COMPSCI 311: Introduction to Algorithms

Lecture 17: Dynamic Programming – Shortest Paths

Dan Sheldon

University of Massachusetts Amherst

Currency Trading

- ▶ **Problem**: given directed graph with exchange rate r_e on edge e, find $s \to t$ path P to maximize overall exchange rate $\prod_{e \in P} r_e$
- ▶ **Assumption** (no arbitrage): no cycles C such that $\prod_{e \in C} r_e > 1$.

From Rates to Costs

- ▶ Similar, but not the same as finding a shortest path.
- Let's change from rates to costs by transforming the problem.
- ▶ Let $c_e = -\log r_e$ be the *cost* of edge e

Rates

Costs

From Rates to Costs

▶ The cost (length) of a path becomes the negative log of its rate

$$c_{12} + c_{23} + c_{34} = -\log r_{12} + -\log r_{23} + -\log r_{34} = -\log(r_{12}r_{23}r_{34})$$

From Rates to Costs

▶ Because log is monotone we have: lower cost ← higher rate

New problem: find the $s \to t$ path of minimum cost

Currency Trading as Shortest Path Problem

- ► Negative edge weights!
- ▶ **Problem**: given a graph with edge weights that may be negative, find shortest $s \rightarrow t$ path
- ▶ **Assumption**: no cycle C such that $\sum_{e \in C} c_e < 0$. Why?

Dynamic Programming Approach (False Start)

- ▶ Let OPT(v) be the cost of the shortest $v \to t$ path
- ▶ What goes wrong with this?
- ▶ The recurrence is not well-defined, e.g., there are nodes i and j where $\mathrm{OPT}(i)$ depends on $\mathrm{OPT}(j)$ and vice versa.
- ▶ Idea: We can fix this by "adding a variable" to the recurrence that is always decreasing.

Bellman-Ford Algorithm

Let OPT(i, v) be cost of shortest $v \rightsquigarrow t$ path P with at most i edges

- ▶ If P uses at most i-1 edges then OPT(i,v) = OPT(i-1,v)
- ▶ Else $P = v \rightarrow w \rightsquigarrow t$ where $w \rightsquigarrow t$ path uses i-1 edges, so

$$OPT(i, v) = c_{v,w} + OPT(i - 1, w)$$

This gives the recurrence

$$\begin{aligned} & \text{OPT}(i,v) = \min \left\{ \text{OPT}(i-1,v), & \min_{w \in V} \{c_{v,w} + \text{OPT}(i-1,w)\} \right\} \\ & \text{OPT}(0,t) = 0 \\ & \text{OPT}(0,v) = \infty \text{ if } v \neq t \end{aligned}$$

Clicker

With negative edge lengths, paths can get shorter as we include more edges.

Assuming all cycles have positive cost and m>n, what is the largest possible number of edges in a shortest-length path from v to t?

- **A**. n
- B. *m*
- C. n-1
- D. m-1

Bellman-Ford

$$\operatorname{OPT}(i,v) = \min \left\{ \operatorname{OPT}(i-1,v), \quad \min_{w \in V} \{c_{v,w} + \operatorname{OPT}(i-1,w)\} \right\}$$
 Subproblems?
$$\operatorname{OPT}(i,v) \text{ for } i=1 \text{ to } n-1, \ v \in V$$
 (Fact: shortest path has at most $n-1$ edges)
$$\operatorname{Shortest-Path}(G,\ s,\ t)$$

$$n = \operatorname{number of nodes in } G$$
 Create array M of size $n \times n$ Set $M[0,t] = 0$ and $M[0,v] = \infty$ for all other v for $i=1$ to $n-1$ do for all nodes v in any order do Compute $M[i,v]$ using the recurrence above
$$\operatorname{Running time? } O(n^3). \quad \operatorname{Better analysis } O(mn). \quad \operatorname{Example}$$

Clicker

Suppose there is some iteration i for which M[i,v]=M[i-1,v] for all v. Then

- A. There is a negative cycle in the graph.
- B. We can terminate the algorithm after the $i{\rm th}$ iteration, because no future values will change.
- C. There are no negative edge costs in the graph.
- D. The graph is undirected.

Bellman-Ford-Moore: Efficient Implementation

- ightharpoonup Store only one column: M array ightharpoonup d vector
- \triangleright Only consider neighbors w whose value changed
- ▶ Keep track of shortest path using successor array

```
\begin{aligned} & \text{Shortest-Path}(G,\,t) \\ & \text{set } d[t] = 0 \text{ and } d[v] = \infty \text{ for all } v \neq t \\ & \text{set succ}[v] = \text{null for all } v \\ & \text{for } i = 1 \text{ to } n-1 \text{ do} \\ & \text{for all nodes } w \neq t \text{ do} \\ & \text{if } w \text{ updated in last iteration then} \\ & \text{for all } (v,w) \in E \text{ do} \\ & \text{if } c_{v,w} + d[w] < d[v] \text{ then} \\ & d[v] = c_{v,w} + d[w] \\ & \text{succ}[v] = w \end{aligned}
```

▶ Space? O(m+n), time O(mn)

Clicker

Suppose we remove the assumption that there are no negative cycles, and find that $\mathrm{OPT}(n,v) < \mathrm{OPT}(n-1,v)$ for some node v. Then

- A. There is a negative cycle on some $v \leadsto t$ path in the graph.
- B. There are no negative edge costs in the graph.
- C. There is a negative cycle on some $t\leadsto v$ path in the graph.
- D. There are no negative cycles in the graph.

Negative Cycles

- ► How to detect negative-weight cycles?
 - ▶ Suppose OPT(n, v) < OPT(n-1, v). Then there is a negative cycle on some $v \leadsto t$ path, since shortest paths have at most n-1 edges in the absence of negative cycles.
 - ▶ Suppose OPT(n,v) = OPT(n-1,v) for all v. Then the algorithm will not update after the nth iteration \implies no negative cycles on any $v \leadsto t$ path.
- ▶ Fact: there is a negative cycle on some $v \leadsto t$ path iff $\mathrm{OPT}(n,v) < \mathrm{OPT}(n-1,v)$ for some v.
- Detect negative cycles by running for one more iteration to see if some value decreases!

Detecting Negative-Weight Cycles

But this only detects cycles on paths to a fixed target node t. How to find a negative-weight cycle anywhere in the graph?

Add a dummy target node.