

Proving New Problems NP-Complete	Clicker
Suppose X is in NP. Fact: If Y is NP-complete and $Y \leq_P X$, then X is NP-complete. Want to prove problem X is NP-complete • Check $X \in NP$. • Choose known NP-complete problem Y. • Prove $Y \leq_P X$.	 It's easy to show that 3-SAT ≤_P CIRCUIT-SAT. What can we conclude from this? A. 3-SAT is NP-complete. B. 3-SAT is in NP. C. If there is no polynomial time algorithm for 3-SAT, then there is no polynomial time algorithm for CIRCUIT-SAT.
Proving New Problems NP-Complete	From CIRCUIT-SAT to 3-SAT
 Theorem: 3-SAT is NP-Complete. In NP? Yes, check satisfying assignment in poly-time. Can show that CIRCUIT-SAT ≤_P 3-SAT 	To show that CIRCUIT-SAT \leq_P 3-SAT, we'll show how to construct a 3-SAT formula to model an arbitrary CIRCUIT-SAT instance. Example. $(2 \longrightarrow 0 \longrightarrow 0)$ $(1 \longrightarrow 0 \longrightarrow 0)$

Reduction: Clause Gadgets	Proof of Correctness
For each clause C_{ℓ} construct gadget to restrict possible truth assignments • New node c_{ℓ} • If $x_i \in C_{\ell}$ • Add edges $(v_{i,3\ell}, c_{\ell})$ and $(c_{\ell}, v_{i,3\ell+1})$ • c_{ℓ} can be visited during L to R traversal of P_i • If $\neg x_i \in C_{\ell}$ • Add edges $(v_{i,3\ell+1}, c_{\ell})$ and $(c_{\ell}, v_{i,3\ell})$ • c_{ℓ} can be visited during R to L traversal of P_i	Given a satisfying assignment, construct Hamiltonian Cycle • If $x_i = 1$ traverse P_i from $L \to R$, else $R \to L$. • Each C_ℓ is satisfied, so one path P_i is traversed in the correct direction to "splice" c_ℓ into our cycle • The result is a Hamiltonian Cycle Given Hamiltonian cycle, construct satisfying assignment: • If cycle visits c_ℓ from row i , it will also leave to row i because of "buffer" nodes • Therefore, ignoring clause nodes, cycle traverses each row completely from $L \to R$ or $R \to L$ • Set $x_i = 1$ if P_i traversed $L \to R$, else $x_i = 0$ • Every node c_j visited \Rightarrow every clause C_j is satisfied
Traveling Salesman	Clicker
 TSP. Given n cities and distance function d(i, j), is there a tour that visits all cities with total distance less than D? Theorem. TSP is NP-Complete ▶ Clearly in NP. ▶ Reduction? From HAM-CYCLE 	We want to show that HAM-CYCLE \leq_P TSP. How can we do so? Given a HAMCYCLE instance $G = (V, E)$ make TSP instance with one city per vertex and A. $d(v_i, v_j) = 1$ if $(v_i, v_j) \in E$, else 2. Tour distance: $\leq n$? B. $d(v_i, v_j) = 2$ if $(v_i, v_j) \in E$, else 1. Tour distance: $\leq n$? C. $d(v_i, v_j) = 1$ if $(v_i, v_j) \in E$, else 2. Tour distance: $\leq m$?

