COMPSCI 311: Introduction to Algorithms Lecture 19: Network Flow

Dan Sheldon

University of Massachusetts Amherst

Review: Ford-Fulkerson Algorithm

ightharpoonup Augment flow as long as it is possible while there exists an s-t path P in redisual graph G_f do $f=\operatorname{Augment}(f,\,P)$ update G_f return f

Pearson Demo

Correctness: relate maximum flow to minimum cut

Step 3: F-F returns a maximum flow

We will prove this by establishing a deep connection between flows and cuts in graphs: the max-flow min-cut theorem.

- ▶ An s-t cut (A, B) is a partition of the nodes into sets A and B where $s \in A$, $t \in B$
- ightharpoonup Capacity of cut (A,B) equals

$$c(A,B) = \sum_{e \text{ from } A \text{ to } B} c(e)$$

ightharpoonup Flow across a cut (A, B) equals

$$f(A,B) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

Example of Cut

Exercise: write capacity of cut and flow across cut.

Capacity is 29 and flow across cut is 19.

Clicker Question

What is the capacity of the cut and the flow across the cut?

	Capacity	Flow
Α.	16+4+9+14	11+1+3+11
В.	16+4 -9+14	11+1 -4+11
C.	16 + 4 + 14	11+1 -4+11
D.	16 + 4 + 14	11 + 1 + 11

Flow Value Lemma

First relationship between cuts and flows

Lemma: let f be any flow and (A,B) be any s-t cut. Then

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

Proof: see book. Basic idea is to use conservation of flow: all the flow out of s must leave A eventually.

Corollary: Cuts and Flows

Really important corollary of flow-value lemma

 $\mbox{\bf Corollary: Let f be any s-t flow and let (A,B) be any s-t cut. Then $v(f) \leq c(A,B)$.}$

Proof:

$$\begin{split} v(f) &= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e) \\ &\leq \sum_{e \text{ out of } A} f(e) \\ &\leq \sum_{e \text{ out of } A} c(e) \\ &= c(A,B) \end{split}$$

Duality

Illustration on board

Claim If there is a flow f^* and cut (A^*,B^*) such that $v(f^*)=c(A^*,B^*)$, then

- $ightharpoonup f^*$ is a maximum flow
- $ightharpoonup (A^*, B^*)$ is a minimum cut

Clicker

Suppose f is a flow, and there is a path from s to u in $G_f,$ but no path from s to v in $G_f.$ Then

- A. There is no edge from u to v in G.
- B. If there is an edge from u to v in G then f does not send any flow on this edge.
- C. If there is an edge from u to v in G then f fully saturates it with flow.
- D. None of the above.

Clicker

Suppose f is a flow, and there is a path from s to u in G_f , but no path from s to v in G_f . Then

- A. There is no edge from v to u in G.
- B. If there is an edge from v to u in G then f does not send any flow on this edge.
- C. If there is an edge from v to u in G then f fully saturates it with flow.
- D. None of the above.

F-F returns a maximum flow

Theorem: The s-t flow f returned by F-F is a maximum flow.

- \blacktriangleright Since f is the final flow there are no residual paths in G_f .
- ▶ Let (A, B) be the s-t cut where A consists of all nodes reachable from s in the residual graph.
 - \blacktriangleright Any edge out of A must have f(e)=c(e) otherwise there would be more nodes than just A that reachable from s.
 - Any edge into A must have f(e)=0 otherwise there would be more nodes than just A that reachable from s.

$$\begin{split} v(f) &= \sum_{e \text{ out of} A} f(e) - \sum_{e \text{ into} A} f(e) \\ &= \sum_{e \text{ out of} A} c(e) = c(A,B) \end{split}$$

F-F finds a minimum cut

Theorem: The cut (A,B) where A is the set of all nodes reachable from s in the residual graph is a minimum-cut.

F-F finds a minimum cut

Ford-Fulkerson Running Time

- ► Flow increases at least one unit per iteration
- ightharpoonup F-F terminates in at most C iterations, where C is the sum of capacities leaving source
- $ightharpoonup C \leq n\,C_{
 m max}$, where $C_{
 m max} =$ maximum edge capacity
- ▶ Running time: $O(m n C_{\text{max}})$

Is this polynomial? pseudo-polynomial (exponential in $\log C_{
m max}$)

Running-Time Example

What is the smallest number of augment operations with which Ford-Fulkerson can find a maximum-flow in this graph?

- A. 1
- B. 2
- **C**. 3
- **D**. *C*

Improving Running Time

Good path choice will find:

 $s \to u \to t$, flow C $s \to v \to t$, flow C

Worst-case: keep incrementing by 1:

 $s \rightarrow u \rightarrow v \rightarrow t,$ flow 1 $\quad s \rightarrow v \rightarrow u \rightarrow t,$ flow 1

 $s \rightarrow u \rightarrow v \rightarrow t$, flow 1

Solution: choose good augmenting paths, with

- ► Large enough bottleneck capacity: capacity-scaling algorithm
- ► Fewest edges: Edmonds-Karp, Dinitz

Capacity-scaling algorithm

Idea: ignore edges with small capacity at first

 $G_f(\Delta)$ for $\Delta=100.$ Def: only edges with residual capacity $\geq \Delta$

Capacity-scaling algorithm

Start with large Δ , divide by two in each phase

```
\begin{array}{l} \text{let } f(e) = 0 \text{ for all } e \in E \\ \text{let } \Delta = \text{largest power of } 2 \leq C_{\max} \\ \text{while } \Delta \geq 1 \text{ do} \\ \text{prune residual graph } G_f \text{ to } G_f(\Delta) \\ \text{while there is augmenting } s \leadsto t \text{ path } P \text{ in } G_f(\Delta) \text{ do} \\ f = \text{Augment}(f,P) \\ \text{update } G_f(\Delta) \\ \Delta = \Delta/2 \end{array}
```

 \triangleright only $c_e \ge \Delta$ \triangleright refine

Capacity-Scaling: Running Time

- ▶ How many scaling phases? $\Theta(\log C_{\max})$
- ▶ How much does the flow increase at every augmentation? $\geq \Delta$
- ▶ How many augmentations per phase? $\leq 2m$
 - ▶ Can show: at end of Δ phase, flow value within $m\Delta$ of max. \Longrightarrow at most 2m iterations $\Delta/2$ phase
 - \triangleright (Sketch) Construct cut (A, B) as in max-flow / min-cut theorem.
 - ightharpoonup Edges from A to B are within Δ of being saturated.
 - ightharpoonup Edges from B to A carry less than Δ flow.
 - ightharpoonup Cut capacity at most $m\Delta$ more than flow value.
- ightharpoonup Recall: time to find augmenting path? O(m)
- ▶ Overall: $O(m^2 \log C_{\text{max}})$, polynomial

Running Times

- ▶ Basic F-F: $O(mnC_{max})$ pseudo-polynomial
 - polynomial in magnitude
- ▶ Capacity-scaling: $O(m^2 \log C_{\text{max}})$ polynomial
 - polynomial in number of bits
- **Edmonds-Karp**: $O(m^2n)$ **strongly-polynomial**
 - ightharpoonup does not depend on values, only m, n
- ▶ Dinitz: $O(mn^2)$ even better
- ▶ Edmonds-Karp and Dinitz: choose *short* augmenting paths