
Exact Inference for Integer Latent-Variable Models

Kevin Winner 1 Debora Sujono 1 Dan Sheldon 1 2

Abstract
Graphical models with latent count variables
arise in a number of areas. However, standard
inference algorithms do not apply to these mod-
els due to the infinite support of the latent vari-
ables. Winner & Sheldon (2016) recently devel-
oped a new technique using probability generat-
ing functions (PGFs) to perform efficient, exact
inference for certain Poisson latent variable mod-
els. However, the method relies on symbolic ma-
nipulation of PGFs, and it is unclear whether this
can be extended to more general models. In this
paper we introduce a new approach for inference
with PGFs: instead of manipulating PGFs sym-
bolically, we adapt techniques from the autodiff
literature to compute the higher-order derivatives
necessary for inference. This substantially gen-
eralizes the class of models for which efficient,
exact inference algorithms are available. Specif-
ically, our results apply to a class of models that
includes branching processes, which are widely
used in applied mathematics and population ecol-
ogy, and autoregressive models for integer data.
Experiments show that our techniques are more
scalable than existing approximate methods and
enable new applications.

1. Introduction
A key to the success of probabilistic modeling is the pair-
ing of rich probability models with fast and accurate in-
ference algorithms. Probabilistic graphical models enable
this by providing a flexible class of probability distribu-
tions together with algorithms that exploit the graph struc-
ture for efficient inference. However, exact inference al-
gorithms are only available when both the distributions in-
volved and the graph structure are simple enough. How-

1College of Information and Computer Sciences, University
of Massachusetts Amherst 2Department of Computer Science,
Mount Holyoke College. Correspondence to: Kevin Winner
<kwinner@cs.umass.edu>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

ever, this situation is rare and consequently, much research
today is devoted to general-purpose approximate inference
techniques (e.g. Ranganath et al., 2014; Kingma & Welling,
2014; Carpenter et al., 2016).

Despite many advances in probabilistic inference, there re-
main relatively simple (and useful) models for which exact
inference algorithms are not available. This paper consid-
ers the case of graphical models with a simple structure but
with (unbounded) latent count random variables. These are
a natural modeling choice for many real world problems in
ecology (Zonneveld, 1991; Royle, 2004; Dail & Madsen,
2011) and epidemiology (Farrington et al., 2003; Panare-
tos, 2007; Kvitkovicova & Panaretos, 2011). However,
they pose a unique challenge for inference: even though
algorithms like belief propagation (Pearl, 1986) or variable
elimination (Zhang & Poole, 1994) are well defined math-
ematically, they cannot be implemented in an obvious way
because factors have a countably infinite number of entries.
As a result, approximations like truncating the support of
the random variables or MCMC are applied (Royle, 2004;
Gross et al., 2007; Chandler et al., 2011; Dail & Madsen,
2011; Zipkin et al., 2014; Winner et al., 2015).

Recently, Winner & Sheldon (2016) introduced a new tech-
nique for exact inference in models with latent count vari-
ables. Their approach executes the same operations as
variable elimination, but with factors, which are infinite
sequences of values, represented in a compact way using
probability generating functions (PGFs). They developed
an efficient exact inference algorithm for a specific class
of Poisson hidden Markov models (HMMs) that represent
a population undergoing mortality and immigration, and
noisy observations of the population over time.

A key open question is the extent to which PGF-based in-
ference generalizes to a broader class of models. There are
two primary considerations. First, for what types of fac-
tors can the required operations (multiplication, marginal-
ization, and conditioning) be “lifted” to PGF-based repre-
sentations? Here, there is significant room for generaliza-
tion: the mathematical PGF operations developed in (Win-
ner & Sheldon, 2016) already apply to a broad class of non-
Poisson immigration models, and we will generalize the
models further to allow richer models of population sur-
vival and growth. Second, and more significantly, for what

Exact Inference for Integer Latent-Variable Models

types of PGFs can the requisite mathematical operations be
implemented efficiently? Winner & Sheldon (2016) manip-
ulated PGFs symbolically. Their compact symbolic repre-
sentation seems to rely crucially on properties of the Pois-
son distribution; it remains unclear whether symbolic PGF
inference can be generalized beyond Poisson models.

This paper introduces a new algorithmic technique based
on higher-order automatic differentiation (Griewank &
Walther, 2008) for inference with PGFs. A key insight
is that most inference tasks do not require a full sym-
bolic representation of the PGF. For example, the likeli-
hood is computed by evaluating a PGF F (s) at s = 1.
Other probability queries can be posed in terms of deriva-
tives F (k)

(s) evaluated at either s = 0 or s = 1. In
all cases, it suffices to evaluate F and its higher-order
derivatives at particular values of s, as opposed to com-
puting a compact symbolic representation of F . It may
seem that this problem is then solved by standard tech-
niques, such as higher-order forward-mode automatic dif-
ferentiation (Griewank & Walther, 2008). However, the
requisite PGF F is complex—it is defined recursively in
terms of higher-order derivatives of other PGFs—and off-
the-shelf automatic differentiation methods do not apply.
We therefore develop a novel recursive procedure using
building blocks of forward-mode automatic differentiation
(generalized dual numbers and univariate Taylor polyno-
mials; Griewank & Walther, 2008) to evaluate F and its
derivatives.

Our algorithmic contribution leads to the first efficient ex-
act algorithms for a class of HMMs that includes many
well-known models as special cases, and has many ap-
plications. The hidden variables represent a population
that undergoes three different processes: mortality (or em-
igration), immigration, and growth. A variety of different
distributional assumptions may be made about each pro-
cess. The models may also be viewed without this inter-
pretation as a flexible class of models for integer-valued
time series. Special cases include models from popula-
tion ecology (Royle, 2004; Gross et al., 2007; Dail & Mad-
sen, 2011), branching processes (Watson & Galton, 1875;
Heathcote, 1965), queueing theory (Eick et al., 1993), and
integer-valued autoregressive models (McKenzie, 2003).
Additional details about the relation to these models are
given in Section 2. Our algorithms permit exact calculation
of the likelihood for all of these models even when they are
partially observed.

We demonstrate experimentally that our new exact infer-
ence algorithms are more scalable than competing approxi-
mate approaches, and support learning via exact likelihood
calculations in a broad class of models for which this was
not previously possible.

2. Model and Problem Statement
We consider a hidden Markov model with integer la-
tent variables N

1

, . . . , NK and integer observed variables
Y
1

, . . . , YK . All variables are assumed to be non-negative.
The model is most easily understood in the context of its
application to population ecology or branching processes
(which are similar): in these cases, the variable Nk rep-
resents the size of a hidden population at time tk, and
Yk represents the number of individuals that are observed
at time tk. However, the model is equally valid without
this interpretation as a flexible class of autoregressive pro-
cesses (McKenzie, 2003).

We introduce some notation to describe the model. For
an integer random variable N , write Y = ⇢ � N to mean
that Y ⇠ Binomial(N, ⇢). This operation is known as
“binomial thinning”: the count Y is the number of “sur-
vivors” from the original count N . We can equivalently
write Y =

PN
i=1

Xi for iid Xi ⇠ Bernoulli(⇢) to highlight
the fact that this is a compound distribution. Indeed, com-
pound distributions will play a key role: for independent
integer random variables N and X , let Z = N � X de-
note the compound random variable Z =

PN
i=1

Xi, where
{Xi} are independent copies of X . Now, we can describe
our model as:

Nk = (Nk�1

�Xk) +Mk, (1)
Yk = ⇢k �Nk. (2)

The variable Nk represents the population size at time tk.
The random variable Nk�1

� Xk�1

=

PNk�1

i=1

Xk�1,i

is the number of offspring of individuals from the previous
time step, where Xk�1,i is the total number of individu-
als “caused by” the ith individual alive at time tk�1

. This
definition of offspring is flexible enough to model imme-
diate offspring, surviving individuals, and descendants of
more than one generation. The random variable Mk is the
number of immigrants at time tk, and Yk is the number of
individuals observed at time tk, with the assumption that
each individual is observed independently with probability
⇢k. We have left unspecified the distributions of Mk and
Xk, which we term the immigration and offspring distri-
butions, respectively. These may be arbitrary distributions
over non-negative integers. We will assume the initial con-
dition N

0

= 0, though the model can easily be extended to
accommodate arbitrary initial distributions.

Problem Statement We use lower case variables to de-
note specific settings of random variables. Let yi:j =

(yi, . . . , yj) and ni:j = (ni, . . . , nj). The model
above defines a joint probability mass function (pmf)
p(n

1:K , y
1:K ; ✓) where we introduce the vector ✓ con-

taining parameters of all component distributions when
necessary. It is clear that the density factors ac-
cording to a hidden Markov model: p(n

1:K , y
1:K) =

Exact Inference for Integer Latent-Variable Models

QK
k=1

p(nk |nk�1

)p(yk |nk). We will consider several in-
ference problems that are standard for HMMs, but pose
unique challenges when the hidden variables have count-
ably infinite support. Specifically, suppose y

1:K are ob-
served, then we seek to:

• Compute the likelihood L(✓) = p(y
1:K ; ✓) for any ✓,

• Compute moments and values of the pmf of the filtered
marginals p(nk | y1:k; ✓), for any k, ✓,

• Estimate parameters ✓ by maximizing the likelihood.

We focus technically on the first two problems, which
will enable numerical optimization to maximize the like-
lihood. Another standard problem is to compute smoothed
marginals p(nk | y1:K ; ✓) given both past and future obser-
vations relative to time step k. Although this is interesting,
it is technically more difficult, and we defer it for future
work.

Connections to Other Models This model specializes
to capture many different models in the literature. The
latent process of Eq. (1) is a Galton-Watson branch-
ing process with immigration (Watson & Galton, 1875;
Heathcote, 1965). It also captures a number of differ-
ent AR(1) (first-order autoregressive) processes for inte-
ger variables (McKenzie, 2003); these typically assume
Xk ⇠ Bernoulli(�k), i.e., that the offspring process is
binomial thinning of the current individuals. For clarity
when describing this as an offspring distribution, we will
refer to it as Bernoulli offspring. With Bernoulli offspring
and time-homogenous Poisson immigration, the model is
an M/M/1 queue (McKenzie, 2003); with time-varying
Poisson immigration it is an Mt/M/1 queue (Eick et al.,
1993). For each of these models, we contribute the first
known algorithms for exact inference and likelihood calcu-
lations when the process is partially observed. This allows
estimation from data that is noisy and has variability that
should not be modeled by the latent process.

Special cases of our model with noisy observations oc-
cur in statistical estimation problems in population ecol-
ogy. When immigration is zero after the first time step and
Xk = 1, the population size is a fixed random variable,
and we recover the N -mixture model of Royle (2004) for
estimating the size of an animal population from repeated
counts. With Poisson immigration and Bernoulli offspring,
we recover the basic model of Dail & Madsen (2011) for
open metapopulations; extended versions with overdisper-
sion and population growth also fall within our framework
by using negative-binomial immigration and Poisson off-
spring. Related models for insect populations also fall
within our framework (Zonneveld, 1991; Gross et al., 2007;
Winner et al., 2015). The main goal in most of this litera-
ture is parameter estimation. Until very recently, no exact
algorithms were known to compute the likelihood, so ap-

proximations such as truncating the support of the latent
variables (Royle, 2004; Fiske & Chandler, 2011; Chandler
et al., 2011; Dail & Madsen, 2011) or MCMC (Gross et al.,
2007; Winner et al., 2015) were used. Winner & Sheldon
(2016) introduced PGF-based exact algorithms for the re-
stricted version of the model with Bernoulli offspring and
Poisson immigration. We will build on that work to pro-
vide exact inference and likelihood algorithms for all of the
aforementioned models.

3. Methods
The standard approach for inference in HMMs is the
forward-backward algorithm (Rabiner, 1989), which is
a special case of more general propagation or message-
passing algorithms (Pearl, 1986; Lauritzen & Spiegelhalter,
1988; Jensen et al., 1990; Shenoy & Shafer, 1990). Winner
& Sheldon (2016) showed how to implement the forward
algorithm using PGFs for models with Bernoulli offspring
and Poisson immigration.

Forward Algorithm The forward algorithm recursively
computes “messages”, which are unnormalized distribu-
tions of subsets of the variables. Specifically, define
↵k(nk) := p(nk, y1:k) and �k(nk) := p(nk, y1:k�1

).
These satisfy the recurrence:

�k(nk) =

X

nk�1

↵k�1

(nk�1

)p(nk |nk�1

), (3)

↵k(nk) = �k(nk)p(yk |nk). (4)

We will refer to Equation (3) as the prediction step (the
value of nk is predicted based on the observations y

1:k�1

),
and Equation (4) as the evidence step (the new evidence yk
is incorporated). In finite models, the forward algorithm
can compute the ↵k messages for k = 1, . . . ,K directly
using Equations (3) and (4). However, if nk is unbounded,
this cannot be done directly; for example, ↵k(nk) is an in-
finite sequence, and Equation (3) contains an infinite sum.

3.1. Forward Algorithm with PGFs

Winner & Sheldon (2016) observed that, for some condi-
tional distributions p(nk |nk�1

) and p(yk |nk), the oper-
ations of the forward algorithm can be carried out using
PGFs. Specifically, define the PGFs �k(uk) and Ak(sk) of
�k(nk) and ↵k(nk), respectively, as:

�k(uk) :=

1X

nk=0

�k(nk)u
nk
k , (5)

Ak(sk) :=
1X

nk=0

↵k(nk)s
nk
k . (6)

The PGFs �k and Ak are power series in the variables
uk and sk with coefficients equal to the message entries.

Exact Inference for Integer Latent-Variable Models

These functions capture all relevant information about the
associated distributions. Technically, �k and Ak are un-
normalized PGFs because the coefficients do not sum to
one. However, the normalization constants are easily re-
covered by evaluating the PGF on input value 1: for exam-
ple, Ak(1) =

P
nk

↵k(nk) = p(y
1:k). This also shows that

we can recover the likelihood as AK(1) = p(y
1:K). After

normalizing, the PGFs can be interpreted as expectations,
for example Ak(sk)/Ak(1) = E[sNk

k | y
1:k].

In general, it is well known that the PGF F (s) of a non-
negative integer-valued random variable X uniquely de-
fines the entries of the probability mass function and the
moments of X , which are recovered from (higher-order)
derivatives of F evaluated at zero and one, respectively:

Pr(X = r) = F (r)
(0)/r!, (7)

E[X] = F (1)

(1), (8)

Var(X) = F (2)

(1)�
h
F (1)

(1)

i
2

+ F (1)

(1). (9)

More generally, the first q moments are determined by the
derivatives F (r)

(1) for r q. Therefore, if we can eval-
uate the PGF Ak and its derivatives for sk 2 {0, 1}, we
can answer arbitrary queries about the filtering distributions
p(nk, y1:k), and, in particular, solve our three stated infer-
ence problems.

But how can we compute values of Ak, �k, and their
derivatives? What form do these PGFs have? One key
result of Winner & Sheldon (2016), which we general-
ize here, is the fact that there is also a recurrence relation
among the PGFs.
Proposition 1. Consider the probability model defined in
Equations (1) and (2). Let Fk be the PGF of the offspring
random variable Xk, and let Gk be the PGF of the immi-
gration random variable Mk. Then �k and Ak satisfy the
following recurrence:

�k(uk) = Ak�1

�
Fk(uk)

�
·Gk(uk) (10)

Ak(sk) =
(sk⇢k)yk

yk!
· �(yk)

k

�
sk(1� ⇢k)

�
(11)

Proof. A slightly less general version of Equation (10) ap-
peared in Winner & Sheldon (2016); the general version
appears in the literature on branching processes with immi-
gration (Heathcote, 1965). Equation (11) follows directly
from general PGF operations outlined in (Winner & Shel-
don, 2016).

The PGF recurrence has the same two elements as the
pmf recurrence in equations (3) and (4). Equation (10)
is the prediction step: it describes the PGF of �k(nk) =

p(nk, y1:k�1

) in terms of previous PGFs. Equation (11)
is the evidence step: it describes the PGF for ↵k(nk) =

!"#" !" 1 − &"

!"&" '(

)"!
+"(#")

!"./

0"./ 0"

1"./ Γ" 1"

3"(#")

45"
'(

4#"
'(

5"

Figure 1. Circuit diagram of Ak(sk)

p(nk, y1:k) in terms of the previous PGF and the new ob-
servation yk. Note that the evidence step involves the ykth
derivative of the PGF �k from the prediction step, where yk
is the observed count. These high-order derivatives compli-
cate the calculation of the PGFs.

3.2. Evaluating Ak via Automatic Differentiation

The recurrence reveals structure about Ak and �k but does
not immediately imply an algorithm. Winner & Shel-
don (2016) showed how to use the recurrence to compute
symbolic representations of all PGFs in the special case
of Bernoulli offspring and Poisson immigration: in this
case, they proved that all PGFs have the form F (s) =

f(s) exp(as + b), where f is a polynomial of bounded
degree. Hence, they can be represented compactly and
computed efficiently using the recurrence. The result is
a symbolic representation, so, for example, one obtains
a closed form representation of the final PGF AK , from
which the likelihood, entries of the pmf, and moments
can be calculated. However, the compact functional form
f(s) exp(as + b) seems to rely crucially on properties of
the Poisson distribution. When other distributions are used,
the size of the symbolic PGF representation grows quickly
with K. It is an open question whether the symbolic meth-
ods can be extended to other classes of PGFs.

This motivates an alternate approach. Instead of comput-
ing Ak symbolically, we will evaluate Ak and its deriva-
tives at particular values of sk corresponding to the queries
we wish to make (cf. Equations (7)–(9)). To develop the
approach, it is helpful to consider the feed-forward com-
putation for evaluating Ak at a particular value sk. The
circuit diagram in Figure 1 is a directed acyclic graph that
describes this calculation; the nodes are intermediate quan-
tities in the calculation, and the shaded rectangles illustrate
the recursively nested PGFs.

Now, we can consider techniques from automatic differen-
tiation (autodiff) to compute Ak and its derivatives. How-

Exact Inference for Integer Latent-Variable Models

ever, these will not apply directly. Note that Ak is de-
fined in terms of higher-order derivatives of the function
�k, which depends on higher-order derivatives of �k�1

,
and so forth. Standard autodiff techniques cannot handle
these recursively nested derivatives. Therefore, we will de-
velop a novel algorithm.

3.2.1. COMPUTATION MODEL AND DUAL NUMBERS

We now develop basic notation and building blocks that
we will assemble to construct our algorithm. It is helpful
to abstract from our particular setting and describe a gen-
eral model for derivatives within a feed-forward computa-
tion, following Griewank & Walther (2008). We consider
a procedure that assigns values to a sequence of variables
v
0

, v
1

, . . . , vn, where v
0

is the input variable, vn is the out-
put variable, and each intermediate variable vj is computed
via a function 'j(vi)i�j of some subset (vi)i�j of the vari-
ables v

0:j�1

. Here the dependence relation i � j simply
means that 'j depends directly on vi, and (vi)i�j is the
vector of variables for which that is true. Note that the de-
pendence relation defines a directed acyclic graph G (e.g.,
the circuit in Figure 1), and v

0

, . . . , vn is a topological or-
dering of G.

We will be concerned with the values of a variable v` and
its derivatives with respect to some earlier variable vi. To
represent this cleanly, we first introduce a notation to cap-
ture the partial computation between the assignment of vi
and v`. For i `, define fi`(v0:i) to be the value that is as-
signed to v` if the values of the first i variables are given by
v
0:i (now treated as fixed input values). This can be defined

formally in an inductive fashion:

fi`(v0:i) = '`(uij)j�`, uij =

(
vj if j i

fij(v0:i) if j > i

This can be interpreted as recursion with memoization for
v
0:i. When '` “requests” the value of uij of vj : if j i,

this value was given as an input argument of fi`, so we
just “look it up”; but if j > i, we recursively compute the
correct value via the partial computation from i to j. Now,
we define a notation to capture derivatives of a variable v`
with respect to an earlier variable vi.
Definition 1 (Dual numbers). The generalized dual num-
ber hv`, dviiq for 0 i ` and q > 0 is the sequence
consisting of v` and its first q derivatives with respect to vi:

hv`, dviiq =

✓
@p

@vpi
fi`(v0:i)

◆q

p=0

We say that hv`, dviiq is a dual number of order q with
respect to vi. Let DRq be the set of dual numbers of order
q. We will commonly write dual numbers as:

hs, duiq =

⇣
s,

ds

du
, . . . ,

dqs

duq

⌘

in which case it is understood that s = v` and u = vi for
some 0 i `, and the function fi`(·) will be clear from
context.

Our treatment of dual numbers and partial computations
is more explicit than what is standard. In particular, we
are explicit both about the variable v` we are differentiat-
ing and the variable vi with respect to which we are dif-
ferentiating. This is important for our algorithm, and also
helps distinguish our approach from traditional automatic
differentiation approaches. Forward-mode autodiff com-
putes derivatives of all variables with respect to v

0

, i.e., it
computes hvj , dv0iq for j = 1, . . . , n. Reverse-mode au-
todiff computes derivatives of vn with respect to all vari-
ables, i.e., it computes hvn, dviiq for i = n � 1, . . . , 0. In
each case, one of the two variables is fixed, so the notation
can be simplified.

3.2.2. OPERATIONS ON DUAL NUMBERS

The general idea of our algorithm will resemble forward-
mode autodiff. Instead of sequentially calculating the
values v

1

, . . . , vn in our feed-forward computation, we
will calculate dual numbers hv

1

, dvi1iq1 , . . . , hvn, dviniqn ,
where we leave unspecified (for now) the variables with re-
spect to which we differentiate, and the order of the dual
numbers. We will require three high-level operations on
dual numbers. The first one is “lifting” a scalar function.

Definition 2 (Lifted Function). Let f : Rm ! R be a func-
tion of variables x

1

, . . . , xm. The qth-order lifted func-
tion Lqf : (DRq)

m ! DRq is the function that accepts
as input dual numbers hx

1

, duiq, . . . , hxm, duiq of order q
with respect to the same variable u, and returns the value⌦
f(x

1

, . . . , xm), du
↵
q
.

Lifting is the basic operation of higher-order forward mode
autodiff. For functions f consisting only of “primitive op-
erations”, the lifted function Lqf can be computed at a
modest overhead relative to computing f .

Proposition 2 (Griewank & Walther, 2008). Let f : Rm !
R be a function that consists only of the following primitive
operations, where x and y are arbitrary input variables and
all other numbers are constants: x + cy, x ⇤ y, x/y, xr,
ln(x), exp(x), sin(x), cos(x). Then Lqf can be computed
in time O(q2) times the running time of f .

Based on this proposition, we will write algebraic opera-
tions on dual numbers, e.g., hx, duiq⇥hy, duiq , and under-
stand these to be lifted versions of the corresponding scalar
operations. The standard lifting approach is to represent
dual numbers as univariate Taylor polynomials (UTPs), in
which case many operations (e.g., multiplication, addition)
translate directly to the corresponding operations on poly-
nomials. We will use UTPs in the proof of Theorem 1.

Exact Inference for Integer Latent-Variable Models

The second operation we will require is composition. Say
that variable vj separates vi from v` if all paths from vi to
v` in G go through vj .
Theorem 1 (Composition). Suppose vj separates vi from
v`. In this case, the dual number hv`, dviiq depends only on
the dual numbers hv`, dvjiq and hvj , dviiq , and we define
the composition operation:

hv`, dvjiq � hvj , dviiq := hv`, dviiq

If vj does not separate vi from v`, the written composition
operation is undefined. The composition operation can be
performed in O(q2 log q) time by composing two UTPs.

Proof. If all paths from vi to v` go through vj , then vj is
a “bottleneck” in the partial computation fil. Specifically,
there exist functions F and H such that vj = F (vi) and
v` = H(vj). Here, the notation suppresses dependence on
variables that either are not reachable from vi, or do not
have a path to v`, and hence may be treated as constants
because they they do not impact the dual number hv`, viiq .
A detailed justification of this is given in the supplemen-
tary material. Now, our goal is to compute the higher-order
derivatives of v` = H(F (vi)). Let ˆF and ˆH be infinite
Taylor expansions about vi and vj , respectively, omitting
the constant terms F (vi) and H(vj):

ˆF (") :=
1X

p=1

F (p)
(vi)

p!
"p, ˆH(") :=

1X

p=1

H(p)
(vj)

p!
"p.

These are polynomials in ", and the first q coefficients are
given in the input dual numbers. The coefficient of "p in
ˆU(") :=

ˆH(

ˆF (")) for p � 1 is exactly dpv`/dv
p
i (see

Wheeler, 1987, where the composition of Taylor polynomi-
als is related directly to the higher-order chain rule known
as Faà dı́ Bruno’s Formula). So it suffices to compute the
first q coefficients of ˆH(

ˆF (✏)). This can be done by exe-
cuting Horner’s method (Horner, 1819) in truncated Taylor
polynomial arithmetic (Griewank & Walther, 2008), which
keeps only the first q coefficients of all polynomials (i.e.,
it assumes ✏p = 0 for p > q). After truncation, Horner’s
method involves q additions and q multiplications of poly-
nomials of degree at most q. Polynomial multiplication
takes time O(q log q) using the FFT, so the overall running
time is O(q2 log q).

The final operation we will require is differentiation. This
will support local functions '` that differentiate a previous
value, e.g., v` = '`(vj) = dpvj/dv

p
i .

Definition 3 (Differential Operator). Let hs, duiq be a dual
number. For p q, the differential operator Dp applied to
hs, duiq returns the dual number of order q � p given by:

Dphs, duiq :=

⇣ dps

dup
, . . . ,

dqs

duq

⌘

The differential operator can be applied in O(q) time.

This operation was defined in (Kalaba & Tesfatsion, 1986).

3.2.3. THE GDUAL-FORWARD ALGORITHM

We will now use these operations to lift the function Ak

to compute h↵k, skiq = LA
�
hsk, dskiq), i.e., the output

of Ak and its derivatives with respect to its input. Algo-
rithm 1 gives a sequence of mathematical operations to
compute Ak(sk). Algorithm 2 shows the corresponding
operations on dual numbers; we call this algorithm the
generalized dual-number forward algorithm or GDUAL-
FORWARD. Note that a dual number of a variable with re-
spect to itself is simply hx, dxiq = (x, 1, 0, . . . , 0); such
expressions are used without explicit initialization in Al-
gorithm 2. Also, if the dual number hx, dyiq has been as-
signed, we will assume the scalar value x is also available,
for example, to initialize a new dual variable hx, dxiq (cf.
the dual number on the RHS of Line 3). Note that Algo-
rithm 1 contains a non-primitive operation on Line 5: the
derivative dyk�k/du

yk

k . To evaluate this in Algorithm 2, we
must manipulate the dual number of �k to be taken with
respect to uk, and not the original input value sk, as in
forward-mode autodiff. Our approach can be viewed as
following a different recursive principle from either for-
ward or reverse-mode autodiff: in the circuit diagram of
Figure 1, we calculate derivatives of each nested circuit
with respect to its own input, starting with the innermost
circuit and working out.
Theorem 2. LAK computes h↵k, dskiq in time O

�
K(q +

Y)

2

log(q + Y)

�
where Y =

PK
k=1

yk is the sum of
the observed counts and q is the requested number of
derivatives. Therefore, the likelihood can be computed in
O(KY 2

log Y) time, and the first q moments or the first q
entries of the filtered marginals can be computed in time
O
�
K(q + Y)

2

log(q + Y)

�
.

Proof. To see that GDUAL-FORWARD is correct, note that
it corresponds to Algorithm 1, but applies the three opera-
tions from the previous section to operate on dual numbers
instead of scalars. We will verify that the conditions for
applying each operation are met. Lines 2–5 each use lifting
of algebraic operations or the functions Fk and Gk, which
are assumed to consist only of primitive operations. Lines
4 and 5 apply the composition operation; here, we can ver-
ify from Figure 1 that sk�1

separates uk and ↵k�1

(Line 4)
and that uk separates sk and �k (Line 5). The conditions for
applying the differential operator on Line 5 are also met.

For the running time, note that the total number of opera-
tions on dual numbers in LAK , including recursive calls,
is O(K). The order of the dual numbers is initially q, but
increases by yk in each recursive call (Line 4). Therefore,
the maximum value is q + Y . Each of the operations on

Exact Inference for Integer Latent-Variable Models

Algorithm 1 Ak(sk)
if k = 0 then

1: return ↵k = 1
end if

2: uk = sk(1� ⇢k)
3: sk�1 = Fk(uk)
4: �k = Ak�1(sk�1) ·Gk(uk)
5: ↵k = dyk

du
yk
k

�k · (sk⇢k)yk/yk!
6: return ↵k

Algorithm 2 LAk(hsk, dskiq) — GDUAL-FORWARD

if k = 0 then
1: return h↵k, dskiq = (1, 0, . . . , 0)

end if
2: huk, dskiq = hsk, dskiq · (1� ⇢k)
3: hsk�1, dukiq+yk = LFk

�
huk, dukiq+yk

�

4: h�k, dukiq+yk =
⇥
LAk�1

�
hsk�1, dsk�1iq+yk

�
� hsk�1, dukiq+yk

⇤
⇥ LGk

�
huk, dukiq+yk

�

5: h↵k, dskiq =
⇥
Dyk h�k, dukiq+yk � huk, dskiq

⇤
⇥

�
⇢khsk, dskiq

�yk/yk!
6: return h↵k, dskiq

dual numbers is O(p2 log p) for dual numbers of order p,
so the total is O(K(q + Y)

2

log(q + Y)).

4. Experiments
In this section we describe simulation experiments to eval-
uate the running time of GDUAL-FORWARD against other
algorithms, and to assess the ability to learn a wide variety
of models for which exact likelihood calculations were not
previously possible, by using GDUAL-FORWARD within a
parameter estimation routine.

Running time vs Y . We compared the running time
of GDUAL-FORWARD with the PGF-FORWARD algorithm
from (Winner & Sheldon, 2016) as well as TRUNC, the
standard truncated forward algorithm (Dail & Madsen,
2011). PGF-FORWARD is only applicable to the Poisson
HMM from (Winner & Sheldon, 2016), which, in our ter-
minology, is a model with a Poisson immigration distri-
bution and a Bernoulli offspring distribution. TRUNC ap-
plies to any choice of distributions, but is approximate. For
these experiments, we restrict to Poisson HMMs for the
sake of comparison with the less general PGF-FORWARD
algorithm.

A primary factor affecting running time is the magnitude
of the counts. We measured the running time for all algo-
rithms to compute the likelihood p(y; ✓) for vectors y :=

y
1:K = c ⇥ (1, 1, 1, 1, 1) with increasing c. In this case,
Y =

P
k yk = 5c. PGF-FORWARD and GDUAL-FORWARD

have running times O(KY 2

) and O(KY 2

log Y), respec-
tively, which depend only on Y and not ✓. The run-
ning time of an FFT-based implementation of TRUNC is
O(KN2

max

logN
max

), where N
max

is the value used to
truncate the support of each latent variable. A heuristic
is required to choose N

max

so that it captures most of the
probability mass of p(y; ✓) but is not too big. The ap-
propriate value depends strongly on ✓, which in practice
may be unknown. In preliminary experiments with real-
istic immigration and offspring models (see below) and
known parameters, we found that an excellent heuristic is
N

max

= 0.4Y/⇢, which we use here. With this heuristic,
TRUNC’s running time is O(

K
⇢2Y 2

log Y).

Figure 3 shows the results for ⇢ 2 {0.15, 0.85}, aver-
aged over 20 trials with error bars showing 95% confidence
intervals of the mean. GDUAL-FORWARD and TRUNC
have the same asymptotic dependence on Y but GDUAL-
FORWARD scales better empirically, and is exact. It is about
8x faster than TRUNC for the largest Y when ⇢ = 0.15, and
2x faster for ⇢ = 0.85. PGF-FORWARD is faster by a factor
of log Y in theory and scales better in practice, but applies
to fewer models.

Running time for different ✓. We also conducted ex-
periments where we varied parameters and used an oracle
method to select N

max

for TRUNC. This was done by run-
ning the algorithm for increasing values of N

max

and se-
lecting the smallest one such that the likelihood was within
10

�6 of the true value (see Winner & Sheldon, 2016).

We simulated data from Poisson HMMs and measured the
time to compute the likelihood p(y; ✓) for the true param-
eters ✓ = (�, �, ⇢), where � is a vector whose kth entry is
the mean of the Poisson immigration distribution at time k,
and � and ⇢ are scalars representing the Bernoulli survival
probability and detection probability, respectively, which
are shared across time steps. We set � and � to mimic three
different biological models; for each, we varied ⇢ from 0.05
to 0.95. The biological models were as follows: ‘PHMM’
follows a temporal model for insect populations (Zonn-
eveld, 1991) with � = (5.13, 23.26, 42.08, 30.09, 8.56)
and � = 0.26; ‘PHMM-peaked’ is similar, but sets � =

(0.04, 10.26, 74.93, 25.13, 4.14) so the immigration is tem-
porally “peaked” at the middle time step; ‘NMix’ sets
� = (80, 0, 0, 0, 0) and � = 0.4, which is similar to the
N-mixture model (Royle, 2004), with no immigration fol-
lowing the first time step.

Figure 2 shows the running time of all three methods versus
⇢. In these models, E[Y] is proportional to ⇢, and the run-
ning times of GDUAL-FORWARD and PGF-FORWARD in-
crease with ⇢ due to the corresponding increase in Y . PGF-
FORWARD is faster by a factor of log Y , but is applicable
to fewer models. GDUAL-FORWARD perfoms best relative
to PGF-FORWARD for the NMix model, because it is fastest
when counts occur in early time steps.

Exact Inference for Integer Latent-Variable Models

Figure 2. Runtime of GDUAL-FORWARD vs baselines. Left: PHMM. Center: PHMM-peaked. Right: NMix. See text for descriptions.

Figure 3. Running time vs. Y . Top: ⇢ =
0.15, bottom: ⇢ = 0.85.

Figure 4. Estimates of R in different models. Titles indicate immigration and offspring
distribution. 50 trials summarized as box plot for each model, parameter combination.

Recall that the running time of TRUNC is
O(N2

max

logN
max

). For these models, the distribu-
tion of the hidden population depends only on � and
�, and these are the primary factors determining N

max

.
Running time decreases slightly as ⇢ increases, because
the observation model p(y |n; ⇢) exerts more influence
restricting implausible settings of n when the detection
probability is higher.

Parameter Estimation. To demonstrate the flexibility
of the method, we used GDUAL-FORWARD within an op-
timization routine to compute maximum likelihood esti-
mates (MLEs) for models with different immigration and
growth distributions. In each experiment, we generated
10 independent observation vectors for K = 7 time steps
from the same model p(y; ✓), and then used the L-BFGS-B
algorithm to numerically find ✓ to maximize the log-
likelihood of the 10 replicates. We varied the distributional
forms of the immigration and offspring distributions as well
as the mean R := E[Xk] of the offspring distribution. We
fixed the mean immigration � := E[Mk] = 6 and the de-

tection probability to ⇢ = 0.6 across all time steps. The
quantity R is the “basic reproduction number”, or the aver-
age number of offspring produced by a single individual,
and is of paramount importance for disease and popula-
tion models. We varied R, which was also shared across
time steps, between 0.2 and 1.2. The parameters � and R
were learned, and ⇢ was fixed to resolve ambiguity between
population size and detection probability. Each experiment
was repeated 50 times; a very small number of optimizer
runs failed to converge after 10 random restarts and were
excluded.

Figure 4 shows the distribution of 50 MLE estimates for
R vs. the true values for each model. Results for two ad-
ditional models appear in the supplementary material. In
all cases the distribution of the estimate is centered around
the true parameter. It is evident that GDUAL-FORWARD can
be used effectively to produce parameter estimates across a
variety of models for which exact likelihood computations
were not previously possible.

Exact Inference for Integer Latent-Variable Models

Acknowledgments
This material is based upon work supported by the National
Science Foundation under Grant No. 1617533.

References
Carpenter, B., Gelman, A., Hoffman, M., Lee, D.,

Goodrich, B., Betancourt, M., Brubaker, M. A., Guo,
J., Li, P., and Riddell, A. Stan: A probabilistic program-
ming language. Journal of Statistical Software, 20, 2016.

Chandler, R. B., Royle, J. A., and King, D. I. Inference
about density and temporary emigration in unmarked
populations. Ecology, 92(7):1429–1435, 2011.

Dail, D. and Madsen, L. Models for estimating abundance
from repeated counts of an open metapopulation. Bio-
metrics, 67(2):577–587, 2011.

Eick, S. G., Massey, W. A., and Whitt, W. The physics of
the Mt/G/1 queue. Operations Research, 41(4):731–
742, 1993.

Farrington, C. P., Kanaan, M. N., and Gay, N. J. Branching
process models for surveillance of infectious diseases
controlled by mass vaccination. Biostatistics, 4(2):279–
295, 2003.

Fiske, I. J. and Chandler, R. B. unmarked: An R pack-
age for fitting hierarchical models of wildlife occurrence
and abundance. Journal of Statistical Software, 43:1–23,
2011.

Griewank, A. and Walther, A. Evaluating derivatives:
principles and techniques of algorithmic differentiation.
SIAM, 2008.

Gross, K., J., Kalendra E., Hudgens, B. R., and Haddad,
N. M. Robustness and uncertainty in estimates of butter-
fly abundance from transect counts. Population Ecology,
49(3):191–200, 2007.

Heathcote, C. R. A branching process allowing immigra-
tion. Journal of the Royal Statistical Society. Series B
(Methodological), 27(1):138–143, 1965.

Horner, W. G. A new method of solving numerical equa-
tions of all orders, by continuous approximation. Philo-
sophical Transactions of the Royal Society of London,
109:308–335, 1819.

Jensen, F. V., Lauritzen, S. L., and Olesen, K. G. Bayesian
updating in causal probabilistic networks by local com-
putations. Computational statistics quarterly, 1990.

Kalaba, R. and Tesfatsion, L. Automatic differentiation of
functions of derivatives. Computers & Mathematics with
Applications, 12(11):1091–1103, 1986.

Kingma, D. P. and Welling, M. Auto-encoding variational
Bayes. 2014.

Kvitkovicova, A. and Panaretos, V. M. Asymptotic infer-
ence for partially observed branching processes. Ad-
vances in Applied Probability, 43(4):1166–1190, 2011.
ISSN 00018678.

Lauritzen, S. L. and Spiegelhalter, D. J. Local computa-
tions with probabilities on graphical structures and their
application to expert systems. Journal of the Royal Sta-
tistical Society. Series B (Methodological), pp. 157–224,
1988.

McKenzie, E. Ch. 16. Discrete variate time series. In
Stochastic Processes: Modelling and Simulation, vol-
ume 21 of Handbook of Statistics, pp. 573 – 606. El-
sevier, 2003.

Panaretos, V. M. Partially observed branching processes for
stochastic epidemics. J. Math. Biol, 54:645–668, 2007.
doi: 10.1007/s00285-006-0062-6.

Pearl, J. Fusion, propagation, and structuring in belief net-
works. Artificial intelligence, 29(3):241–288, 1986.

Rabiner, L. A tutorial on hidden Markov models and se-
lected applications in speech recognition. Proceedings
of the IEEE, 77(2):257–286, feb 1989.

Ranganath, R., Gerrish, S., and Blei, D. M. Black box vari-
ational inference. In International Conference on Artifi-
cial Intelligence and Statistics (AISTATS), pp. 814–822,
2014.

Royle, J. A. N-Mixture models for estimating population
size from spatially replicated counts. Biometrics, 60(1):
108–115, 2004.

Shenoy, P. P. and Shafer, G. Axioms for probability and
belief-function propagation. In Uncertainty in Artificial
Intelligence, 1990.

Watson, H. W. and Galton, F. On the probability of the ex-
tinction of families. The Journal of the Anthropological
Institute of Great Britain and Ireland, 4:138–144, 1875.

Wheeler, F. S. Bell polynomials. ACM SIGSAM Bulletin,
21(3):44–53, 1987.

Winner, K. and Sheldon, D. Probabilistic inference with
generating functions for Poisson latent variable models.
In Advances in Neural Information Processing Systems
29, 2016.

Winner, K., Bernstein, G., and Sheldon, D. Inference in a
partially observed queueing model with applications in
ecology. In Proceedings of the 32nd International Con-
ference on Machine Learning (ICML), pp. 2512–2520,
2015.

Exact Inference for Integer Latent-Variable Models

Zhang, N. L. and Poole, D. A simple approach to Bayesian
network computations. In Proc. of the Tenth Canadian
Conference on Artificial Intelligence, 1994.

Zipkin, E. F., Thorson, J. T., See, K., Lynch, H. J., Grant,
E. H. C., Kanno, Y., Chandler, R. B., Letcher, B. H., and
Royle, J. A. Modeling structured population dynamics
using data from unmarked individuals. Ecology, 95(1):
22–29, 2014.

Zonneveld, C. Estimating death rates from transect counts.
Ecological Entomology, 16(1):115–121, 1991.

Exact Inference for Integer Latent-Variable Models

A. Supplementary Material
A.1. Additional Details for Proof of Theorem 1

We have assumed that all paths from vi to v` go through
vj , and we wish to show that there exist functions ˜F and ˜H
such that

vj = F (vi) := ˜F (vi, vA)

v` = H(vj) := ˜H(vj , vB)

and all nodes in vA and vB are either not reachable from
vi or have no path to v`. Note that if a variable vk is not
reachable from vi, then the scalar value v` may still depend
on vk, but the derivatives dqv`

dvq
i

do not depend on vk, so it
is safe to treat vk as a fixed constant relative to the dual
number hv`, dviiq . If vk has no path to v`, neither v` nor
the derivatives dqv`

dvq
i

depend on vk.

The construction of ˜F is easy:

˜F (vi, vA) := fij(vi, v0:i�1

)

The nodes v
0:i�1

precede vi in the topological ordering,
and hence have no path from i.

To construct ˜H , we reason about the partial computation
fj`(v0:`) from vj to v`. Recall that this is defined recur-
sively starting with '`(vk)k�`, and terminating whenever
a variable vp is reached for p j. Consider any such vari-
able vp that is reached by the calculation. Then vp must
satisfy p � q for q > j (otherwise the recursion would not
reach vp), and, furthermore, there must be a path from vq
to v` (otherwise the recursion does not reach vq). In other
words, there is a path vp, vq, . . . , v` for q > j. However,
this implies that vp is not reachable from vi, otherwise we
would contradict the assumption that all paths from vp to
v` go through vj . Therefore, if we consider the subset of
variables vB ✓ v

0:j�1

on which fj` depends, none of these
variables is reachable from vi. Therefore we can write:

˜H(vj , vB) = fj`(vj , vB)

where we omit from fj` the arguments on which it does not
depend. This completes the argument.

A.2. Additional Parameter Estimation Experiments

Figure 5. Estimates of R for two additional models. Titles indi-
cate immigration and offspring distribution. 50 trials summarized
as box plot for each model, parameter combination.

