

Review: Polynomial-Time Reduction

- $Y \leq_{P} X$: Problem Y is polynomial-time reducible to Problem X, solveY (yInput)

$$
\begin{array}{ll}
\text { Construct xInput } & \text { // poly-time } \\
\text { foo }=\text { solveX(xInput) } & \text { // poly \# of calls } \\
\text { return yes/no based on foo // poly-time }
\end{array}
$$

- ... if any instance of Problem Y can be solved using

1. A polynomial number of standard computational steps
2. A polynomial number of calls to a black box that solves problem X

- Statement about relative hardness

1. If $Y \leq_{P} X$ and $X \in P$, then $Y \in P$
2. If $Y \leq_{P} X$ and $Y \notin P$ then $X \notin P$

Reduction by Gadgets: Satisfiability

- Can we determine if a Boolean formula has a satisfying assignment?

$$
\underbrace{\left(x_{1} \vee \bar{x}_{2}\right)}_{\text {"clause" }} \wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{2} \vee \bar{x}_{3}\right)
$$

- Terminology

Variables	x_{1}, \ldots, x_{n}	
Term / literal	x_{i} or \bar{x}_{i}	variable or its negation
Clause	$C=\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}$	"or" of terms
Formula	$C_{1} \wedge C_{2} \wedge \ldots \wedge C_{k}$	"and" of clauses
Assignment	$\left(x_{1}, x_{2}, x_{3}\right)=(1,0,1)$	assign 0/1 to each variable
Satisfying assigment	$\left(x_{1}, x_{2}, x_{3}\right)=(1,1,0)$	all clauses are "true"

Reduction by Gadgets: Satisfiability

SAT - Given boolean formula $C_{1} \wedge C_{2} \ldots \wedge C_{m}$ over variables x_{1}, \ldots, x_{n}, does there exist a satisfying assignment?

3-SAT - Same, but each C_{i} has exactly three terms
2-SAT - each C_{i} has exactly two terms

Clicker. What is the strongest statement below that follows easily from the definitions above?
A. 2 -SAT $\leq_{P} 3-\mathrm{SAT} \leq_{P}$ SAT
B. $2-\mathrm{SAT} \leq_{P}$ SAT and $3-\mathrm{SAT} \leq_{P}$ SAT
C. $\mathrm{SAT} \leq_{P} 3-\mathrm{SAT} \leq_{P} 2-\mathrm{SAT}$

Reduction

- Idea: construct graph G where independent set will select one term per clause to be true

$$
\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)
$$

- One node per term
- Edges between all terms in same clause (select at most one)
- Edges between a literal and all of its negations (consistent truth assignment)

Reduction by Gadgets: Satisfiability

Claim: 3 -SAT \leq_{P} IndependentSet.

Reduction:

- Given 3-SAT instance $\Phi=\left\langle C_{1}, \ldots, C_{m}\right\rangle$, we will construct an independent set instance $\langle G, m\rangle$ such that G has an independent set of size m iff Φ is satisfiable
- Return Yes if solveIS $(\langle G, m\rangle)=$ Yes

Correctness

$\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)$

Claim: if G has an independent set of size m, then $\left\langle C_{1}, \ldots, C_{m}\right\rangle$ is satisfiable

- Suppose S is an independent set of size m
- Assign variables so selected literals are true. Edges from terms to negations ensure non-conflicting assignment.
- Set any remaining variables arbitrarily
- At most one term per clause is selected. Since m are selected, every clause is satisfied.

Correctness

$$
\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)
$$

Claim: if $\left\langle C_{1}, \ldots, C_{m}\right\rangle$ is satisfiable, then G has an independent set of size m

- Consider any satsifying assignment of $\left\langle C_{1}, \ldots, C_{m}\right\rangle$
- Let S consist of one node per triangle corresponding to true literal in that clause. Then $|S|=m$.
- For (u, v) within clause, at most one endpoint is selected
- For edge $\left(x_{i}, \bar{x}_{i}\right)$ between clauses, at most one endpoint is selected, because $x_{i}=1$ or $\bar{x}_{i}=1$, but not both
- Therefore S is an independent set

Toward a Definition of NP

Remember our problem hierarchy:

What is special about the mystery problems (NP)?

Reductions So Far

Partial map of problems we can use to solve others in polynomial time, through transitivity of reductions:

- Y - X
means $Y \leq_{P} X$

P and NP

Intuition. For many "hard" decision problems, at least one thing is "easy": if the correct answer is YES, there is an easy proof

- Independent set: show an independent set of size at least k
- SAT: show a satisfying assignment

Problem classes

- P: Decision problems for which there is a polynomial time algorithm.
- NP: Decision problems for which there is a polynomial time certifier.
- A solution can be "certified" in polynomial time
- NP = "non-deterministic polynomial time"

Solver vs. Certifier

Let X be a decision problem and s be problem instance
(e.g., $s=\langle G, k\rangle$ for Independent Set)

Poly-time solver. Algorithm $A(s)$ such that $A(s)=$ Yes iff correct answer is Yes, and running time polynomial time in $|s|$

Poly-time certifier. Algorithm $C(s, t)$ such that for every instance s, there is some t such that $C(s, t)=$ Yes iff correct answer is Yes, and running time is polynomial in $|s|$.

- t is the "certificate" or hint; size must also be polynomial in $|s|$

Example: Independent Set

- Independent Set \in P?
- Unknown. No known polynomial time algorithm.
- Independent Set \in NP?
- Yes. Easy to certify solution in polynomial time.

Certifier Example: Independent Set

Input $s=\langle G, k\rangle$.
Problem: Does G have an independent set of size at least k ?
Idea: Certificate $t=$ an independent set of size k
CertifyIS $(\langle G, k\rangle, t)$
if $|t|<k$ return No
for each edge $e=(u, v) \in E$ do
if $u \in t$ and $v \in t$ return No
Return Yes
Polynomial time? Yes, linear in $|E|$.
Important: If correct answer is Yes, some t makes C output Yes, else no way to make C output Yes. C makes correct decision about s if you can guess t.

Example: 3-SAT

Input: formula Φ on n variables.
Problem: Is Φ satisfiable?
Idea: Certificate $t=$ the satisfying assignment
Certify3SAT $(\langle\Phi\rangle, t)$
\triangleright Check if t makes Φ true

P, NP, EXP

- 3SAT and Independent Set are in NP, as are many other problems that are hard to solve, but easy to certify!
- Claim: $\mathrm{P} \subseteq \mathrm{NP}$
- Claim: NP \subseteq EXP
- Both straightforward to prove, but not critical right now.

NP-Complete

- Cook-Levin Theorem: In 1971, Cook and Levin independently showed that particular problems were NP-Complete.
- We'll look at Circuit-SAT as canonical NP-Complete problem.

NP-Complete

- NP-complete $=$ a problem $Y \in$ NP with the property that $X \leq_{P} Y$ for every problem $X \in \mathrm{NP}$!

Circuit-SAT

Problem: Given a circuit built of And, Or, and Not gates with some hard-coded inputs, is there a way to set remaining inputs so the output is 1 ?

Satisfiable? Yes. Set inputs: 1, 1, 0 .

Circuit-SAT

Cook-Levin Theorem Circuit-SAT is NP-Complete

Proof Idea: encode arbitrary certifier $C(s, t)$ as a circuit

- If $X \in \mathrm{NP}$, then X has a poly-time certifier $C(s, t)$:

- s is Yes instance $\Leftrightarrow \exists t$ such that $C(s, t)$ outputs Yes
- Construct a circuit where s is hard-coded, and circuit is satsifiable iff $\exists t$ that causes $C(s, t)$ to output Yes
- s is Yes instance \Leftrightarrow circuit is satisfiable
- Algorithm for Circuit-Sat implies an algorithm for X

A Circuit-SAT reduction

- Vertex Cover - Does G have VC of size at most k ? (Counting gadget is an example for v_{3}, v_{4} only)

A Circuit-SAT reduction

See Independent Set example in other slides

Proving New Problems NP-Complete

Fact: If Y is NP-complete and $Y \leq_{P} X$, then X is NP-complete.

Want to prove problem X is NP-complete

- Check $X \in$ NP
- Choose known NP-complete problem Y.
- Prove $Y \leq_{P} X$.

Clicker

It's easy to show that 3 -SAT \leq_{P} Circuit-SAT. What can we conclude from this?
A. 3-SAT is NP-complete.
B. 3-SAT is in NP.
C. If 3-SAT is NP-complete, then Circuit-SAT is also NP-complete.

NP-Complete Problems: Preview

Proving New Problems NP-Complete

Theorem: 3-SAT is NP-Complete.

- In NP? Yes, check satisfying assignment in poly-time.
- Can show that Circuit-SAT $\leq_{P} 3$-SAT (next time)

