

oblem Formulation	Dynamic Programming Recipe
 Show (job) j has value v_j, start time s_j, finish time f_j Assume shows sorted by finishing time f₁ ≤ f₂ ≤ ≤ f_n Shows i and j are compatible if they don't overlap Goal: subset of non-overlapping jobs with maximum value 	 Step 1: Devise simple recursive algorithm for <i>value</i> of optimal solution Flavor: make "first choice", then recursively solve remaining part of the problem. (Problem: solve redundant subproblems → exponential time) Step 2: Write recurrence for optimal value Step 3: Design bottom-up iterative algorithm Epilogue: Recover optimal <i>solution</i>
tep 1: Recursive Algorithm	Clicker
 Observation: Let O be the optimal solution. Either n ∈ O or n ∉ O. In either case, we can reduce the problem to a <i>smaller instance</i> of the same problem. Recursive algorithm to compute value of optimal subset of first j shows Compute-Value(j) Base case: if j = 0 return 0 Case 1: j ∈ O Let i < j be highest-numbered show compatible with j val1 = v_j + Compute-Value(i) Case 2: j ∉ O val2 = Compute-Value(j - 1) return max(val1, val2) 	Compute-Value(j) if $j = 0$ return 0 Let $i < j$ be highest-numbered show compatible with j val1 = v_j + Compute-Value(i) val2 = Compute-Value($j - 1$) return max(val1, val2) The worst-case running time of this recursive solution is A. $O(n \log n)$ B. $O(n^2)$ C. $O(1.618^n)$ D. $O(2^n)$

Running Time?	Step 2: Recurrence
 Recursion tree ≈ 2ⁿ subproblems ⇒ exponential time Only n unique subproblems. Save work by ordering computation to solve each problem once. 	A recurrence expresses the optimal value for a problem of size j in terms of the optimal value of subproblems of size $i < j$. Let $OPT(j) =$ value of optimal solution on first j shows $OPT(0) = 0$ $OPT(j) = \max\{\underbrace{v_j + OPT(p_j)}_{Case 1}, \underbrace{OPT(j-1)}_{Case 2}\}$ $p_j: \text{ highest-numbered show } i < j \text{ that is compatible with } j$
Recursive Algorithm vs. Recurrence	Step 3: Iterative "Bottom-Up" Algorithm
 Compute-Value(j) If j = 0 return 0 val1 = v_j + Compute-Value(p_j) val2 = Compute-Value(j - 1) return max(val1, val2) Recurrence OPT(j) = max{v_j + OPT(p_j), OPT(j - 1)} OPT(0) = 0 Direct correspondence between the algorithm and recurrence Tip: start by writing the recursive algorithm and translating it to a recurrence (replace method name by "OPT"). After some practice, skip straight to the recurrence 	Idea: compute the optimal value of every unique subproblem in order from smallest (base case) to largest (original problem). Use recurrence for each subproblem. WeightedIS Initialize array M of size n to hold optimal values $M[0] = 0$ ▷ Value of empty set for $j = 1$ to n do $M[j] = \max(v_j + M[p_j], M[j-1])$ ▶ Example

Step 3: Observations	Memoization
 WeightedIS Initialize array M of size n to hold optimal values M[0] = 0 ▷ Value of empty set for j = 1 to n do M[j] = max(v_j + M[p_j], M[j - 1]) Iterative algorithm is a direct "wrapping" of recurrence in appropriate for loop. Pay attention to dependence on previously-computed entries of M to know in what order to iterate through array. Running time? O(n) 	 Intermediate approach: keep recursive function structure, but store value in array on first computation, and reuse it Initialize array M of size n to empty, M[0] = 0 function Mfun(j) if M[j] = empty then M[j] = max(v_j + Mfun(p_j), Mfun(j - 1)) return M[j] Can help if we have recursive structure but unsure of iteration order, or as intermediate step in converting to iteration
Clicker	Epilogue: Recovering the Solution (1)
The asymptotic running time of the memoized algorithm isA. the same as the initial recursive solution.B. between the initial recursive solution and the iterative version.C. the same as the iterative version.	Idea: modify the algorithm to save best choice for each subproblem WeigthedIS Initialize array $M[0n]$ to hold optimal values Initialize array choose $[1n]$ to hold choices M[0] = 0 for $j = 1$ to n do $M[j] = \max(v_j + M[p_j], M[j - 1])$ Set choose $[j] = 1$ if first value is bigger, and 0 otherwise

Epilogue: Recovering the Solution (2)	Review
Then trace back from end and "execute" the choices Use algorithm above to fill in M and choose arrays $O = \{\}$ j = n while $j > 0$ do if choose $(j) == 1$ then $O = O \cup \{j\}$ $j = p_j$ else j = j - 1 Tip: first write algorithm to compute optimal value, then modify to compute actual solution	 Recursive algorithm → recurrence → iterative algorithm Three ways of expressing value of optimal solutions of subproblems Compute-Value(j). Recursive algorithm: arguments identify subproblems. OPT(j). Used in recurrence; matches recursive algorithm. M[j]. Array to hold optimal values for each distinct subproblem, filled in during iterative algorithm.
Key Step: Identify Subproblems	Rod Cutting
 Finding solution means: make "first choice", then recursively solve a smaller instance of same problem. First example: Weighted Interval Scheduling Binary first choice: j ∈ O or j ∉ O? Next example: rod cutting First choice has n options 	 Input: steel rod of length n, can be cut into integer lengths, get price p(i) for piece of length i Goal: subdivide to maximize total value Example / problem formulation on board

First decision?	Step 1: Recursive Algorithm
Choose length i of first piece, then recurse on smaller rod	CutRod(j) if $j = 0$ then return 0 v = 0 for $i = 1$ to j do $v = \max(v, p[i] + \operatorname{CutRod}(j - i))$ return v Nunning time for CutRod(n)? $\Theta(2^n)$
Step 2: Recurrence	From Recurrence to Algorithm
$OPT(j) = \max_{1 \le i \le j} \{p_i + OPT(j - i)\}$ $OPT(0) = 0$	 OPT(j) = max {p_i + OPT(j − i)} OPT(0) = 0 What size memoization array M? What order to fill? The recurrence provides all of the information needed to design an iterative algorithm. Cutrod(·), OPT(·), and M[·] have same argument: index j of unique subproblems Range of values of j determines size of M. M[0n] Fill M so RHS values are computed before LHS. Fill from 0 to n

Step 3: Iterative Algorithm

```
CutRod-Iterative

Initialize array M[0..n]

Set M[0] = 0

for j = 1 to n do

v = 0

for i = 1 to j do

v = \max(v, p[i] + M[j - i])

Set M[j] = v
```

- Note: body of for loop identical to recursive algorithm, directly implements recurrence
- ▶ Running time? $\Theta(n^2)$

Epilogue: Recover Optimal Solution

Idea: Modify algorithm to record choices that lead to optimal value for each subproblem, then trace back from the end and "execute" the choices, starting with the largest problem.

Step 1: Run previous algorithm to fill in M array, but with the following modification: let first-cut[j] be the index i that leads to the largest value when computing M[j].

Step 2: Trace back from end and execute choices. cuts = {}

 $\begin{aligned} j &= n \\ \text{while } j > 0 \text{ do} \\ j &= j - \text{first-cut}[j] \\ \text{cuts} &= \text{cuts} \cup \{\text{first-cut}[j]\} \end{aligned}$

▷ Remaining length