


Algorithm Design Techniques

- Greedy
- Divide and Conquer
- Dynamic Programming
- Network Flows


## Solution: A Flow



A network flow is an assignment of values $f(e)$ to each edge $e$, which satisfy:

- Capacity constraints: $0 \leq f(e) \leq c(e)$ for all $e$
- Flow conservation:

$$
\sum_{e \text { into } v} f(e)=\sum_{e \text { out of } v} f(e)
$$

for all $v \notin\{s, t\}$.
Value $v(f)$ of flow $f=$ total flow on edges leaving source

Max flow problem: find a flow of maximum value

## Network Flow

- Previous topics were design techniques
(Greedy, Divide-and-Conquer, Dynamic Programming)
- Network flow: a specific class of problems with many applications
- Direct applications: commodities in networks
- transporting goods on the rail network
- packets on the internet
- gas through pipes

Plan: design and analyze algorithms for max-flow problem,
then apply to solve other problems

First, a Story About Flow and Cuts
Key theme: flows in a network are intimately related to cuts Soviet rail network (Harris \& Ross, RAND report, 1955)


On the history of the transportation and maximum flow problems. Alexander Schrijiver, Math Programming, 2002.

## Residual Graph (Key Idea!!)

The residual graph $G_{f}$ identifies ways to increase flow on edges with leftover capacity, or decrease flow on edges already carrying flow:


For each original edge $e=(u, v)$ in $G$, it has:

- A forward edge $e=(u, v)$ with residual capacity $c(e)-f(e)$
- A reverse edge $e^{\prime}=(v, u)$ with residual capacity $f(e)$

Edges with zero residual capacity are omitted

## Designing a Max-Flow Algorithm

First idea: initialize to zero flow and then repeatedly "augment" flow on paths from $s$ to $t$ until we can no longer do so.


Problem: we are now stuck. All $s \rightarrow t$ paths have a saturated edge.
We would like to "augment" $s \xrightarrow{+1} v \stackrel{-1}{\leftarrow} u \xrightarrow{+1} t$, but this is not a real $s \rightarrow t$ path.
How can we identify such an opportunity?

## Exercise: residual graph

G


Let $G$ and $f$ be as depicted above. What is the residual capacity of edge $\left(v_{1}, v_{3}\right)$ in $G_{f}$ ?
A. 3
B. 1
C. 4
D. The edge is not present in $G_{f}$.

## Exercise: residual graph

G


Let $G$ and $f$ be as depicted above. What is the residual capacity of edge $\left(v_{2}, v_{3}\right)$ in $G_{f}$ ?
A. 5
B. 4
C. 9
D. The edge is not present in $G_{f}$.

Exercise: residual graph

G

$G_{f}$


## Exercise: residual graph

G


Let $G$ and $f$ be as depicted above. What is the residual capacity of edge $\left(v_{4}, v_{2}\right)$ in $G_{f}$ ?
A. 0
B. 7
C. 4
D. The edge is not present in $G_{f}$.

## Emphasis: Residual Graph

- The residual graph is the key data structure used for network flows
- If you have a graph $G$ and flow $f$, construct the residual graph $G_{f}$


## Augment Operation

Revised Idea: use $s-t$ paths in the residual graph ("augmenting paths") to augment flow


Augment Operation

Revised Idea: use paths in the residual graph to augment flow
$f=$ flow in $G$
$P=$ augmenting path $=s \rightarrow t$ path in $G_{f}$
Augment $(f, P)$
Let $b=\operatorname{bottleneck}(P, f)$
for each edge $e$ in $P$ do
if $e$ is a forward edge then $f(e)=f(e)+b$
$\triangleright$ least residual capacity in $P$
else $e$ is a backward edge
Let $e^{\prime}$ be opposite edge in $G$

$$
f\left(e^{\prime}\right)=f\left(e^{\prime}\right)-b
$$

$\triangleright$ increase flow on forward edges
$\triangleright$ decrease flow on backward edges

## Clicker Question

What is the largest bottleneck capacity of any augmenting path?

A. 1
B. 4
C. 5
D. 11

Augment Example

G

$G_{f}$



Ford-Fulkerson Algorithm

Repeatedly find augmenting paths in the residual graph and use them to augment flow!
Ford-Fulkerson $(G, s, t)$
$\triangle$ Initially, no flow
Initialize $f(e)=0$ for all edges $e$
Initialize $G_{f}=G$
$\triangle$ Augment flow as long as it is possible
while there exists an $s$ - $t$ path $P$ in $G_{f}$ do
$f=\operatorname{Augment}(f, P)$
update $G_{f}$
return $f$

New Flow

G

$G_{f}$


Clicker

Given a graph $G$ and a flow $f$, how can you test if $f$ is a maximum flow?
A. Check for an $s \rightarrow t$ path in the residual graph $G_{f}$.
B. Check for an $s \rightarrow t$ path in the residual graph $G_{f}$.
C. Check for an $s \rightarrow t$ path in the residual graph $G_{f}$.
D. Check for an $s \rightarrow t$ path in the residual graph $G_{f}$.

## Ford-Fulkerson Example

See Pearson slides

## Step 1: F-F returns a flow

Claim: If $f$ is a flow then $f^{\prime}=\operatorname{Augment}(f, P)$ is also a flow.

Proof idea. Verify two conditions for $f^{\prime}$ to be a flow: capacity and flow conservation.

## Ford-Fulkerson Analysis

- Step 1: argue that F-F returns a flow
- Step 2: analyze termination and running time
- Step 3: argue that F-F returns a maximum flow


## Capacity



- Suppose original edge is $e=(x, y)$
- If forward edge $(x, y)$ appears in $P$, then flow on $e$ increases by bottleneck capacity $b$, which is at most $c(e)-f(e)$, so does not exceed $c(e)$
- If reverse edge $(y, x)$ appears in $P$, then flow decreases by bottleneck capacity $b$, which is at most $f(e)$, so is at least 0


## Flow Conservation



Consider any node $v$ in augmenting path, do case analysis on edge types:

$$
\begin{array}{cl}
\text { residual graph: } P=s \rightsquigarrow & u \rightarrow v \longrightarrow w \rightsquigarrow t \\
\text { original graph: } & u \xrightarrow{+b} v \stackrel{+b}{\longrightarrow} w \\
& u \xrightarrow{+b} v \stackrel{-b}{\leftarrow} w \\
& u \stackrel{-b}{\leftarrow} v \stackrel{+b}{\longrightarrow} w \\
& u \stackrel{-b}{\leftarrow} v \stackrel{-b}{\leftarrow} w
\end{array}
$$

In all cases, change in incoming flow at $v$ is equal to the change in outgoing flow.

## Step 3: F-F returns a maximum flow

We will prove this by establishing a deep connection between flows and cuts in graphs: the max-flow min-cut theorem.

- An $s$ - $t$ cut $(A, B)$ is a partition of the nodes into sets $A$ and $B$ where $s \in A, t \in B$
- Capacity of cut $(A, B)$ equals

$$
c(A, B)=\sum_{e \text { from } A \text { to } B} c(e)
$$

- Flow across a cut $(A, B)$ equals

$$
f(A, B)=\sum_{e \text { out of } A} f(e)-\sum_{e \text { into } A} f(e)
$$

## Step 2: Termination and Running Time

Assumption: All capacities are integers. By nature of F-F, all flow values and residual capacities remain integers during the algorithm.

## Running time:

- In each F-F iteration, flow increases by at least 1. Therefore, number of iterations is at most $v\left(f^{*}\right)$, where $f^{*}$ is the final flow.
- Let $C$ be the total capacity of edges leaving source $s$
- Then $v\left(f^{*}\right) \leq C$.
- So F-F terminates in at most $C$ iterations

Running time per iteration? $O(m+n)$ to find an augmenting path

## Example of Cut



Exercise: write capacity of cut and flow across cut.
Capacity is 29 and flow across cut is 19

## Clicker Question

What is the capacity of the cut and the flow across the cut?

|  | Capacity | Flow |
| :--- | :--- | :--- |
| A. | $16+4+9+14$ | $11+1+3+11$ |
| B. | $16+4-9+14$ | $11+1-4+11$ |
| C. | $16+4+14$ | $11+1-4+11$ |
| D. | $16+4+14$ | $11+1+11$ |



## Flow Value Lemma

First relationship between cuts and flows

Lemma: let $f$ be any flow and $(A, B)$ be any $s$ - $t$ cut. Then

$$
v(f)=\sum_{e \text { out of } A} f(e)-\sum_{e \text { into } A} f(e)
$$

Proof: see book. Basic idea is to use conservation of flow: all the flow out of $s$ must leave $A$ eventually

