	Dynamic Programming Recipe
COMPSCI 311: Introduction to Algorithms Lecture 16: Dynamic Programming – Sequence Alignment Dan Sheldon University of Massachusetts Amherst	 Step 1: Devise simple recursive algorithm Flavor: make "first choice", then recursively solve subproblem Step 2: Write recurrence for optimal value Step 3: Design bottom-up iterative algorithm Weighted interval scheduling: first-choice is binary Rod-cutting: first choice has n options Subset Sum: need to "add a variable" (one more dimension) Now: similarity between sequences
Sequence Alignment	Sequence Alignment
Example. TAIL vs TALE	
For two strings $X = x_1 x_2 \dots x_m$, $Y = y_1 y_2 \dots y_n$, an alignment M is a matching between $\{1, \dots, m\}$ and $\{1, \dots, n\}$.	
M is valid if	Problem. Given strings X, Y gap-penalty δ and cost matrix C , find valid alignment of minimal part
 Matching. Each element appears in at most one pair in M. No crossings. If (i, j), (k, ℓ) ∈ M and i < k, then j < ℓ. 	
Cost of M:	Example 1. TAIL vs TALE, $\delta = 0.5$, $C(x, y) = 1[x \neq y]$.
 Gap penalty. For each unmatched character, you pay δ. Alignment cost. For a match (i, j), you pay C(x_i, y_j). 	Example 2. TAIL VS TALE, $\delta = 10$, $C(x, y) = 1[x \neq y]$.
$\operatorname{cost}(M) = \delta(m+n-2 M) + \sum_{(i,j)\in M} C(x_i, y_j).$	

Example Recap	Applications
Example 1. TAIL vs TALE, $\delta = 0.5$, $C(x, y) = 1[x \neq y]$. TAIL- I not matched (gap) TA-LE E not matched (gap) Example 2. TAIL vs TALE, $\delta = 10$, $C(x, y) = 1[x \neq y]$. TAIL TALE	 Genomics Biologists use genetic similarity to determine evolutionary relationships. Genetic similarity = cost of aligning DNA sequences Spell-checkers, diff program, search engines. "preffered": (0) proffered (1) preferred (2) referred
Clicker	Clicker
Consider the longest common subsequence (LCS) problem: given two strings X and Y, find the longest substring (not necessarily contiguous) common to both. Is LCS a special case of sequence alignment? A. Yes, with gap penalty $\delta = 0$ and alignment cost $1[x \neq y]$ B. Yes, with gap penalty $\delta = 1$, and alignment cost ∞ if $x \neq y$, else 0 C. Yes, with gap penalty $\delta = 0$, and alignment cost ∞ if $x \neq y$, else 0 D. No	Suppose we try to align $X =$ "banana" with $Y =$ "ana". Assume $\delta > 0$ and the cost of a match is zero. In an optimal alignment: A. Y will match the first occurrence of "ana" in X. B. Y will match the second occurrence of "ana" in X. C. Y may match any occurrence of "ana" in X. D. The optimal alignment depends on values of δ and the mismatch cost.

Toward an Algorithm	Recurrence
	Let $OPT(i, j)$ be optimal alignment cost of $x_1x_2x_i$ and $y_1y_2y_j$.
Let <i>O</i> be optimal alignment. Is pair (m, n) matched in <i>O</i> ? • If $(m, n) \in O$ we can align $x_1x_2x_{m-1}$ with $y_1y_2y_{n-1}$. • If $(m, n) \notin O$ then either x_m or y_n must be unmatched (by no crossing). Value OPT (m, n) of optimal alignment is one of: • $C(x_m, y_n) + OPT(m - 1, n - 1)$, If (m, n) matched • $\delta + OPT(m - 1, n)$, If m unmatched • $\delta + OPT(m, n - 1)$.	$OPT(i, j) = \min \begin{cases} C(x_i, y_j) + OPT(i - 1, j - 1) \\ \delta + OPT(i - 1, j) \\ \delta + OPT(i, j - 1) \end{cases}$ And (i, j) is in optimal alignment \iff first term is the minimum. Base case? $ \bullet OPT(0, j) = j\delta$ $ \bullet OPT(i, 0) = i\delta$ align $X = \emptyset$ to $Y = y_1 \dots y_j$ similar
Sequence Alignment Pseudocode	Sequence Alignment
align(X,Y) Initialize $M[0m, 0n] = null$ $M[i, 0] = i\delta$, $M[0, j] = j\delta$ for all i, j for $j = 1,, n$ do for $i = 1,, m$ do $v_1 = C(x_i, y_j) + M[i - 1, j - 1]$ $v_2 = \delta + M[i - 1, j]$ $v_3 = \delta + M[i, j - 1]$ $M[i, j] \leftarrow \min\{v_1, v_2, v_3\}$ Blue = recurrence, rest = DP "boilerplate" > Running time? $\Theta(mn)$ > Example. TALE and TAIL, $\delta = 1, C(x, y) = 2 \cdot 1[x \neq y]$.	 Recovering optimal matching: store each choice, trace back. Related to shortest path in weighted directed graph. y1 y2 y1 y2 x1 y2 y2 x3 J Graph has ~ mn nodes and ~ 3mn edges.

