
COMPSCI 311: Introduction to Algorithms
Lecture 16: Dynamic Programming – Sequence Alignment

Dan Sheldon

University of Massachusetts Amherst

Dynamic Programming Recipe

Step 1: Devise simple recursive algorithm
▶ Flavor: make “first choice”, then recursively solve subproblem

Step 2: Write recurrence for optimal value

Step 3: Design bottom-up iterative algorithm

▶ Weighted interval scheduling: first-choice is binary
▶ Rod-cutting: first choice has n options
▶ Subset Sum: need to “add a variable” (one more dimension)
▶ Now: similarity between sequences

Sequence Alignment
Example. TAIL vs TALE

For two strings X = x1x2 . . . xm, Y = y1y2 . . . yn, an alignment M is a matching
between {1, . . . , m} and {1, . . . , n}.
M is valid if
▶ Matching. Each element appears in at most one pair in M .
▶ No crossings. If (i, j), (k, ℓ) ∈M and i < k, then j < ℓ.

Cost of M :
▶ Gap penalty. For each unmatched character, you pay δ.
▶ Alignment cost. For a match (i, j), you pay C(xi, yj).

cost(M) = δ(m + n− 2|M |) +
∑

(i,j)∈M

C(xi, yj).

Sequence Alignment

Problem. Given strings X, Y gap-penalty δ and cost matrix C, find valid alignment of
minimal cost.

Example 1. TAIL vs TALE, δ = 0.5, C(x, y) = 1[x ̸= y].

Example 2. TAIL vs TALE, δ = 10, C(x, y) = 1[x ̸= y].

Example Recap

Example 1. TAIL vs TALE, δ = 0.5, C(x, y) = 1[x ̸= y].

TAIL- I not matched (gap)
TA-LE E not matched (gap)

Example 2. TAIL vs TALE, δ = 10, C(x, y) = 1[x ̸= y].

TAIL
TALE

Applications

Genomics
▶ Biologists use genetic similarity to determine evolutionary relationships.
▶ Genetic similarity = cost of aligning DNA sequences

Spell-checkers, diff program, search engines.
▶ “preffered”: (0) proffered (1) preferred (2) referred . . .

Clicker

Consider the longest common subsequence (LCS) problem: given two strings X and Y ,
find the longest substring (not necessarily contiguous) common to both. Is LCS a
special case of sequence alignment?

A. Yes, with gap penalty δ = 0 and alignment cost 1[x ̸= y]

B. Yes, with gap penalty δ = 1, and alignment cost ∞ if x ̸= y, else 0

C. Yes, with gap penalty δ = 0, and alignment cost ∞ if x ̸= y, else 0

D. No

Clicker

Suppose we try to align X = “banana” with Y = “ana”. Assume δ > 0 and the cost of
a match is zero. In an optimal alignment:

A. Y will match the first occurrence of “ana” in X.

B. Y will match the second occurrence of “ana” in X.

C. Y may match any occurrence of “ana” in X.

D. The optimal alignment depends on values of δ and the mismatch cost.

Toward an Algorithm

Let O be optimal alignment. Is pair (m, n) matched in O?
▶ If (m, n) ∈ O we can align x1x2...xm−1 with y1y2...yn−1.
▶ If (m, n) /∈ O then either xm or yn must be unmatched (by no crossing).

Value OPT(m, n) of optimal alignment is one of:
▶ C(xm, yn) + OPT(m− 1, n− 1), If (m, n) matched
▶ δ + OPT(m− 1, n), If m unmatched
▶ δ + OPT(m, n− 1). If n unmatched

Recurrence

Let OPT(i, j) be optimal alignment cost of x1x2...xi and y1y2...yj .

OPT(i, j) = min





C(xi, yj) + OPT(i− 1, j − 1)
δ + OPT(i− 1, j)
δ + OPT(i, j − 1)





And (i, j) is in optimal alignment ⇐⇒ first term is the minimum.

Base case?
▶ OPT(0, j) = jδ align X = ∅ to Y = y1 . . . yj

▶ OPT(i, 0) = iδ similar

Sequence Alignment Pseudocode

align(X,Y)
Initialize M [0..m, 0..n] = null
M [i, 0] = iδ, M [0, j] = jδ for all i, j
for j = 1, . . . , n do

for i = 1, . . . , m do
v1 = C(xi, yj) + M [i− 1, j − 1]
v2 = δ + M [i− 1, j]
v3 = δ + M [i, j − 1]
M [i, j]← min{v1, v2, v3}

▶ Blue = recurrence, rest = DP “boilerplate”
▶ Running time? Θ(mn)
▶ Example. TALE and TAIL, δ = 1, C(x, y) = 2 · 1[x ̸= y].

Sequence Alignment

▶ Recovering optimal matching: store each choice, trace back.
▶ Related to shortest path in weighted directed graph.

y1 y2

x1

x2

x3

Graph has ∼ mn nodes and ∼ 3mn edges.

Clicker

Dijkstra’s algorithm runs in O(|E| log |V |) =⇒ O(mn log(mn)) time for a graph with
Θ(mn) nodes and edges. Sequence alignment takes only O(mn) time. What can we
conclude?

A. We could use dynamic programming to compute shortest paths in any graph
asymptotically faster than Dijkstra’s algorithm.

B. By the multiplicativity property of big-O, the log |V | factor is dominated by |E|, so
Dijkstra’s running time is O(|E|) = O(mn).

C. The graph in sequence alignment is a special case where we can compute shortest
paths faster.

D. Dijkstra’s algorithm only works on undirected graphs.

Can We Use Less Space?
We’ve focused on time complexity, but space matters too!

Two sequences of length 105: mn = 1010 (10 GB)
for j = 1, . . . , n do

for i = 1, . . . , m do
v1 = C(xi, yj) + M [i− 1, j − 1]
v2 = δ + M [i− 1, j]
v3 = δ + M [i, j − 1]
M [i, j]← min{v1, v2, v3}

Can we save space?
▶ Computing column M [·, j] only needs M [·, j − 1]

=⇒ keep just two columns (currrent, previous)
=⇒ linear space O(m + n)

▶ But: can only compute cost, not recover alignment!

Sequence Alignment in Linear Space
Hirschberg’s algorithm: clever combination of DP and divide-and-conquer

Goal: find shortest path from (0, 0)→ (m, n)

Board work
1. OPT(i, j) = f(i, j) = length of shortest path from (0, 0)→ (i, j)
2. For any j, can compute f(·, j) in O(mn) time and O(m + n) space
3. Let g(i, j) = length of shortest path from (i, j)→ (m, n)
4. For any j, can compute g(·, j) in O(mn) time and O(m + n) space
5. Key idea: find one node on shortest path. Fix j = n/2 and find q to maximize

f(q, n/2) + g(q, n/2)

=⇒ node (q, n/2) is on shortest path.
6. Recursively find shortest-path from (0, 0)→ (q, n/2)
7. Recursively find shortest-path from (q, n/2)→ (m, n).
8. Time T (m, n) = T (q, n/2) + T (m− q, n/2) + O(mn). Solves to O(mn) (recursion tree)

Space still O(m + n).

Divide. Find index q that minimizes f (q, n / 2) + g (q, n / 2); save node i–j as

part of solution.

 
Conquer. Recursively compute optimal alignment in each piece.

x1

x2

x3

y2 y5 y6

ε

y4

m–n

0–0

Hirschberg’s algorithm

 23

n / 2

q

m–n

0–0

i–j

y3y1ε

slide credit: Kevin Wayne / Pearson

Sequence Alignment: Summary

Align sequences X, Y
▶ Binary choice
▶ Recurse on prefixes
▶ O(mn) time
▶ O(m + n) space: more subtle

▶ DP + Divide and Conquer

More sequences:
▶ RNA secondary structure
▶ match max. # of bases
▶ problem substructure:

over intervals

6.5 RNA Secondary Structure: Dynamic Programming over Intervals 273

U A
C

G

G

C

A
G C

A G

C

A U

G

G

A

C

C

U

G

C

A

U
C

A

G
G

CG
A

U

A

U

U

A
G

G

A
C

U

A
G C

A

A

Figure 6.13 An RNA secondary structure. Thick lines connect adjacent elements of the
sequence; thin lines indicate pairs of elements that are matched.

The Problem
As one learns in introductory biology classes, Watson and Crick posited that
double-stranded DNA is “zipped” together by complementary base-pairing.
Each strand of DNA can be viewed as a string of bases, where each base is
drawn from the set {A, C , G, T}.2 The bases A and T pair with each other, and
the bases C and G pair with each other; it is these A-T and C-G pairings that
hold the two strands together.

Now, single-stranded RNA molecules are key components in many of
the processes that go on inside a cell, and they follow more or less the
same structural principles. However, unlike double-stranded DNA, there’s no
“second strand” for the RNA to stick to; so it tends to loop back and form
base pairs with itself, resulting in interesting shapes like the one depicted in
Figure 6.13. The set of pairs (and resulting shape) formed by the RNA molecule
through this process is called the secondary structure, and understanding
the secondary structure is essential for understanding the behavior of the
molecule.

2 Adenine, cytosine, guanine, and thymine, the four basic units of DNA.

