COMPSCI 311: Introduction to Algorithms

Lecture 13: Closest Pair of Points

Dan Sheldon

University of Massachusetts Amherst

Finding Minimum Distance between Points

» Problem 1: Given n points on a line p1,pa,...,p, € R, find the closest pair:
mingy; [pi = pjl- ,
» Compare all pairs O(n?)
> Better algorithm? Sort and compare adjacent pairs. O(nlogn)

> Problem 2: Now what if the points are in R2?
» Compare all pairs O(n?)
> Sort? Points can be close in one coordinate and far in other
> We'll do it in O(nlogn) steps using divide-and-conquer.

Problem Formulation

» Input: set of points P = {p1,...,pn} where p; = (z;,y;)

> Assumption: we can iterate over points in order of 2- or y- coordinate in O(n)
time. Pre-generate data structures to support this in O(nlogn) time.

Minimum Distance: Recursive Algorithm

1. Find vertical line L to split points into sets Pr, Pr of size n/2. O(n)
2. Recursively find minimum distance in P, and Pg.

» §;, = minimum distance between p,q € Pr,p # q. T'(n/2)
» 0r = same for Pr. T(n/2)

3. dp7 = minimum distance between p € Pp,q € Pg. 77

4. Return min(ﬁL, OR, 5]\1)

Naive Step 3 takes 2(n?) time. But if we do it in O(n) time we get

T(n) =2T(n/2) 4+ O(n) = T(n) = O(nlogn)




Making Step 3 Efficient How to find closest pair with one point in each side?

Def. Let s; be the point in the 2-strip, with the i# smallest y-coordinate.

Claim. If |j—i| > 7, then the distance between

» Goal: given 47, dr, compute min(dz,dg, dpr) srand s,is at least 8. L

» Let 6 = min(dy,dr). If p € Pr,q € Pr are at least ¢ apart, they cannot be a
closer pair, so we can ignore pair (p, q). A ) o - :

+ Consider the 26-by-6 rectangle R in strip i/

» Let S be the set of points within distance § from L. We only need to consider pairs whose min y-coordinate is y-coordinate of s,.
that are both in S. + Distance between s; and any point s [ R( ””””” o o

above R is = d. R ]

» For a given point p € S, how many other points in S are within § units of p in the . Subdivide R into 8 squares. 5 e T 1 o
y coordinate? Intuition: point in S on either side of line can’t be too close to one + Atmost 1 point per square. < & Lef -
another = must “spread out” vertically + At most 7 other points can be in R. = E

constant can be improved with more
refined geometric packing argument

—_2—

slide credit: Kevin Wayne / Pearson

Clicker Wrap-Up

» Step 3 is O(n): iterate in order of y coordinate and compare each point to
constant number of neighbors.

J » — O(nlogn) overall
° .
What is the maximum number of points with larger . ]
y coordinate that we need to compare to s;? o o ‘ > Intuition: we reduced Step 3 (almost) to 1D closest-pair
] [ ' R i i L 158 > |terate, compare each point to next k points (instead of 1)
A. 7 points S o ] o P> The set S is “nearly one-dimensional”. Points cannot be packed too tightly, because
B. 8 points ! : : ; 75 pairs on each side have to be at least § apart.
C. 4 points l ‘ : : ‘ . . . . . “ I
D 0o ZOints - & |- | » For d > 2 dimensions, there is a divide and conquer algorithm where the “combine
. si

step (i.e., Step 3) solves a closest pair problem in d — 1 dimensions




Closest Pair in d Dimensions

Board work

Solve recurrence

T(n,d) =2T(n/2,d) +T(n,d—1)

Base case T'(n,2) = O(nlogn)
Solution: T'(n,d) = ©(n logdfl n)




