

From Rates to Costs

- Similar, but not the same as finding a shortest path.
- Let's change from rates to costs by transforming the problem.
- Let $c_{e}=-\log r_{e}$ be the cost of edge e

Rates

Costs

Currency Trading

Problem: given directed graph with exchange rate r_{e} on edge e, find $s \rightarrow t$ path P to maximize overall exchange rate $\prod_{e \in P} r_{e}$

- Assumption (no arbitrage): no cycles C such that $\prod_{e \in C} r_{e}>1$.

From Rates to Costs

- The cost (length) of a path becomes the negative log of its rate

$c_{12}+c_{23}+c_{34}=-\log r_{12}+-\log r_{23}+-\log r_{34}=-\log \left(r_{12} r_{23} r_{34}\right)$

From Rates to Costs

- Because \log is monotone we have: lower cost \Longleftrightarrow higher rate

- New problem: find the $s \rightarrow t$ path of minimum cost

Dynamic Programming Approach (False Start)

- Let $\operatorname{OPT}(v)$ be the cost of the shortest $v \rightarrow t$ path
- What goes wrong with this?
- The recurrence is not well-defined, e.g., there are nodes i and j where $\operatorname{OPT}(i)$ depends on $\operatorname{OPT}(j)$ and vice versa.
- Idea: We can fix this by "adding a variable" to the recurrence that is always decreasing.

Currency Trading as Shortest Path Problem

- Negative edge weights!
- Problem: given a graph with edge weights that may be negative, find shortest $s \rightarrow t$ path
- Assumption: no cycle C such that $\sum_{e \in C} c_{e}<0$. Why?

Bellman-Ford Algorithm

Let $\operatorname{OPT}(i, v)$ be cost of shortest $v \rightsquigarrow t$ path P with at most i edges

- If P uses at most $i-1$ edges then $\operatorname{OPT}(i, v)=\operatorname{OPT}(i-1, v)$
- Else $P=v \rightarrow w \rightsquigarrow t$ where $w \rightsquigarrow t$ path uses $i-1$ edges, so

$$
\mathrm{OPT}(i, v)=c_{v, w}+\operatorname{OPT}(i-1, w)
$$

This gives the recurrence

$$
\begin{aligned}
& \operatorname{OPT}(i, v)=\min \left\{\operatorname{OPT}(i-1, v), \min _{w \in V}\left\{c_{v, w}+\operatorname{OPT}(i-1, w)\right\}\right\} \\
& \operatorname{OPT}(0, t)=0 \\
& \operatorname{OPT}(0, v)=\infty \text { if } v \neq t
\end{aligned}
$$

Clicker

With negative edge lengths, paths can get shorter as we include more edges.
Assuming all cycles have positive cost and $m>n$, what is the largest possible number of edges in a shortest-length path from v to t ?
A. n
B. m
C. $n-1$
D. $m-1$

Clicker

Suppose there is some iteration i for which $M[i, v]=M[i-1, v]$ for all v. Then
A. There is a negative cycle in the graph.
B. We can terminate the algorithm after the i th iteration, because no future values will change.
C. There are no negative edge costs in the graph.
D. The graph is undirected.

Bellman-Ford

$$
\operatorname{OPT}(i, v)=\min \left\{\operatorname{OPT}(i-1, v), \min _{w \in V}\left\{c_{v, w}+\operatorname{OPT}(i-1, w)\right\}\right\}
$$

Subproblems? $\operatorname{OPT}(i, v)$ for $i=1$ to $n-1, v \in V$
(Fact: shortest path has at most $n-1$ edges)
Shortest-Path (G, s, t)
$n=$ number of nodes in G
Create array M of size $n \times n$
Set $M[0, t]=0$ and $M[0, v]=\infty$ for all other v
for $i=1$ to $n-1$ do
for all nodes v in any order do
Compute $M[i, v]$ using the recurrence above
Running time? $O\left(n^{3}\right)$. Better analysis $O(m n)$. Example

Bellman-Ford-Moore: Efficient Implementation

- Store only one column: M array $\rightarrow d$ vector
- Only consider neighbors w whose value changed
- Keep track of shortest path using successor array

Shortest-Path (G, t)
set $d[t]=0$ and $d[v]=\infty$ for all $v \neq t$
set $\operatorname{succ}[v]=$ null for all v
for $i=1$ to $n-1$ do
for all nodes $w \neq t$ do
if w updated in last iteration then
for all $(v, w) \in E$ do
if $c_{v, w}+d[w]<d[v]$ then
$d[v]=c_{v, w}+d[w]$

$$
\operatorname{succ}[v]=w
$$

Space? $O(m+n)$, time $O(m n)$

Clicker

Suppose we remove the assumption that there are no negative cycles, and find that $\operatorname{OPT}(n, v)<\operatorname{OPT}(n-1, v)$ for some node v. Then
A. There is a negative cycle on some $v \rightsquigarrow t$ path in the graph.
B. There are no negative edge costs in the graph.
C. There is a negative cycle on some $t \rightsquigarrow v$ path in the graph.
D. There are no negative cycles in the graph.

Negative Cycles

- How to detect negative-weight cycles?
- Suppose $\operatorname{OPT}(n, v)<\operatorname{OPT}(n-1, v)$. Then there is a negative cycle on some $v \rightsquigarrow t$ path, since shortest paths have at most $n-1$ edges in the absence of negative cycles.
- Suppose $\operatorname{OPT}(n, v)=\operatorname{OPT}(n-1, v)$ for all v. Then the algorithm will not update after the nth iteration \Longrightarrow no negative cycles on any $v \rightsquigarrow t$ path.
- Fact: there is a negative cycle on some $v \rightsquigarrow t$ path iff $\operatorname{OPT}(n, v)<\operatorname{OPT}(n-1, v)$ for some v.
- Detect negative cycles by running for one more iteration to see if some value decreases!

