
COMPSCI 311: Introduction to Algorithms
Lecture 17: Dynamic Programming – Shortest Paths
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Currency Trading
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▶ Problem: given directed graph with
exchange rate re on edge e, find s → t
path P to maximize overall exchange
rate ∏

e∈P re

▶ Assumption (no arbitrage): no cycles
C such that ∏

e∈C re > 1.

From Rates to Costs

▶ Similar, but not the same as finding a shortest path.
▶ Let’s change from rates to costs by transforming the problem.
▶ Let ce = − log re be the cost of edge e
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Rates
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Costs

From Rates to Costs

▶ The cost (length) of a path becomes the negative log of its rate
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c12 + c23 + c34 = − log r12 + − log r23 + − log r34 = − log(r12r23r34)



From Rates to Costs

▶ Because log is monotone we have: lower cost ⇐⇒ higher rate
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▶ New problem: find the s → t path of minimum cost

Currency Trading as Shortest Path Problem
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▶ Negative edge weights!
▶ Problem: given a graph with edge

weights that may be negative, find
shortest s → t path

▶ Assumption: no cycle C such that∑
e∈C ce < 0. Why?

Dynamic Programming Approach (False Start)

▶ Let OPT(v) be the cost of the shortest v → t path
▶ What goes wrong with this?
▶ The recurrence is not well-defined, e.g., there are nodes i and j where OPT(i)

depends on OPT(j) and vice versa.
▶ Idea: We can fix this by “adding a variable” to the recurrence that is always

decreasing.

Bellman-Ford Algorithm

Let OPT(i, v) be cost of shortest v ⇝ t path P with at most i edges
▶ If P uses at most i − 1 edges then OPT(i, v) = OPT(i − 1, v)
▶ Else P = v → w ⇝ t where w ⇝ t path uses i − 1 edges, so

OPT(i, v) = cv,w + OPT(i − 1, w)

This gives the recurrence

OPT(i, v) = min
{

OPT(i − 1, v), min
w∈V

{cv,w + OPT(i − 1, w)}
}

OPT(0, t) = 0
OPT(0, v) = ∞ if v ̸= t



Clicker

With negative edge lengths, paths can get shorter as we include more edges.

Assuming all cycles have positive cost and m > n, what is the largest possible number
of edges in a shortest-length path from v to t?

A. n

B. m

C. n − 1

D. m − 1

Bellman-Ford

OPT(i, v) = min
{

OPT(i − 1, v), min
w∈V

{cv,w + OPT(i − 1, w)}
}

Subproblems? OPT(i, v) for i = 1 to n − 1, v ∈ V
(Fact: shortest path has at most n − 1 edges)

Shortest-Path(G, s, t)
n = number of nodes in G
Create array M of size n × n
Set M [0, t] = 0 and M [0, v] = ∞ for all other v
for i = 1 to n − 1 do

for all nodes v in any order do
Compute M [i, v] using the recurrence above

Running time? O(n3). Better analysis O(mn). Example

Clicker

Suppose there is some iteration i for which M [i, v] = M [i − 1, v] for all v. Then

A. There is a negative cycle in the graph.

B. We can terminate the algorithm after the ith iteration, because no future values
will change.

C. There are no negative edge costs in the graph.

D. The graph is undirected.

Bellman-Ford-Moore: Efficient Implementation
▶ Store only one column: M array → d vector
▶ Only consider neighbors w whose value changed
▶ Keep track of shortest path using successor array

Shortest-Path(G, t)
set d[t] = 0 and d[v] = ∞ for all v ̸= t
set succ[v] = null for all v
for i = 1 to n − 1 do

for all nodes w ̸= t do
if w updated in last iteration then

for all (v, w) ∈ E do
if cv,w + d[w] < d[v] then

d[v] = cv,w + d[w]
succ[v] = w

▶ Space? O(m + n), time O(mn)



Clicker

Suppose we remove the assumption that there are no negative cycles, and find that
OPT(n, v) < OPT(n − 1, v) for some node v. Then

A. There is a negative cycle on some v ⇝ t path in the graph.

B. There are no negative edge costs in the graph.

C. There is a negative cycle on some t⇝ v path in the graph.

D. There are no negative cycles in the graph.

Negative Cycles

▶ How to detect negative-weight cycles?
▶ Suppose OPT(n, v) < OPT(n − 1, v). Then there is a negative cycle on some v ⇝ t

path, since shortest paths have at most n − 1 edges in the absence of negative cycles.
▶ Suppose OPT(n, v) = OPT(n − 1, v) for all v. Then the algorithm will not update

after the nth iteration =⇒ no negative cycles on any v ⇝ t path.

▶ Fact: there is a negative cycle on some v ⇝ t path iff OPT(n, v) < OPT(n − 1, v)
for some v.

▶ Detect negative cycles by running for one more iteration to see if some value
decreases!

Detecting Negative-Weight Cycles

But this only detects cycles on paths to a fixed target node t. How to find a
negative-weight cycle anywhere in the graph?

Detecting negative cycles

Theorem 4.  Can find a negative cycle in Θ(mn) time and Θ(n2) space. 

Pf. 

独Add new sink node t and connect all nodes to t with 0-length edge. 

独G has a negative cycle iff G ʹ has a negative cycle. 

独Case 1. [ OPT(n, v) = OPT(n – 1, v) for every node v ] 
By Lemma 7, no negative cycles. 

独Case 2. [ OPT(n, v) < OPT(n – 1, v) for some node v ] 
Using proof of Lemma 8, can extract negative cycle from v↝t path. 
(cycle cannot contain t since no edge leaves t)  ▪
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Add a dummy target node.


