel n hops of length 1 , which corresponds to a Hamiltonian cycle

Ham-Path

Similar to Hamiltonian Cycle: is there a path that visits every vertex exactly once?
Theorem. Нam-Рath is NP-Complete
Two proofs:

- Modify 3-SAT to Ham-CyCle reduction.
- Show that Ham-Cycle reduces to Ham-Path

