COMPSCI 311: Introduction to Algorithms

Lecture 17: Dynamic Programming — Shortest Paths

Dan Sheldon

University of Massachusetts Amherst

Currency Trading

» Problem: given directed graph with
exchange rate r. on edge e, find s — ¢
path P to maximize overall exchange
rate [Jocp e

» Assumption (no arbitrage): no cycles
C such that [[.core > 1.

From Rates to Costs

» Similar, but not the same as finding a shortest path.
» Let's change from rates to costs by transforming the problem.
» Let ¢, = —logr. be the cost of edge e

From Rates to Costs

> The cost (length) of a path becomes the negative log of its rate

UsD

-0.36

c12 + co3 + ¢34 = —logriz + —logras + —logrsy = —log(ri2rasrsa)




From Rates to Costs

» Because log is monotone we have: lower cost <=- higher rate

usb

» New problem: find the s — ¢ path of minimum cost

Currency Trading as Shortest Path Problem

P> Negative edge weights!

» Problem: given a graph with edge
weights that may be negative, find
shortest s — t path

» Assumption: no cycle C such that
Seec Ce < 0. Why?

Dynamic Programming Approach (False Start)

» Let OPT(v) be the cost of the shortest v — ¢ path
» What goes wrong with this?

» The recurrence is not well-defined, e.g., there are nodes ¢ and j where OPT\(%)
depends on OPT(j) and vice versa.

» Idea: We can fix this by “adding a variable” to the recurrence that is always
decreasing.

Bellman-Ford Algorithm

Let OPT(4,v) be cost of shortest v ~~ ¢t path P with at most i edges

» If P uses at most i — 1 edges then OPT(i,v) = OPT(i — 1,v)
» Else P =v — w ~> t where w ~» t path uses i — 1 edges, so

OPT(i,v) = ¢y + OPT(i — 1, w)
This gives the recurrence
OPT(i,v) = min {OPT(i —1,v), mig{cu’w +OPT(i — l,w)}}
we

OPT(0,t) =0
OPT(0,v) =0 ifv#t




Clicker Bellman-Ford

OPT(i, v) = min {OPT(Z‘ “1,0), min{c,u +OPT(i — 1,w)}}
With negative edge lengths, paths can get shorter as we include more edges. weV
Subproblems? OPT(i,v) fori=1ton—1,veV
(Fact: shortest path has at most n — 1 edges)

Shortest-Path(G, s, t)

Assuming all cycles have positive cost and m > n, what is the largest possible number
of edges in a shortest-length path from v to ¢?

A n
n = number of nodes in G
B.m Create array M of size n x n
C n-1 Set M[0,¢] = 0 and M|[0,v] = oo for all other v
) fori=1ton—1do
D.m-1 for all nodes v in any order do
Compute M i, v] using the recurrence above
Running time? O(n®). Better analysis O(mn). Example
Clicker Bellman-Ford-Moore: Efficient Implementation

» Store only one column: M array — d vector
» Only consider neighbors w whose value changed
» Keep track of shortest path using successor array

Shortest-Path(G, t)
A. There is a negative cycle in the graph. set d[t] = 0 and d[v] = oo for all v # ¢
set succ[v] = null for all v

Suppose there is some iteration ¢ for which M[i,v] = M[i — 1,v] for all v. Then

B. We can terminate the algorithm after the ith iteration, because no future values

will change. fori=1ton—1do
for all nodes w # ¢ do
C. There are no negative edge costs in the graph. if w updated in last iteration then
D. The graph is undirected. for all (v,w) € E do

if ¢, + d[w] < d[v] then
d[v] = ¢y + dw]
succfv] = w

» Space? O(m + n), time O(mn)




Clicker

Suppose we remove the assumption that there are no negative cycles, and find that
OPT(n,v) < OPT(n — 1,v) for some node v. Then

A. There is a negative cycle on some v ~~ t path in the graph.
B. There are no negative edge costs in the graph.
C. There is a negative cycle on some t ~~» v path in the graph.

D. There are no negative cycles in the graph.

Negative Cycles

» How to detect negative-weight cycles?

» Suppose OPT(n,v) < OPT(n — 1,v). Then there is a negative cycle on some v ~> ¢
path, since shortest paths have at most n — 1 edges in the absence of negative cycles.

» Suppose OPT(n,v) = OPT(n — 1,v) for all v. Then the algorithm will not update
after the nth iteration == no negative cycles on any v ~» t path.

> Fact: there is a negative cycle on some v ~» ¢ path iff OPT(n,v) < OPT(n —1,v)
for some .

» Detect negative cycles by running for one more iteration to see if some value
decreases!

Detecting Negative-Weight Cycles

But this only detects cycles on paths to a fixed target node ¢. How to find a
negative-weight cycle anywhere in the graph?

O 5 — 5 5 1%
N e
.

4
| :
e —O— =0

Add a dummy target node.

o

-3 2




