
COMPSCI 311: Introduction to Algorithms
Lecture 21: Intractability: Intro and Polynomial-Time Reductions

Dan Sheldon

University of Massachusetts Amherst

Algorithm Design

▶ Formulate the problem precisely
▶ Design an algorithm
▶ Prove correctness
▶ Analyze running time

Sometimes you can’t find an efficient algorithm.

Example: Network Design

▶ Input: undirected graph G = (V, E) with edge costs

▶ Minimum spanning tree problem: find min-cost subset of edges so there is a
path between any u, v ∈ V .
▶ O(m log n) greedy algorithm

▶ Minimum Steiner tree problem: find min-cost subset of edges so there is a path
between any u, v ∈ W for specified terminal set W .
▶ No polynomial-time algorithm is known.

Example: Subset Sum / Knapsack

▶ Input: n items with weights, capacity W
▶ Goal: maximize total weight without exceeding W

▶ O(nW) pseudo-polynomial time algorithm (DP)
▶ No polynomial time algorithm known!

Tractability

▶ Working definition of efficient: polynomial time
▶ O(nd) for some d.

▶ Huge class of natural and interesting problems for which
▶ We don’t know any polynomial time algorithm
▶ We can’t prove that none exists

▶ Goal: develop mathematical tools to say when a problem is hard or “intractable”

Preview of Lansdscape: Classes of Problems

P

NP

EXP

▶ P: solvable in polynomial time
▶ NP: includes most problems we don’t know about
▶ EXP: solvable in exponential time

NP-Completeness

P

NP

NP-
complete

▶ NP-complete: problems that are “as hard as” every other problem in NP.
▶ A polynomial time algorithm for any NP-complete problem implies one for every

problem in NP

P ̸= NP?

Two possibilities:

P

NP

NP-
complete

P = NP

P ̸= NP P = NP

▶ We don’t know which is true, but think P ̸= NP
▶ $1M prize if you can find out (Clay Institute Millenium Problems)

Outline

Goal: develop technical tools to make this precise

P

NP

NP-
complete ▶ Polynomial-time reductions: what it means for

one problem to be “as hard as” another
▶ Define NP: characterize mystery problems
▶ NP-completeness: some problems in NP are “as

hard as” all others

Polynomial-Time Reduction

▶ Problem Y is polynomial-time reducible to Problem X

solveY(yInput)
Construct xInput // poly-time
foo = solveX(xInput) // poly # of calls
return yes/no based on foo // poly-time

▶ . . . if any instance of Problem Y can be solved using
1. A polynomial number of standard computational steps
2. A polynomial number of calls to a black box that solves problem X

▶ Notation Y ≤P X

Clicker

Suppose that Y ≤P X. Which of the following can we infer?

A. If X can be solved in polynomial time, then so can Y .

B. If Y cannot be solved in polynomial time, then neither can X.

C. Both A and B.

D. Neither A nor B.

Polynomial-Time Reduction

▶ Y ≤P X

solveY(yInput)
Construct xInput // poly-time
foo = solveX(xInput) // poly # of calls
return yes/no based on foo // poly-time

▶ Statement about relative hardness. Suppose Y ≤P X, then:
1. If X is solvable in poly-time, so is Y
2. If Y is not solvable in poly-time, neither is X

▶ 1: design algorithms, 2: prove hardness

Preview

Partial map of problems we can use to solve others in polynomial time, through
transitivity of reductions:

3-SAT

Indept-Set SAT

Vertex-Cover

Set-Cover

▶ Y X

means Y ≤P X.

First Reduction: Independent Set and Vertex Cover

Given a graph G = (V, E),

1 2

3 4 5

6 7

▶ S ⊂ V is an independent set if no nodes in S share an edge. Examples:
{3, 4, 5}, {1, 4, 5, 6}.

▶ S ⊂ V is a vertex cover if every edge has at least one endpoint in S. Examples:
{1, 2, 6, 7}, {2, 3, 7}

Indept-Set Does G have independent set of size at least k? Vertex-Cover Does
G have a vertex cover of size at most k?

Intractability: quiz 3

Consider the following graph G. Which are true?

A. The white vertices are a vertex cover of size 7.

B. The black vertices are an independent set of size 3.

C. Both A and B.

D. Neither A nor B.

 15

slide credit: Kevin Wayne / Pearson

Independent Set and Vertex Cover

▶ Claim: S is independent set if and only if V − S is a vertex cover.

1. S independent set ⇒ V − S vertex cover
▶ Consider any edge (u, v)
▶ S independent ⇒ either u /∈ S or v /∈ S
▶ I.e., either u ∈ V − S or v ∈ V − S
▶ ⇒ V − S is a vertex cover

2. V − S vertex cover ⇒ S independent set
▶ Similar.

Independent Set ≤P Vertex Cover
Claim: Independent Set ≤P Vertex Cover. Reduction:
▶ On Independent Set instance ⟨G, k⟩
▶ Construct Vertex Cover instance ⟨G, n − k⟩
▶ Return Yes iff solveVC(⟨G, n − k⟩) = Yes

Correctness for Yes output:
▶ Suppose G has independent set S with ≥ k nodes
▶ Then T = V − S is a vertex cover with ≤ n − k nodes
▶ The algorithm correctly outputs Yes

Correctness for No output:
▶ Suppose G has no independent set S with ≥ k nodes
▶ Then there is no vertex cover with T with ≤ n − k nodes, otherwise S = V − T is

an independent set with ≥ k nodes.
▶ The algorithm correctly outputs No

Vertex Cover ≤P Independent Set

▶ Claim: Vertex Cover ≤P Independent Set
▶ Reduction:

▶ On Vertex Cover input ⟨G, k⟩
▶ Construct Independent Set input ⟨G, n − k⟩
▶ Return Yes if solveIS(⟨G, n − k⟩) = Yes

▶ Proof: similar

Aside: Decision versus Optimization

▶ For intractiability and reductions we will focus on decision problems (Yes/No
answers)

▶ Algorithms have typically been for optimization (find biggest/smallest)
▶ Can reduce optimization to decision and vice versa. Discuss.

Reduction Strategies

▶ Reduction by equivalence

▶ Reduction to a more general case

▶ Reduction by “gadgets”

Reduction to General Case: Set Cover

Problem. Given a set U of n elements, subsets S1, . . . , Sm ⊂ U , and a number k, does
there exist a collection of at most k subsets Si whose union is U?
▶ Example: U = {A, B, C, D, E} is the set of all skills, there are five people with

skill sets:
S1 = {A, C}, S2 = {B, E}, S3 = {A, C, E}

S4 = {D}, S5 = {B, C, E}
▶ Find a small team that has all skills. S1, S4, S5

Theorem. VertexCover ≤P SetCover

Intractability: quiz 4

Given the universe U = { 1, 2, 3, 4, 5, 6, 7 } and the following sets,
which is the minimum size of a set cover?

A. 1

B. 2

C. 3

D. None of the above.

 20

U = { 1, 2, 3, 4, 5, 6, 7 }

Sa = { 1, 4, 6 } Sb = { 1, 6, 7 }

Sc = { 1, 2, 3, 6 } Sd = { 1, 3, 5, 7 } 
Se = { 2, 6, 7 } Sf = { 3, 4, 5 }

slide credit: Kevin Wayne / Pearson

Clicker

Vertex Cover is a special case of Set Cover with:

A. U = V and Se = the two endpoints of e for each e ∈ E.

B. U = E and Sv = the set of edges incident to v for each v ∈ V .

C. U = V ∪ E and Sv = the set of neighbors of v together with edges incident to v
for each v ∈ V .

Reduction of Vertex Cover to Set Cover
Theorem. VertexCover ≤P SetCover

Reduction.
▶ Given Vertex Cover instance ⟨G, k⟩
▶ Construct Set Cover instance ⟨U, S1, . . . , Sm, k⟩ with U = E, and Sv = the set

of edges incident to v
▶ Return Yes iff solveSC(⟨U, S1, . . . , Sm, k⟩) = Yes

Proof
▶ Straightforward to see that Sv1 , . . . , Svℓ

is a set cover of size ℓ if and only if
v1, . . . , vℓ is a vertex cover of size ℓ

▶ This implies the algorithm correctly outputs Yes if G has a vertex cover of size
≤ k and No otherwise

▶ Polynomial # of steps outside of solveSC
▶ Only one call to solveSC

