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Abstract. Popular reputation systems for linked networks can be ma-
nipulated by spammers who strategically place links. The reputation of
node v is interpreted as the world’s opinion of v’s importance. In PageR-
ank [4], v’s own opinion can be seen to have considerable influence on her
reputation, where v expresses a high opinion of herself by participating
in short directed cycles. In contrast, we show that expected hitting time
— the time to reach v in a random walk — measures essentially the same
quantity as PageRank, but excludes v’s opinion. We make these notions
precise, and show that a reputation system based on hitting time resists
tampering by individuals or groups who strategically place outlinks. We
also present an algorithm to efficiently compute hitting time for all nodes
in a massive graph; conventional algorithms do not scale adequately.

1 Introduction

Reputation and ranking systems are an essential part of web search and e-
commerce. The general idea is that the reputation of one participant is de-
termined by the endorsements of others; for example, one web page endorses
another by linking to it. However, not all participants are honorable — e.g.,
spammers will do their best to manipulate a search engine’s rankings. A natural
requirement for a reputation system is that individuals should not be able to
improve their own reputation using simple self-endorsement strategies, like par-
ticipating in short cycles to boost PageRank. Since PageRank enjoys many nice
properties, it is instructive to see where things go wrong.

Let G = (V,E) be a directed graph (e.g, the web). PageRank assigns a score
π(v) to each node v, where π is defined to be the stationary distribution of a
random walk on G, giving the pleasing interpretation that the score of page v
is the fraction of time a web surfer spends there if she randomly follows links
forever. For technical reasons, the random walk is modified to restart in each
step with probability α, jumping to a page chosen uniformly at random. This
ensures that π exists and is efficient to compute. Then a well-known fact about
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Markov chains [1] says that 1/π(v) is equal to the expected return time of v, the
number of steps it takes a random walk starting at v to return to v. A heuristic
argument for this equivalence is that a walk returning to v every r steps on
average should spend 1/r of all time steps there.

Despite its popularity as a ranking system, one can easily manipulate return
time by changing only outlinks. Intuitively, a node v should link only to nodes
from which a random walk will return to v quickly (in expectation). By partner-
ing with just one other node to form a 2-cycle with no other outlinks, v ensures
a return in two steps — the minimum possible without self-loops — unless the
walk jumps first. In this fashion, v can often boost its PageRank by a factor of 3
to 4 for typical settings of α [6]. However, this strategy relies on manipulating the
portion of the walk before the first jump: the jump destination is independent
of v’s outlinks, and return time is determined once the walk reaches v again, so
v’s outlinks have no further effect. This suggests eliminating the initial portion
of the walk and measuring reputation by the time to hit v following a restart,
called the hitting time of node v from the restart distribution. This paper de-
velops a reputation system based on hitting time that is provably resistant to
manipulation. Our main contributions are:

– In Theorem 1, we develop a precise relationship between expected return
time and expected hitting time in a random walk with restart, and show
that the expected hitting time of v is equal to (1 − p)/αp, where p is the
probability that v is reached before the first restart. We will adopt p as our
measure of the reputation of v.

– We prove that the resulting reputation system resists manipulation, using a
natural definition of influence. For example, node v has a limited amount of
influence that depends on her reputation, and she may spread that influence
using outlinks to increase others’ reputations. However, node v cannot alter
her own reputation with outlinks, nor can she damage w’s reputation by
more than her original influence on w. Furthermore, the advantage that v
gains by purchasing new nodes, often called sybils of v, is limited by the
restart probability of the sybils.

– We present an efficient algorithm to simultaneously compute hitting time for
all nodes. In addition to one PageRank calculation, our algorithm uses Monte
Carlo sampling with running time that is linear in |V | for given accuracy and
confidence parameters. This is a significant improvement over traditional
algorithms, which require a large-scale computation for each node.1

The rest of the paper is structured as follows. In section 2 we discuss re-
lated work. In section 3 we present Theorem 1, giving the characterization of
hitting time that is the foundation for the following sections. In section 4 we
develop a reputation system using hitting time and show that it is resistant to
manipulation. In section 5 we present our algorithm for hitting time.
1 Standard techniques can simultaneously compute hitting time from all possible

sources to a single target node using a system of linear equations. However, what is
desired for reputation systems is the hitting time from one source, or in this case a
distribution, to all possible targets.



2 Related Work

Since the introduction of PageRank [4], it has been adapted to a variety of
applications, including personalized web search [22], web spam detection [14],
and trust systems in peer-to-peer networks [17]. Each of these uses the same
general formulation and our work applies to all of them.

Much work has focused on the PageRank system itself, studying computa-
tion methods, convergence properties, stability and sensitivity, and, of course,
implementation techniques. See [18] for a survey of this wide body of work. Com-
putationally, the Monte Carlo methods in [8] and [2] are similar to our algorithms
for hitting time. They use a probabilistic formulation of PageRank in terms of
a short random walk that permits efficient sampling. In particular, we will use
the same idea as [8] to efficiently implement many random walks simultaneously
in a massive graph, without requiring random access.

Recent works have addressed the manipulability of PageRank: how can a
group of selfish nodes place outlinks to optimize their PageRank, and how can
we detect such nodes [3, 6, 11–13, 20, 23]? In particular, [3, 6, 12] all describe the
manipulation strategy mentioned in the introduction.

For a more general treatment of reputation systems in the presence of strate-
gic agents, see [9] for a nice overview with some specific results from the liter-
ature. Cheng and Friedman [5] prove an impossibility result that relates to our
work — a wide class of reputation systems (including ours) cannot be resistant
to a particular attack called the sybil attack [7]. However, their definition of
resistance is very strong, requiring that no node can improve its ranking using
a sybil attack; our results can be viewed as positive results under a relaxation
of this requirement by limiting the damage caused by a sybil attack. We will
discuss sybils in section 4.3.

Hitting time is a classical quantity of interest in Markov chains. See chapter
2 of [1] for an overview. The exact terminology and definitions vary slightly:
we define hitting time as a random variable, but sometimes it is defined as the
expectation of the same random variable. Also, the term first passage time is
sometimes used synonymously. In a context similar to ours, hitting time was
used as a measure of proximity between nodes to predict link formation in a
social network [19]; also, the node similarity measure in [16] can be formulated
in terms of hitting time.

Finally, the relationship between hitting time and return time in a random
walk with restart is related to regenerative stochastic processes. In fact, Theorem
1 can be derived as a special case of a general result about such processes. See
equation (15) in [15] and the references therein for details.

3 Characterizing Hitting Time

This section paves the way toward a reputation system based on hitting time by
stating and proving Theorem 1. Part (i) of the theorem relates expected hitting
time to expected return time — the two are essentially the same except for



nodes where the random walk is likely to return before jumping, the sign of a
known manipulation strategy. Part (ii) proves that the expected hitting time of
v is completely determined by the probability that v is reached before the first
jump; this will lead to precise notions of manipulation-resistance in section 4.

3.1 Preliminaries

Let G = (V,E) be a directed graph. Consider the standard random walk on
G, where the first node is chosen from starting distribution q, then at each
step the walk follows an outgoing link from the current node chosen uniformly
at random. Let {Xt}t≥0 be the sequence of nodes visited by the walk. Then
Pr [X0 = v] = q(v), and Pr [Xt = v | Xt−1 = u] = 1/outdegree(u) if (u, v) ∈ E,
and zero otherwise. Here, we require outdegree(u) > 0.2 Now, suppose the walk
is modified to restart with probability α at each step, meaning the next node is
chosen from the starting distribution (henceforth, restart distribution) instead
of following a link. The new transition probabilities are:

Pr [Xt = v | Xt−1 = u] =

{
αq(v) + 1−α

outdegree(u) if (u, v) ∈ E

αq(v) otherwise
.

We call this the α-random walk on G, and we parametrize quantities of interest
by the restart probability α. A typical setting is α = 0.15, so a jump occurs every
1/.15 ≈ 7 steps in expectation. The hitting time of v is Hα(v) = min{t : Xt = v}.
The return time of v is Rα(v) = min{t ≥ 1 : Xt = v | X0 = v}. When v is
understood, we simply write Hα and Rα. We write H and R for the hitting time
and return time in a standard random walk.

3.2 Theorem 1

Before stating Theorem 1, we make the useful observation that we can split
the α-random walk into two independent parts: (1) the portion preceding the
first jump is the beginning of a standard random walk, and (2) the portion
following the first jump is an α-random walk independent of the first portion.
The probability that the first jump occurs at time t is (1−α)t−1α, i.e., the first
jump time J is a geometric random variable with parameter α, independent of
the nodes visited by the walk. Then we can model the α-random walk as follows:
(1) start a standard random walk, (2) independently choose the first jump time
J from a geometric distribution, and (3) at time J begin a new α-random walk.
Hence we can express the return time and hitting time of v recursively:

Rα =
{

R if R < J
J + H ′

α otherwise , Hα =
{

H if H < J
J + H ′

α otherwise . (1)

Here H ′
α is an independent copy of Hα. It is convenient to abstract from our

specific setting and state Theorem 1 about general random variables of this form.
2 This is a technical condition that can be resolved in a variety of ways, for example,

by adding self-loops to nodes with no outlinks.



Theorem 1. Let R and H be independent, nonnegative, integer-valued random
variables, and let J be a geometric random variable with parameter α. Define
Rα and Hα as in (1). Then,

(i) E [Rα] = Pr [R ≥ J ]
(

1
α + E [Hα]

)
,

(ii) E [Hα] = 1
α ·

Pr[H≥J]
Pr[H<J] ,

(iii) E [Rα] = 1
α ·

Pr[R≥J]
Pr[H<J] .

Part (i) relates expected return time to expected hitting time: Pr [R ≥ J ] is
the probability that the walk does not return before jumping. On the web, for
example, we expect Pr [R ≥ J ] to be close to 1 for most pages, so the two mea-
sures are roughly equivalent. However, pages attempting to optimize PageRank
can drive Pr [R ≥ J ] much lower, achieving an expected return time that is much
lower than expected hitting time.

For parts (ii) and (iii), we adopt the convention that Pr [H < J ] = 0 implies
E [Hα] = E [Rα] = ∞, corresponding to the case when v is not reachable from
any node with positive restart probability. To gain some intuition for part (ii)
(part (iii) is similar), we can think of the random walk as a sequence of inde-
pendent explorations from the restart distribution “looking” for node v. Each
exploration succeeds in finding v with probability Pr [H < J ], so the expected
number of explorations until success is 1/Pr [H < J ]. The expected number of
steps until an exploration is terminated by a jump is 1/α, so a rough estimate
of hitting time is 1

α · 1
Pr[H<J] . Of course, this is an overestimate because the

final exploration is cut short when v is reached, and the expected length of an
exploration conditioned on not reaching v is slightly shorter than 1/α. It turns
out that Pr [H ≥ J ] is exactly the factor needed to correct the estimate, due to
the useful fact about geometric random variables3 stated in Lemma 1. We stress
that the expected hitting time of v in the α-random walk is completely deter-
mined by Pr [H < J ], the probability that a given exploration succeeds; this will
serve as our numeric measure of reputation.

Lemma 1. Let X and J be independent random variables such that X is non-
negative and integer-valued, and J is a geometric random variable with parameter
α. Then E [min(X, J)] = 1

αPr [X ≥ J ].

Lemma 1 is proved in the appendix.

Proof (Theorem 1). We rewrite Rα = min(R, J)+I{R ≥ J}H ′
α, where I{R ≥ J}

is the indicator variable for the event R ≥ J . Note that I{R ≥ J} and H ′
α are

3 We mentioned that Theorem 1 can be derived from a result about regenerative
stochastic processes [15]. In fact, Theorem 1 captures most of the generality; to
write recurrences as in (1), the process need not be Markovian, it is only necessary
that the process following a restart is a replica of the original. The only non-general
assumption made is that J is a geometric random variable; this simplifies the con-
clusions.



independent. Then, using linearity of expectation and Lemma 1,

E [Rα] = E [min(R, J)] + Pr [R ≥ J ]E [H ′
α]

=
1
α

Pr [R ≥ J ] + Pr [R ≥ J ]E [Hα]

= Pr [R ≥ J ]
(

1
α

+ E [Hα]
)

.

This proves part (i). For part (ii), we take R to be a copy of H in part (i), giving

E [Hα] = Pr [H ≥ J ]
(

1
α

+ E [Hα]
)

.

Solving this expression for E [Hα] gives (ii). Part (iii) is obtained by substituting
(ii) into (i). ut

4 Manipulation-resistance

In this section we develop a reputation system based on hitting time, and quan-
tify the extent to which an individual can tamper with reputations. It is intu-
itively clear that node u cannot improve its own hitting time by placing outlinks,
but we would also like to limit the damage that u can cause to v’s reputation.
Specifically, u should only be able to damage v’s reputation if u was responsi-
ble for v’s reputation in the first place. Furthermore, u should not have a great
influence on the reputation of too many others. To make these ideas precise,
we define reputation using Pr [H < J ] instead of E [Hα]. By Theorem 1, either
quantity determines the other — they are roughly inversely proportional — and
Pr [H < J ] is convenient for reasoning about manipulation.

Definition 1. Let rep(v) = Pr [H(v) < J ] be the reputation of v.

In words, rep(v) is the probability that a random walk hits v before jumping. Of
all walks that reach v before jumping, an attacker u can only manipulate those
that hit u first. This leads to our notion of influence.

Definition 2. Let infl(u, v) = Pr [H(u) < H(v) < J ] be the influence of u on v.

Definition 3. Let infl(u) =
∑

v infl(u, v) be the total influence of u.

When the graph G is not clear from context, we write these quantities as PrG [·],
repG(·) and inflG(·, ·) to be clear. To quantify what can change when u manipu-
lates outlinks, let Nu(G) be the set of all graphs obtained from G by the addition
or deletion of edges originating at u. It is convenient to formalize the intuition
that u has no control over the random walk until it hits u for the first time.

Definition 4. Fix a graph G and node u. We say that an event A is u-invariant
if PrG [A] = PrG′ [A] for all G′ ∈ Nu(G). If A is u-invariant, we also say that
the quantity Pr [A] is u-invariant.



Lemma 2. An event A is u-invariant if the occurrence or non-occurrence of A
is determined by time H(u).

Lemma 2 is proved in the appendix. With the definitions in place, we can quantify
how much u can manipulate reputations.

Theorem 2. For any graph G = (V,E) and u, v ∈ V ,

(i) infl(u, u) = 0,
(ii) infl(u, v) ≥ 0,
(iii) infl(u, v) ≤ rep(u),

(iv) infl(u) ≤ 1
α

rep(u).

Let G′ ∈ Nu(G). Then

(v) repG′(v) = repG(v) + inflG′(u, v)− inflG(u, v).

Parts (i)-(iv) bound the influence of u in terms of its reputation. Part (v) states
that when u modifies outlinks, the change in v’s reputation is equal to the change
in u’s influence on v. Substituting parts (i-iii) into part (v) yields some simple
but useful corollaries.

Corollary 1. Let G′ ∈ Nu(G). Then

(i) repG′(u) = repG(u),
(ii) repG′(v) ≥ repG(v)− inflG(u, v),
(iii) repG′(v) ≤ repG(v)− inflG(u, v) + repG(u).

No matter what actions u takes, it cannot alter its own reputation (part (i)).
Nor can u damage the portion of v’s reputation not due to u’s influence (part
(ii)). On the other hand, u may boost its influence on v, but its final influence
cannot exceed its reputation (part (iii)).

Proof (Theorem 2). For the most part, these are simple consequences of the
definitions. Parts (i) and (ii) are trivial:

infl(u, u) = Pr [H(u) < H(u) < J ] = 0,

infl(u, v) = Pr [H(u) < H(v) < J ] ≥ 0.

For part (iii), a walk that hits u then v before jumping contributes equally to
u’s reputation and u’s influence on v:

infl(u, v) = Pr [H(u) < H(v) < J ] ≤ Pr [H(u) < J ] = rep(u).

Part (iv) uses the observation that not too many nodes can be hit after u but
before the first jump. Let L = |{v : H(u) < H(v) < J}| be the number of all
such nodes. Then,

E [L] = E

[∑
v

I{H(u) < H(v) < J}

]
=

∑
v

Pr [H(u) < H(v) < J ] = infl(u).



But L cannot exceed J −min(H(u), J), so

infl(u) = E [L] ≤ E [J ]− E [min(H(u), J)]
= E [J ] (1− Pr [H(u) ≥ J ]) (by Lemma 1)
= E [J ] Pr [H(u) < J ]

=
1
α

rep(u).

For part (v), we split walks that hit v before jumping into those that hit u first
and those that don’t:

repG(v) = PrG [H(v) < J ]
= PrG [H(u) < H(v), H(v) < J ] + PrG [H(u) ≥ H(v), H(v) < J ]
= inflG(u, v) + PrG [H(u) ≥ H(v), H(v) < J ]

The event [H(u) ≥ H(v), H(v) < J ] is determined by time H(u), and hence it
is u-invariant. By the above, Pr [H(u) ≥ H(v), H(v) < J ] is equal to repG(v)−
inflG(u, v), and repeating the calculation for G′ gives repG′(v) = inflG′(u, v) +
repG(v)− inflG(u, v). ut

4.1 Manipulating the Rankings

The previous results quantify how much node u can manipulate reputation val-
ues, but often we are more concerned with how much u can manipulate the
ranking, specifically, how far u can advance by manipulating outlinks only. The
following two corollaries follow easily, and are proved in the appendix. Suppose
repG(u) < repG(v) and u manipulates outlinks to produce G′ ∈ Nu(G). We say
that u meets v if repG′(u) = repG′(v), and u surpasses v if repG′(u) > repG′(v).

Corollary 2. Node u cannot surpass a node that is at least twice as reputable.

Corollary 3. Node u can meet or surpass at most 1
αγ nodes that are more

reputable than u by a factor of at least (1 + γ).

4.2 Reputation and Influence of Sets

We have discussed reputation and influence in terms of individual nodes for
ease of exposition, but all of the definitions and results generalize when we
consider the reputation and influence of sets of nodes. Let U,W ⊆ V , and
recall that H(W ) = minw∈W H(w) is the hitting time of the set W . Then
we define rep(W ) = Pr [H(W ) < J ] to be the reputation of W , we define
infl(U,W ) = Pr [H(U) < H(W ) < J ] to be the influence of U on W , and we
define infl(U) =

∑
v∈V infl(U, {v}) to be the total influence of U . With these def-

initions, exact analogues of Theorem 2 and its corollaries hold for any U,W ⊆ V ,
with essentially the same proofs. Note that U and W need not be disjoint, in
which case it is possible that H(U) = H(W ). We omit further details.



4.3 Sybils

In online environments, it is often easy for a user to create new identities, called
sybils, and use them to increase her own reputation, even without obtaining any
new inlinks from non-sybils. A wide class of reputation systems is vulnerable
to sybil attacks [5], and, in the extreme, hitting time can be heavily swayed as
well. For example, if u places enough sybils so the random walk almost surely
starts at a sybil, then adding links from each sybil to u ensures the walk hits
u by the second step unless it jumps. In this fashion, u can achieve reputation
almost 1−α and drive the reputation of all non-sybils to zero. We’ll see that this
is actually the only way that sybils can aid u, by gathering restart probability
and funneling it towards u. So an application can limit the effect of sybils by
limiting the restart probability granted to new nodes. In fact, applications of
hitting time analogous to Personalized PageRank [22] and TrustRank [14] are
already immune, since they place all of the restart probability on a fixed set
of known or trusted nodes. Applications like web search that give equal restart
probability to each node are more vulnerable, but in cases like the web the sheer
number of nodes requires an attacker to place many sybils to have a substantial
effect. This stands in stark contrast with PageRank, where one sybil is enough to
employ the 2-cycle self-endorsement strategy and increase PageRank by several
times [6].

To model the sybil attack, suppose G′ = (V ∪ S, E′) is obtained from G by
a sybil attack launched by u. That is, the sybil nodes S are added, and links
originating at u or inside S can be set arbitrarily. All other links must not change,
with the exception that those originally pointing to u can be directed anywhere
within S ∪ {u}. Let q′ be the new restart distribution, assuming that q′ diverts
probability to S but does not redistribute probability within V . Specifically,
if ρ =

∑
s∈S q′(s) is the restart probability alloted to sybils, we require that

q′(v) = (1− ρ)q(v) for all v ∈ V .

Theorem 3. Let U = {u}∪S be the nodes controlled by the attacker u, and let
v be any other node in V . Then

(i) repG′(u) ≤ repG′(U) = (1− ρ)repG(u) + ρ,
(ii) repG′(v) ≥ (1− ρ)(repG(v)− inflG(u, v)),
(iii) repG′(v) ≤ (1− ρ)(repG(v)− inflG(u, v) + repG(u)) + ρ.

Compared with Corollary 1, the only additional effect of sybils is to diminish
all reputations by a factor of (1−ρ), and increase the reputation of certain target
nodes by up to ρ.

Proof (Theorem 3). We split the attack into two steps, first observing how repu-
tations change when the sybils are added but no links are changed, then applying
Theorem 2 for the step when only links change. Let G+ be the intermediate graph
where we add the sybils but do not change links. Assume the sybils have self-
loops so the transition probabilities are well-defined. We can compute repG+(U)



by conditioning on whether X0 ∈ V or X0 ∈ S, recalling that Pr [X0 ∈ S] = ρ.

repG+(U) = (1− ρ) · PrG+ [H(U) < J | X0 ∈ V ] + ρ · PrG+ [H(U) < J | X0 ∈ S]
= (1− ρ) · PrG [H(u) < J ] + ρ

= (1− ρ)repG(u) + ρ.

In the second step, PrG+ [H(U) < J | X0 ∈ V ] = PrG [H(u) < J ] because hit-
ting U in G+ is equivalent to hitting u in G; all edges outside U are un-
changed, and all edges to U originally went to u. Also the conditional distri-
bution of X0 given [X0 ∈ V ] is equal to q, by our assumption on q′. The term
PrG+ [H(U) < J | X0 ∈ S] is equal to one, since X0 ∈ S implies H(U) = 0 < J .
A similar calculation gives

repG+(v) = (1− ρ)repG(v) + ρ · PrG+ [H(v) < J | X0 ∈ S] = (1− ρ)repG(v).

The term PrG+ [H(v) < J | X0 ∈ S] vanishes because S is disconnected, so a
walk that starts in S cannot leave. Another similar calculation gives inflG+(U, v) =
(1 − ρ)inflG(u, v). Finally, we complete the sybil attack, obtaining G′ from G+

by making arbitrary changes to edges originating in U , and apply Corollary 1
(the version generalized to deal with sets) to G+. Parts (i-iii) of this theorem
are obtained by direct substitution into their counterparts from Corollary 1. ut

Theorem 3 can also be generalized to deal with sets.

5 Computing Hitting Time

To realize a reputation system based on hitting time, we require an algorithm
to efficiently compute the reputation of all nodes. Theorem 1 suggests several
possibilities. Recall that π(v) is the PageRank of v. Then E [Rα(v)] = 1/π(v) can
be computed efficiently for all nodes using a standard PageRank algorithm, and
the quantity Pr [R(v) ≥ J ] can be estimated efficiently by Monte Carlo sampling.
Combining these two quantities using Theorem 1 yields E [Hα(v)].

It is tempting to estimate the reputation Pr [H(v) < J ] directly using Monte
Carlo sampling. However, there is an important distinction between the quanti-
ties Pr [R(v) ≥ J ] and Pr [H(v) < J ]. We can get one sample of either by run-
ning a random walk until it first jumps, which takes about 1/α steps. However
Pr [H(v) < J ] may be infinitesimal, requiring a huge number of independent
samples to obtain a good estimate. On the other hand, Pr [R(v) ≥ J ] is at least
α since the walk has probability α of jumping in the very first step. If self-loops
are disallowed, we obtain a better lower bound of 1 − (1 − α)2, the probability
the walk jumps in the first two steps. For this reason we focus on Pr [R(v) ≥ J ].

5.1 A Monte Carlo Algorithm

In this section we describe an efficient Monte Carlo algorithm to simultaneously
compute hitting time for all nodes. To obtain accuracy ε with probability at
least 1 − δ, the time required will be O( log(1/δ)

ε2α2 |V |) in addition to the time of
one PageRank calculation. The algorithm is:



1. Compute π using a standard PageRank algorithm.4 Then E [Rα(v)] = 1/π(v).
2. For each node v, run k random walks starting from v until the walk either re-

turns to v or jumps. Let yv = 1
k ·(# of walks that jump before returning to v).

3. Use yv as an estimate for Pr [R(v) ≥ J ] in part (i) or (iii) of Theorem 1 to
compute E [Hα(v)] or Pr [H(v) < J ].

How many samples are needed to achieve high accuracy? Let µ = Pr [R(v) ≥ J ]
be the quantity estimated by yv. We call yv an (ε, δ)-approximation for µ if
Pr [|yv − µ| ≥ εµ] ≤ δ. A standard application of the Chernoff bound (see [21]
p. 254) shows that yv is an (ε, δ)-approximation if k ≥ (3 ln(2/δ))/ε2µ. Using
the fact that µ ≥ α, it is sufficient that k ≥ (3 ln(2/δ))/ε2α. Since each walk
terminates in 1

α steps in expectation, the total expected number of steps is no
more than 3 ln(2/δ)

ε2α2 |V |.
For massive graphs like the web that do not easily fit into main memory,

it is not feasible to collect the samples in step 2 of the algorithm sequentially,
because each walk requires random access to the edges, which is prohibitively
expensive for data structures stored on disk. We describe a method from [8] to
collect all samples simultaneously making efficient use of disk I/O.

Conceptually, the idea is to run all walks simultaneously and incrementally
by placing tokens on the nodes recording the location of each random walk.
Then we can advance all tokens by a single step in one pass through the entire
graph. Assuming the adjacency list is stored on disk sorted by node, we store
the tokens in a separate list sorted in the same order. Each token records the
node where it originated to determine if it returns before jumping. Then in one
pass through both lists, we load the neighbors of each node into memory and
process each of its tokens, terminating the walk and updating yv if appropriate,
else choosing a random outgoing edge to follow and updating the token. Updated
tokens are written to the end of a new unsorted token list, and after all tokens
are processed, the new list is sorted on disk to be used in the next pass.

The number of passes is bounded by the walk that takes the longest to
jump, which is not completely satisfactory, so in practice we can stop after a
fixed number of steps t, knowing that the contribution of walks longer than t
is nominal for large enough t, since Pr [R ≥ J, J > t] ≤ Pr [J > t] = (1 − α)t,
which decays exponentially.
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A Proofs

A.1 Lemma 1

Proof. Recall that J is the time of the first success in a sequence of independent
trials that succeed with probability α, so Pr [J > t] = (1−α)t, and Pr [J ≤ t] =
1− (1− α)t.

E [min(X, J)] =
∞∑

t=0

Pr [min(X, J) > t]

=
∞∑

t=0

∞∑
x=0

Pr [X = x] Pr [min(X, J) > t | X = x]

=
∞∑

x=0

Pr [X = x]
∞∑

t=0

Pr [min(x, J) > t] (using independence)

=
∞∑

x=0

Pr [X = x]
x−1∑
t=0

Pr [J > t]

=
∞∑

x=0

Pr [X = x]
x−1∑
t=0

(1− α)t

=
∞∑

x=0

Pr [X = x]
1− (1− α)x

1− (1− α)

=
∞∑

x=0

Pr [X = x]
Pr [J ≤ x]

α

=
1
α

Pr [X ≥ J ]

ut

A.2 Lemma 2

Proof. Let G′ ∈ Nu(G). It is enough to show that PrG [A ∩ [H(u) = t]] =
PrG′ [A ∩ [H(u) = t]] for all t ≥ 0. Let Wu,t be the set of all walks that first
hit u at step t. Specifically, Wu,t = {w0 . . . wt : wt = u, wi 6= u for i < t}. For
w = w0 . . . wt, let Pr [w] be shorthand for the probability of the walk w:

Pr [w] = Pr [X0 = w0] Pr [X1 = w1 | X0 = w0] . . .Pr [Xt = wt | Xt−1 = wt−1] .



Then for w ∈ Wu,t, the transition probabilities in the expression above are
independent of u’s outlinks, so PrG [w] = PrG′ [w]. Finally, since A is determined
by time H(u), there is a function IA : Wu,t → {0, 1} that indicates the occurrence
or non-occurrence of A for each w ∈ Wu,t. Putting it all together,

PrG [A ∩ [H(u) = t]] = PrG [H(u) = t] PrG [A | H(u) = t]

=
∑

w∈Wu,t

PrG [w] IA(w)

=
∑

w∈Wu,t

PrG′ [w] IA(w)

= PrG′ [A ∩ [H(u) = t]]

ut

A.3 Corollary 2

Proof. Suppose repG(v) ≥ 2 · repG(u), then repG′(v) ≥ repG(v) − inflG(u, v) ≥
repG(v)− repG(u) ≥ 2 · repG(u)− repG(u) = repG(u) = repG′(u).

A.4 Corollary 3

Proof. Let A = {v : repG(v) ≥ (1 + γ)repG(u), repG′(v) ≤ repG′(u)} be the set
of all nodes with reputation at least (1 + γ) times the reputation of u that are
met or surpassed by u. Then∑

v∈A

repG(v) ≥ |A|(1 + γ)repG(u),∑
v∈A

repG′(v) ≤ |A|repG′(u) = |A|repG(u),

so
∑

v∈A(repG(v) − repG′(v)) ≥ γ|A|repG(u). But by Corollary 1, repG(v) −
repG′(v) ≤ inflG(u, v), so

γ|A|repG(u) ≤
∑
v∈A

(repG(v)− repG′(v) ≤
∑
v∈A

inflG(u, v) ≤ inflG(u) ≤ 1
α

repG(u),

hence |A| ≤ 1
αγ . ut


