COMPSCI 311: Introduction to Algorithms

Lecture 13: Closest Pair of Points

Dan Sheldon

University of Massachusetts Amherst

Finding Minimum Distance between Points

- **Problem 1**: Given n points on a line $p_1, p_2, \ldots, p_n \in \mathbb{R}$, find the closest pair: $\begin{aligned} \min_{i \neq j} |p_i - p_j|. \\ & \blacktriangleright \text{ Compare all pairs } O(n^2) \end{aligned}$

 - ▶ Better algorithm? Sort and compare adjacent pairs. $O(n \log n)$
- **Problem 2:** Now what if the points are in \mathbb{R}^2 ?
 - ightharpoonup Compare all pairs $O(n^2)$
 - ▶ Sort? Points can be close in one coordinate and far in other
 - \blacktriangleright We'll do it in $O(n \log n)$ steps using divide-and-conquer.

Problem Formulation

- ▶ Input: set of points $P = \{p_1, ..., p_n\}$ where $p_i = (x_i, y_i)$
- **Assumption**: we can iterate over points in order of x- or y- coordinate in O(n)time. Pre-generate data structures to support this in $O(n \log n)$ time.

Minimum Distance: Recursive Algorithm

- 1. Find vertical line L to split points into sets P_L , P_R of size n/2. O(n)
- 2. Recursively find minimum distance in P_L and P_R .
 - $\begin{array}{ll} \blacktriangleright & \delta_L = \text{minimum distance between } p,q \in P_L, p \neq q. \ T(n/2) \\ \blacktriangleright & \delta_R = \text{same for } P_R. \ T(n/2) \end{array}$
- 3. $\delta_M = \text{minimum distance between } p \in P_L, q \in P_R$. ??
- 4. Return $\min(\delta_L, \delta_R, \delta_M)$.

Naive Step 3 takes $\Omega(n^2)$ time. But if we do it in O(n) time we get

$$T(n) = 2T(n/2) + O(n) \Longrightarrow T(n) = O(n \log n)$$

Making Step 3 Efficient

- ▶ **Goal**: given δ_L , δ_R , compute $\min(\delta_L, \delta_R, \delta_M)$
- ▶ Let $\delta = \min(\delta_L, \delta_R)$. If $p \in P_L, q \in P_R$ are at least δ apart, they cannot be a closer pair, so we can ignore pair (p, q).
- \blacktriangleright Let S be the set of points within distance δ from L. We only need to consider pairs that are both in S.
- For a given point $p \in S$, how many other points in S are within δ units of p in the y coordinate? **Intuition**: point in S on either side of line can't be too close to one another \Longrightarrow must "spread out" vertically

Clicker

What is the maximum number of points with larger y coordinate that we need to compare to s_i ?

- A. 7 points
- B. 8 points
- C. 4 points
- D. 0 points

Wrap-Up

- ▶ Step 3 is O(n): iterate in order of y coordinate and compare each point to constant number of neighbors.
- $ightharpoonup \Longrightarrow O(n \log n)$ overall.
- ▶ Intuition: we reduced Step 3 (almost) to 1D closest-pair
 - lterate, compare each point to next k points (instead of 1)
 - ▶ The set S is "nearly one-dimensional". Points cannot be packed too tightly, because pairs on each side have to be at least δ apart.
- For d>2 dimensions, there is a divide and conquer algorithm where the "combine" step (i.e., Step 3) solves a closest pair problem in d-1 dimensions

Closest Pair in d Dimensions

Board work

Solve recurrence

$$T(n,d) = 2T(n/2,d) + T(n,d-1)$$

Base case $T(n,2) = \Theta(n \log n)$

Solution: $T(n,d) = \Theta(n \log^{d-1} n)$