COMPSCI 311: Introduction to Algorithms Lecture 21: Intractability: Intro and Polynomial-Time Reductions

Dan Sheldon

University of Massachusetts Amherst

Example: Network Design

- Input: undirected graph $G=(V, E)$ with edge costs
- Minimum spanning tree problem: find min-cost subset of edges so there is a path between any $u, v \in V$
- $O(m \log n)$ greedy algorithm
- Minimum Steiner tree problem: find min-cost subset of edges so there is a path between any $u, v \in W$ for specified terminal set W.
- No polynomial-time algorithm is known.

Algorithm Design

- Formulate the problem precisely
- Design an algorithm
- Prove correctness
- Analyze running time

Sometimes you can't find an efficient algorithm.

Example: Subset Sum / Knapsack

MY HOBBY
EMBEDDING NP-COMPLEEE PROBIENS IN RESTAURANT ORDERS

[CHOTCHKIES RESTAUEALT]	WED LIKE EXXCTYY $\$ 15.05$ WORTH OF APPETIIESG, PEESE.
APPETZERS \sim	1 ...Exacru? UnH...
MXXED FRUT $\quad 2.15$	
FRENCH FRIES 2.75	Mor liste i mave si
SIDE SALAD $\quad 3.35$	Tables to get To-
$\begin{array}{ll}\text { HOT WINGS } & 3.55\end{array}$	
Mozzarella stias 4.20	-
SAMPLER PLATE 5.80	- 0100
\sim SANDWICHES ~	

- Input: n items with weights, capacity W

Goal: maximize total weight without exceeding W

- $O(n W)$ pseudo-polynomial time algorithm (DP)
- No polynomial time algorithm known!

Tractability

- Working definition of efficient: polynomial time
- $O\left(n^{d}\right)$ for some d
- Huge class of natural and interesting problems for which
- We don't know any polynomial time algorithm
- We can't prove that none exists
- Goal: develop mathematical tools to say when a problem is hard or "intractable"

NP-Completeness

- NP-complete: problems that are "as hard as" every other problem in NP.
- A polynomial time algorithm for any NP-complete problem implies one for every problem in NP

Preview of Lansdscape: Classes of Problems

- P: solvable in polynomial time
- NP: includes most problems we don't know about
- EXP: solvable in exponential time

$P \neq N P ?$

Two possibilities:

- We don't know which is true, but think $P \neq N P$
- \$1M prize if you can find out (Clay Institute Millenium Problems)

Outline

Goal: develop technical tools to make this precise

- Polynomial-time reductions: what it means for one problem to be "as hard as" another
- Define NP: characterize mystery problems
- NP-completeness: some problems in NP are "as hard as" all others

Clicker

Suppose that $Y \leq_{P} X$. Which of the following can we infer?
A. If X can be solved in polynomial time, then so can Y.
B. If Y cannot be solved in polynomial time, then neither can X.
C. Both A and B.
D. Neither A nor B.

Polynomial-Time Reduction

- Problem Y is polynomial-time reducible to Problem X
solve Y (yInput)

Construct xInput	// poly-time
foo $=$ solveX (xInput)	// poly \# of calls
return yes/no based on foo // poly-time	

return yes/no based on foo // poly-time

- ... if any instance of Problem Y can be solved using

1. A polynomial number of standard computational steps
2. A polynomial number of calls to a black box that solves problem X

- Notation $Y \leq_{P} X$

Polynomial-Time Reduction

- $Y \leq_{P} X$
solve Y (yInput)

Construct xInput	// poly-time
foo = solveX(xInput)	// poly \# of calls

return yes/no based on foo // poly-time

- Statement about relative hardness. Suppose $Y \leq_{P} X$, then:

1. If X is solvable in poly-time, so is Y
2. If Y is not solvable in poly-time, neither is X

- 1: design algorithms, 2: prove hardness

Preview

Partial map of problems we can use to solve others in polynomial time, through transitivity of reductions:

$Y \longrightarrow X$ means $Y \leq_{P} X$.

First Reduction: Independent Set and Vertex Cover

Given a graph $G=(V, E)$,

- $S \subset V$ is an independent set if no nodes in S share an edge. Examples: $\{3,4,5\},\{1,4,5,6\}$.
- $S \subset V$ is a vertex cover if every edge has at least one endpoint in S. Examples: $\{1,2,6,7\},\{2,3,7\}$
Indept-Set Does G have independent set of size at least k ? Vertex-Cover Does G have a vertex cover of size at most k ?

Independent Set and Vertex Cover

- Claim: S is independent set if and only if $V-S$ is a vertex cover.

1. S independent set $\Rightarrow V-S$ vertex cover

- Consider any edge (u, v)
- S independent \Rightarrow either $u \notin S$ or $v \notin S$
- I.e., either $u \in V-S$ or $v \in V-S$
- $\Rightarrow V-S$ is a vertex cover

2. $V-S$ vertex cover $\Rightarrow S$ independent set

- Similar.

Independent Set \leq_{P} Vertex Cover

Claim: Independent $\operatorname{Set} \leq_{P}$ Vertex Cover. Reduction:

- On Independent Set instance $\langle G, k\rangle$
- Construct Vertex Cover instance $\langle G, n-k\rangle$
- Return Yes iff solveVC $(\langle G, n-k\rangle)=$ Yes

Correctness for YES output:

- Suppose G has independent set S with $\geq k$ nodes
- Then $T=V-S$ is a vertex cover with $\leq n-k$ nodes
- The algorithm correctly outputs YES

Correctness for No output:

- Suppose G has no independent set S with $\geq k$ nodes
- Then there is no vertex cover with T with $\leq n-k$ nodes, otherwise $S=V-T$ is an independent set with $\geq k$ nodes.
- The algorithm correctly outputs No

Aside: Decision versus Optimization

- For intractiability and reductions we will focus on decision problems (Yes/No answers)
- Algorithms have typically been for optimization (find biggest/smallest)
- Can reduce optimization to decision and vice versa. Discuss.

Vertex Cover \leq_{P} Independent Set

- Claim: Vertex Cover \leq_{p} Independent Set
- Reduction
- On Vertex Cover input $\langle G, k\rangle$
- Construct Independent Set input $\langle G, n-k\rangle$
- Return Yes if solveIS $(\langle G, n-k\rangle)=$ Yes
- Proof: similar

Reduction Strategies

- Reduction by equivalence
- Reduction to a more general case
- Reduction by "gadgets"

Reduction to General Case: Set Cover

Problem. Given a set U of n elements, subsets $S_{1}, \ldots, S_{m} \subset U$, and a number k, does there exist a collection of at most k subsets S_{i} whose union is U ?

- Example: $U=\{A, B, C, D, E\}$ is the set of all skills, there are five people with skill sets:

$$
\begin{gathered}
S_{1}=\{A, C\}, \quad S_{2}=\{B, E\}, \quad S_{3}=\{A, C, E\} \\
S_{4}=\{D\}, \quad S_{5}=\{B, C, E\}
\end{gathered}
$$

- Find a small team that has all skills. S_{1}, S_{4}, S_{5}

Theorem. VertexCover \leq_{P} SetCover

Clicker

Vertex Cover is a special case of Set Cover with:
A. $U=V$ and $S_{e}=$ the two endpoints of e for each $e \in E$.
B. $U=E$ and $S_{v}=$ the set of edges incident to v for each $v \in V$.
C. $U=V \cup E$ and $S_{v}=$ the set of neighbors of v together with edges incident to v for each $v \in V$.

Intractability: quiz 4

Given the universe $U=\{1,2,3,4,5,6,7\}$ and the following sets, which is the minimum size of a set cover?
A. 1
B. 2
C. 3
D. None of the above.

$$
\begin{array}{ll}
U=\{1,2,3,4,5,6,7\} \\
S_{a}=\{1,4,6\} & S_{b}=\{1,6,7\} \\
S_{c}=\{1,2,3,6\} & S_{d}=\{1,3,5,7\} \\
S_{e}=\{2,6,7\} & S_{f}=\{3,4,5\}
\end{array}
$$

Reduction of Vertex Cover to Set Cover

Theorem. VertexCover \leq_{P} SetCover

Reduction.

- Given Vertex Cover instance $\langle G, k\rangle$
- Construct Set Cover instance $\left\langle U, S_{1}, \ldots, S_{m}, k\right\rangle$ with $U=E$, and $S_{v}=$ the set of edges incident to v
- Return YES iff solveSC $\left(\left\langle U, S_{1}, \ldots, S_{m}, k\right\rangle\right)=$ YeS

Proof

- Straightforward to see that $S_{v_{1}}, \ldots, S_{v_{\ell}}$ is a set cover of size ℓ if and only if v_{1}, \ldots, v_{ℓ} is a vertex cover of size ℓ
- This implies the algorithm correctly outputs YES if G has a vertex cover of size $\leq k$ and No otherwise
- Polynomial \# of steps outside of solveSC
- Only one call to solveSC

