	Dynamic Programming Recipe
COMPSCI 311: Introduction to Algorithms Lecture 15: Dynamic Programming Dan Sheldon University of Massachusetts Amherst	 Step 1: Devise simple recursive algorithm Flavor: make "first choice", then recursively solve subproblem Step 2: Write recurrence for optimal value Step 3: Design bottom-up iterative algorithm Weighted interval scheduling: first-choice is binary Rod-cutting: first choice has n options Subset Sum: first choice is binary, but need to "add a variable" to recurrence
Subset Sum: Problem Formulation	Step 1: Recursive Algorithm, Binary Choice
 Input Items 1, 2,, n Weights w_i for all items (integers) Capacity W Goal: select a subset S whose total weight is as large as possible without exceeding W. 	Let <i>O</i> be optimal solution on items 1 through <i>j</i> . Is $j \in O$ or not? SubsetSum(<i>j</i>) if $j = 0$ then return 0 \triangleright Case 1: $j \notin O$ v = SubsetSum($j - 1$) \triangleright Case 2: $j \in O$ if $w_j \leq W$ then $v = $ max($v, w_j +$ SubsetSum($j - 1$) ?) return v

Clicker	Step 1: Recursive Algorithm, Add a Variable
SubsetSum(j) if $j = 0$ then return 0 $v = \text{SubsetSum}(j-1)$ \triangleright Case 1: $j \notin O$ if $w_j \leq W$ then $v = \max(v, w_j + \text{SubsetSum}(j-1)?)$ return v Is there a problem in Case 2? A. No, it is correct. B. Yes, you need to consider that the j^{th} item may be selected multiple times. C. Yes, if we take item j , the remaining capacity changes. Second call to SubsetSum $(j-1)$ no longer has capacity W . Solution: must add extra parameter (problem dimension)	Find value of optimal solution O on items $\{1, 2,, j\}$ when the remaining capacity is w SubsetSum (j,w) if $j = 0$ then return 0 \triangleright Case 1: $j \notin O$ v = SubsetSum $(j - 1, w)\triangleright Case 2: j \in Oif w_j \leq w thenv = \max(v, w_j + SubsetSum(j - 1, w - w_j))return v$
Step 2: Recurrence	From Recurrence to Iterative ("Turn the Crank")
 Let OPT(j, w) be the maximum-weight subset of items {1,, j} whose weight does not exceed w OPT(j, w) =	$OPT(j, w) = \begin{cases} OPT(j - 1, w) & w_j > w \\ Max \begin{cases} OPT(j - 1, w) & w_j > w \\ w_j + OPT(j - 1, w - w_j) \end{cases} w_j \le w \end{cases}$ What size memoization array? $M[j, w]$ for all values of j and w $M[0 \dots n, 0 \dots W]$ What order to fill entries? base case first; RHS before LHS for j from $0 \rightarrow n$, for w from $0 \rightarrow W$ Which entry stores solution to overall problem? Want $OPT(n, W)$: stored in $M[n, W]$

Knapsack Problem	Clicker
Same as subset sum, but now items have value in addition to weight Input ► Items 1, 2,, n	Recall subset-sum recurrence: $OPT(j, w) = \begin{cases} OPT(j - 1, w) & w_j > w \\ \max \{ OPT(j - 1, w), \ w_j + OPT(j - 1, w - w_j) \} & w_j \le w \end{cases}$
 Weights w_i for all items (integers) Values v_i for all items (integers) Capacity W 	How should the blue term be rewritten for the knapsack recurrence? A. $w_j + OPT(j - 1, w - w_j)$
Goal : select subset S whose total value is as large as possible without exceeding W .	B. $w_j + OPT(j-1, w-v_j)$ C. $v_j + OPT(j-1, w-v_j)$ D. $v_j + OPT(j-1, w-w_j)$

Clicker

Does our knapsack solution still work if the weights and/or values are real numbers instead of integers?

- A. It still works if both the values and weights are real numbers.
- B. It works if values are real numbers but weights are integers.
- C. It works if weights are real numbers but values are integers.
- D. It does not work if either the weights or values are real numbers.

Fractional knapsack problem allows partial objects (think grains, sand, fluid). Has simple **greedy** solution: choose highest value per weight.