	Review: Polynomial-Time Reduction
COMPSCI 311: Introduction to Algorithms Lecture 22: Intractability: SAT, NP Dan Sheldon University of Massachusetts Amherst	 Y ≤_P X: Problem Y is polynomial-time reducible to Problem X, solveY(yInput) Construct xInput // poly-time foo = solveX(xInput) // poly # of calls return yes/no based on foo // poly-time if any instance of Problem Y can be solved using A polynomial number of standard computational steps A polynomial number of calls to a black box that solves problem X Statement about relative hardness If Y ≤_P X and X ∈ P, then Y ∈ P If Y ≤_P X and Y ∉ P then X ∉ P
Reduction Strategies	Reduction by Gadgets: Satisfiability
 Reduction by equivalence (VERTEX-COVER ≤_P INDEPT-SET and vice versa) Reduction to a more general case (VERTEX-COVER ≤_P SET-COVER) Reduction by "gadgets" 	• Can we determine if a Boolean formula has a satisfying assignment? $\underbrace{(x_1 \lor \bar{x}_2)}_{\text{"clause"}} \land (\bar{x}_1 \lor x_2 \lor \bar{x}_3) \land (x_2 \lor \bar{x}_3)$ • Terminology Variables x_1, \dots, x_n Term / literal x_i or \bar{x}_i variable or its negation Clause $C = \bar{x}_1 \lor x_2 \lor \bar{x}_3$ "or" of terms Formula $C_1 \land C_2 \land \dots \land C_k$ "and" of clauses Assignment $(x_1, x_2, x_3) = (1, 0, 1)$ assign 0/1 to each variable Satisfying assigment $(x_1, x_2, x_3) = (1, 1, 0)$ all clauses are "true"

Solver vs. Certifier

Let X be a decision problem and s be problem instance (e.g., $s=\langle G,k\rangle$ for <code>INDEPENDENT SET</code>)

Poly-time solver. Algorithm A(s) such that A(s) = YES iff correct answer is YES, and running time polynomial time in |s|

Poly-time certifier. Algorithm C(s,t) such that for every instance s, there is some t such that C(s,t) = YES iff correct answer is YES, and running time is polynomial in |s|.

 \blacktriangleright t is the "certificate" or hint; size must also be polynomial in |s|

Example: Independent Set

▶ INDEPENDENT SET \in P?

- Unknown. No known polynomial time algorithm.
- ▶ INDEPENDENT SET \in NP?
 - ▶ Yes. Easy to certify solution in polynomial time.

Certifier Example: Independent Set

```
CertifyIS( \langle G, k \rangle, t)
```

 $\begin{array}{l} \mbox{if } |t| < k \mbox{ return No} \\ \mbox{for each edge } e = (u,v) \in E \mbox{ do} \\ \mbox{if } u \in t \mbox{ and } v \in t \mbox{ return No} \\ \mbox{Return YES} \end{array}$

Polynomial time? Yes, linear in |E|.

Important: If correct answer is YES, *some* t makes C output YES, else *no* way to make C output YES. C makes correct decision about s *if* you can guess t.

Example: 3-SAT

Input: formula Φ on *n* variables. **Problem**: Is Φ satisfiable? **Idea**: Certificate t = the satisfying assignment

Certify3SAT($\langle \Phi \rangle, t$) \triangleright Check if t makes Φ true

Partitioning

0-1 Knapsack

Numerical

Vertex-Cover

Set-Cover Covering Traveling-Salesperson

Sequencing