COMPSCI 311: Introduction to Algorithms
Lecture 16: Dynamic Programming - Sequence Alignment

Dan Sheldon

University of Massachusetts Amherst

Sequence Alignment

Example. TAIL vs TALE

For two strings $X=x_{1} x_{2} \ldots x_{m}, Y=y_{1} y_{2} \ldots y_{n}$, an alignment M is a matching between $\{1, \ldots, m\}$ and $\{1, \ldots, n\}$.
M is valid if

- Matching. Each element appears in at most one pair in M.
- No crossings. If $(i, j),(k, \ell) \in M$ and $i<k$, then $j<\ell$.

Cost of M :

- Gap penalty. For each unmatched character, you pay δ.
- Alignment cost. For a match (i, j), you pay $C\left(x_{i}, y_{j}\right)$.

$$
\operatorname{cost}(M)=\delta(m+n-2|M|)+\sum_{(i, j) \in M} C\left(x_{i}, y_{j}\right)
$$

Dynamic Programming Recipe

Step 1: Devise simple recursive algorithm

- Flavor: make "first choice", then recursively solve subproblem

Step 2: Write recurrence for optimal value
Step 3: Design bottom-up iterative algorithm

- Weighted interval scheduling: first-choice is binary
- Rod-cutting: first choice has n options
- Subset Sum: need to "add a variable" (one more dimension)
- Now: similarity between sequences

Sequence Alignment

Problem. Given strings X, Y gap-penalty δ and cost matrix C, find valid alignment of minimal cost.

Example 1. TAIL vs TALE, $\delta=0.5, C(x, y)=\mathbf{1}[x \neq y]$.
Example 2. TAIL vs TALE, $\delta=10, C(x, y)=\mathbf{1}[x \neq y]$.

Example Recap

Example 1. TAIL vs TALE, $\delta=0.5, C(x, y)=\mathbf{1}[x \neq y]$.
TAIL- I not matched (gap)
TA-LE E not matched (gap)
Example 2. TAIL vs TALE, $\delta=10, C(x, y)=\mathbf{1}[x \neq y]$.
TAIL
TALE

Clicker

Consider the longest common subsequence (LCS) problem: given two strings X and Y, find the longest substring (not necessarily contiguous) common to both. Is LCS a special case of sequence alignment?
A. Yes, with gap penalty $\delta=0$ and alignment cost $\mathbf{1}[x \neq y]$
B. Yes, with gap penalty $\delta=1$, and alignment cost ∞ if $x \neq y$, else 0
C. Yes, with gap penalty $\delta=0$, and alignment cost ∞ if $x \neq y$, else 0
D. No

Applications

Genomics

- Biologists use genetic similarity to determine evolutionary relationships.
- Genetic similarity $=$ cost of aligning DNA sequences

Spell-checkers, diff program, search engines.

- "preffered": (0) proffered (1) preferred (2) referred...

Clicker

Suppose we try to align $X=$ "banana" with $Y=$ "ana". Assume $\delta>0$ and the cost of a match is zero. In an optimal alignment:
A. Y will match the first occurrence of "ana" in X.
B. Y will match the second occurrence of "ana" in X.
C. Y may match any occurrence of "ana" in X.
D. The optimal alignment depends on values of δ and the mismatch cost.

Toward an Algorithm

Let O be optimal alignment. Is pair (m, n) matched in O ?

- If $(m, n) \in O$ we can align $x_{1} x_{2} \ldots x_{m-1}$ with $y_{1} y_{2} \ldots y_{n-1}$
- If $(m, n) \notin O$ then either x_{m} or y_{n} must be unmatched (by no crossing).

Value OPT (m, n) of optimal alignment is one of:

- $C\left(x_{m}, y_{n}\right)+\operatorname{OPT}(m-1, n-1)$,
If (m, n) matched
If m unmatched
If n unmatched

Sequence Alignment Pseudocode

$\operatorname{align}(X, Y)$
Initialize $M[0 . . m, 0 . . n]=$ null
$M[i, 0]=i \delta, M[0, j]=j \delta$ for all i, j
for $j=1, \ldots, n$ do
for $i=1, \ldots, m$ do
$v_{1}=C\left(x_{i}, y_{j}\right)+M[i-1, j-1]$
$v_{2}=\delta+M[i-1, j]$
$v_{3}=\delta+M[i, j-1]$
$M[i, j] \leftarrow \min \left\{v_{1}, v_{2}, v_{3}\right\}$

- Blue $=$ recurrence, rest $=$ DP "boilerplate"
- Running time? $\Theta(m n)$
- Example. TALE and TAIL, $\delta=1, C(x, y)=2 \cdot \mathbf{1}[x \neq y]$.

Recurrence

Let $\operatorname{OPT}(i, j)$ be optimal alignment cost of $x_{1} x_{2} \ldots x_{i}$ and $y_{1} y_{2} \ldots y_{j}$.

$$
\mathrm{OPT}(i, j)=\min \left\{\begin{array}{c}
C\left(x_{i}, y_{j}\right)+\mathrm{OPT}(i-1, j-1) \\
\delta+\mathrm{OPT}(i-1, j) \\
\delta+\mathrm{OPT}(i, j-1)
\end{array}\right\}
$$

And (i, j) is in optimal alignment \Longleftrightarrow first term is the minimum.
Base case?

- $\operatorname{OPT}(0, j)=j \delta$
$-\operatorname{OPT}(i, 0)=i \delta$

$$
\begin{array}{r}
\operatorname{align} X=\emptyset \text { to } Y=y_{1} \ldots y_{j} \\
\text { similar }
\end{array}
$$

Sequence Alignment

- Recovering optimal matching: store each choice, trace back.
- Related to shortest path in weighted directed graph.

Graph has $\sim m n$ nodes and $\sim 3 m n$ edges

Clicker

Dijkstra's algorithm runs in $O(|E| \log |V|) \Longrightarrow O(m n \log (m n))$ time for a graph with $\Theta(m n)$ nodes and edges. Sequence alignment takes only $O(m n)$ time. What can we conclude?
A. We could use dynamic programming to compute shortest paths in any graph asymptotically faster than Dijkstra's algorithm.
B. By the multiplicativity property of big-O, the $\log |V|$ factor is dominated by $|E|$, so Dijkstra's running time is $O(|E|)=O(m n)$.
C. The graph in sequence alignment is a special case where we can compute shortest paths faster.
D. Dijkstra's algorithm only works on undirected graphs.

Sequence Alignment in Linear Space

Hirschberg's algorithm: clever combination of DP and divide-and-conquer
Goal: find shortest path from $(0,0) \rightarrow(m, n)$
Board work

1. $\operatorname{OPT}(i, j)=f(i, j)=$ length of shortest path from $(0,0) \rightarrow(i, j)$
2. For any j, can compute $f(\cdot, j)$ in $O(m n)$ time and $O(m+n)$ space
3. Let $g(i, j)=$ length of shortest path from $(i, j) \rightarrow(m, n)$
4. For any j, can compute $g(\cdot, j)$ in $O(m n)$ time and $O(m+n)$ space
5. Key idea: find one node on shortest path. Fix $j=n / 2$ and find q to maximize

$$
f(q, n / 2)+g(q, n / 2)
$$

\Longrightarrow node ($q, n / 2$) is on shortest path.
6. Recursively find shortest-path from $(0,0) \rightarrow(q, n / 2)$
7. Recursively find shortest-path from $(q, n / 2) \rightarrow(m, n)$.
8. Time $T(m, n)=T(q, n / 2)+T(m-q, n / 2)+O(m n)$. Solves to $O(m n)$ (recursion tree)

Space still $O(m+n)$.

Can We Use Less Space?

We've focused on time complexity, but space matters too!
Two sequences of length $10^{5}: m n=10^{10}(10 \mathrm{~GB})$
for $j=1, \ldots, n$ do
for $i=1, \ldots, m$ do
$v_{1}=C\left(x_{i}, y_{j}\right)+M[i-1, j-1]$
$v_{2}=\delta+M[i-1, j]$
$v_{3}=\delta+M[i, j-1]$
$M[i, j] \leftarrow \min \left\{v_{1}, v_{2}, v_{3}\right\}$
Can we save space?

- Computing column $M[\cdot, j]$ only needs $M[\cdot, j-1]$
\Longrightarrow keep just two columns (currrent, previous)
\Longrightarrow linear space $O(m+n)$
- But: can only compute cost, not recover alignment!

Hirschberg's algorithm

Divide. Find index q that minimizes $f(q, n / 2)+g(q, n / 2)$; save node $i-j$ as part of solution.

Conquer. Recursively compute optimal alignment in each piece.

Sequence Alignment: Summary

Align sequences X, Y

- Binary choice
- Recurse on prefixes
- $O(m n)$ time
- $O(m+n)$ space: more subtle
- DP + Divide and Conquer

More sequences:

- RNA secondary structure
- match max. \# of bases
- problem substructure:
over intervals

