COMPSCI 311: Introduction to Algorithms

Lecture 21: Intractability: Intro and Polynomial-Time Reductions

Dan Sheldon

University of Massachusetts Amherst

Algorithm Design

- ► Formulate the problem precisely
- Design an algorithm
- Prove correctness
- ► Analyze running time

Sometimes you can't find an efficient algorithm.

Example: Network Design

- ▶ **Input**: undirected graph G = (V, E) with edge costs
- ▶ Minimum spanning tree problem: find min-cost subset of edges so there is a path between any $u, v \in V$.
 - $ightharpoonup O(m \log n)$ greedy algorithm
- ▶ Minimum Steiner tree problem: find min-cost subset of edges so there is a path between any $u, v \in W$ for specified terminal set W.
 - ▶ No polynomial-time algorithm is known.

Example: Subset Sum / Knapsack

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEYS IN RESTAURANT ORDERS

- ▶ Input: n items with weights, capacity W
- ightharpoonup Goal: maximize total weight without exceeding W
 - ightharpoonup O(nW) pseudo-polynomial time algorithm (DP)
 - ► No polynomial time algorithm known!

Tractability

- ▶ Working definition of efficient: polynomial time
 - $ightharpoonup O(n^d)$ for some d.
- ► Huge class of natural and interesting problems for which
 - ► We don't know any polynomial time algorithm
 - ► We can't prove that none exists
- ▶ Goal: develop mathematical tools to say when a problem is hard or "intractable"

Preview of Lansdscape: Classes of Problems

- ▶ P: solvable in polynomial time
- ▶ NP: includes most problems we don't know about
- **EXP**: solvable in exponential time

NP-Completeness

- ▶ NP-complete: problems that are "as hard as" every other problem in NP.
- ► A polynomial time algorithm for any NP-complete problem implies one for *every* problem in NP

$P \neq NP$?

Two possibilities:

- ightharpoonup We don't know which is true, but think P \neq NP
- ▶ \$1M prize if you can find out (Clay Institute Millenium Problems)

Outline

Goal: develop technical tools to make this precise

- ► Polynomial-time reductions: what it means for one problem to be "as hard as" another
- ▶ **Define NP**: characterize mystery problems
- ► NP-completeness: some problems in NP are "as hard as" all others

Polynomial-Time Reduction

ightharpoonup Problem Y is **polynomial-time reducible** to Problem X

- ightharpoonup . . . if any instance of Problem Y can be solved using
 - 1. A polynomial number of standard computational steps
 - 2. A polynomial number of calls to a black box that solves problem \boldsymbol{X}
- ▶ Notation $Y \leq_P X$

Clicker

Suppose that $Y \leq_P X$. Which of the following can we infer?

- A. If X can be solved in polynomial time, then so can Y.
- B. If Y cannot be solved in polynomial time, then neither can X.
- C. Both A and B.
- D. Neither A nor B.

Polynomial-Time Reduction

```
ightharpoonup Y \leq_P X
```

- ▶ Statement about relative hardness. Suppose $Y \leq_P X$, then:
 - 1. If X is solvable in poly-time, so is Y
 - 2. If Y is *not* solvable in poly-time, neither is X
- ▶ 1: design algorithms, 2: prove hardness

Preview

Partial map of problems we can use to solve others in polynomial time, through transitivity of reductions:

First Reduction: Independent Set and Vertex Cover

Given a graph G = (V, E),

- ▶ $S \subset V$ is an **independent set** if no nodes in S share an edge. Examples: $\{3,4,5\},\{1,4,5,6\}.$
- ▶ $S \subset V$ is a **vertex cover** if every edge has at least one endpoint in S. Examples: $\{1, 2, 6, 7\}, \{2, 3, 7\}$

INDEPT-SET Does G have independent set of size at least k? VERTEX-COVER Does G have a vertex cover of size at most k?

Independent Set and Vertex Cover

- ▶ Claim: S is independent set if and only if V S is a vertex cover.
- 1. S independent set $\Rightarrow V S$ vertex cover
 - ightharpoonup Consider any edge (u, v)
 - ▶ S independent \Rightarrow either $u \notin S$ or $v \notin S$
 - ▶ I.e., either $u \in V S$ or $v \in V S$
 - $ightharpoonup \Rightarrow V S$ is a vertex cover
- 2. V-S vertex cover $\Rightarrow S$ independent set
 - ► Similar.

Independent Set \leq_P Vertex Cover

Claim: Independent Set \leq_P Vertex Cover. Reduction:

- ▶ On Independent Set instance $\langle G, k \rangle$
- ▶ Construct Vertex Cover instance $\langle G, n-k \rangle$
- ▶ Return YES iff solveVC($\langle G, n-k \rangle$) = YES

Correctness for $Y{\ensuremath{\mathrm{ES}}}$ output:

- ▶ Suppose G has independent set S with $\geq k$ nodes
- ▶ Then T = V S is a vertex cover with $\leq n k$ nodes
- ► The algorithm correctly outputs YES

 $\textbf{Correctness} \ \text{for} \ \mathrm{No} \ \text{output:}$

- ▶ Suppose G has no independent set S with $\geq k$ nodes
- ▶ Then there is no vertex cover with T with $\leq n-k$ nodes, otherwise S=V-T is an independent set with $\geq k$ nodes.
- ► The algorithm correctly outputs No

Vertex Cover \leq_P Independent Set

- ► Claim: Vertex Cover <_P Independent Set
- ► Reduction:
 - ▶ On Vertex Cover input $\langle G, k \rangle$
 - ▶ Construct Independent Set input $\langle G, n-k \rangle$
 - ▶ Return YES if solveIS($\langle G, n-k \rangle$) = YES
- ▶ **Proof**: similar

Aside: Decision versus Optimization

- \blacktriangleright For intractiability and reductions we will focus on decision problems (YES/No answers)
- ▶ Algorithms have typically been for optimization (find biggest/smallest)
- ► Can reduce optimization to decision and vice versa. Discuss.

Reduction Strategies

- ► Reduction by equivalence
- ► Reduction to a more general case
- ► Reduction by "gadgets"

Reduction to General Case: Set Cover

Problem. Given a set U of n elements, subsets $S_1, \ldots, S_m \subset U$, and a number k, does there exist a collection of at most k subsets S_i whose union is U?

 $lackbox{ Example: } U=\{A,B,C,D,E\}$ is the set of all skills, there are five people with skill sets:

$$S_1 = \{A, C\}, \quad S_2 = \{B, E\}, \quad S_3 = \{A, C, E\}$$

$$S_4 = \{D\}, \quad S_5 = \{B, C, E\}$$

Find a small team that has all skills. S_1, S_4, S_5

Theorem. VertexCover \leq_P SetCover

Intractability: quiz 4

|>

Given the universe $U = \{1, 2, 3, 4, 5, 6, 7\}$ and the following sets, which is the minimum size of a set cover?

- **A.** 1
- **B.** 2
- **C.** 3
- D. None of the above.
- $U = \{1, 2, 3, 4, 5, 6, 7\}$ $S_a = \{1, 4, 6\}$ $S_b = \{1, 6, 7\}$ $S_c = \{1, 2, 3, 6\}$ $S_d = \{1, 3, 5, 7\}$ $S_e = \{2, 6, 7\}$ $S_f = \{3, 4, 5\}$

slide credit: Kevin Wayne / Pearson

Clicker

Vertex Cover is a special case of Set Cover with:

- A. U = V and $S_e =$ the two endpoints of e for each $e \in E$.
- B. U = E and $S_v =$ the set of edges incident to v for each $v \in V$.
- C. $U=V\cup E$ and $S_v=$ the set of neighbors of v together with edges incident to v for each $v\in V$.

Reduction of Vertex Cover to Set Cover

Theorem. VertexCover \leq_P SetCover

Reduction.

- ▶ Given VERTEX COVER instance $\langle G, k \rangle$
- ▶ Construct SET COVER instance $\langle U, S_1, \dots, S_m, k \rangle$ with U = E, and $S_v =$ the set of edges incident to v
- ▶ Return YES iff solveSC($\langle U, S_1, \dots, S_m, k \rangle$) = YES

Proof

- ▶ Straightforward to see that $S_{v_1}, \ldots, S_{v_\ell}$ is a set cover of size ℓ if and only if v_1, \ldots, v_ℓ is a vertex cover of size ℓ
- ▶ This implies the algorithm correctly outputs YES if G has a vertex cover of size $\leq k$ and NO otherwise
- ► Polynomial # of steps outside of solveSC
- ► Only one call to solveSC