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The first part of this thesis explores issues surrounding the manipulation of

PageRank, a popular link-analysis based reputation system for the web. Page-

Rank is an essential part of web search, but it is also subject to manipulation

by selfish web authors. We develop an alternative to PageRank, based on ex-

pected hitting time in a random walk, that is provably robust to manipulation

by outlinks. We then study the effects of manipulation on the network itself

by analyzing the stable outcomes of the PageRank Game, a network-formation

model where web pages place outlinks strategically to maximize PageRank.

The second part of the thesis explores probabilistic inference algorithms for

a family of models called collective hidden Markov models. These generalize

hidden Markov models (HMMs) to the situation in which one views partial in-

formation about many indistinguishable objects that all behave according to the

same Markovian dynamics. Collective HMMs are motivated by an important

problem in ecology: inferring bird migration paths from a large database of ob-

servations.
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CHAPTER 1

INTRODUCTION

1.1 The Algorithmic Wide-Angle Lens

This is a thesis in two parts. Chapters 2 and 3 explore issues surrounding manip-

ulation of PageRank, and Chapter 4 explores inference algorithms for collective

hidden Markov models, a class of probabilistic models whose definition was mo-

tivated by a data-centric study of bird migration. The most obvious common

thread connecting the two investigations is the suite of algorithmic tools em-

ployed: probability, statistics, networks and discrete Markov chains. However,

the two parts also enjoy a more subtle, and perhaps stronger, thematic connec-

tion, one that is emblematic of computer science in the information age. We call

it the “algorithmic wide-angle lens”.

In 2007, in a presentation to the Federated Computing Research Conference,

Christos Papadimitriou described a transformative export from computational

research to the sciences he called the “algorithmic lens” [52]. He was referring

not only to the export of analytical tools, but, more importantly, to a new algo-

rithmic world view being adopted by researchers in diverse fields such as math-

ematics, natural sciences, economics and sociology. The algorithmic wide-angle

lens extends this metaphor to describe the role of algorithms in understanding

certain phenomena, from either the natural or digital world, that are so broad

in scope that they can only be viewed algorithmically. The link structure of the

web and the migration of wild birds are two such phenomena.

Humans interact with the web daily, yet no one can answer simple
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questions about global web structure — “How can one navigate from

www.cs.cornell.edu to google.com in the fewest number of clicks?”,

“How many pages are on the web?”, “What is the average number of hyper-

links per web page?” — without the assistance of algorithms. Similarly, almost

every person has observed bird migration: perhaps they noted the seasonal ap-

pearance or disappearance of birds in their neighborhood, or glanced to the sky

in the fall to see a flock of geese migrating south for the winter. However, the

continental phenomenon of bird migration occurs on too broad a scale and is

far too complex for any individual to grasp by his or her own observations. It

is only by assembling observations from many individuals over a broad geo-

graphic range that a large scale picture of migration can emerge. With the help

of digital information and the algorithms to interpret it, a quantitative picture

can emerge.

The remainder of this chapter introduces and motivates the work on ma-

nipulation of PageRank that appears in Chapters 2 and 3. Chapter 4 is a self-

contained presentation of collective hidden Markov models for modeling bird

migration.

1.2 Manipulation of PageRank

Reputation and ranking systems are an essential part of web search and e-

commerce. The general idea is that the reputation of one participant is deter-

mined by the endorsements of others; for example, one web page endorses

another by linking to it. However, not all participants are honorable, so

manipulation-resistance is an important consideration.
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Link analysis algorithms for web search first appeared in the late 1990s. No-

table examples are HITS [44] and PageRank [7]; these algorithms use the global

hyperlink structure of the web to determine the importance of individual pages.

Each uses notions of endorsements among pages, so we also refer to them as

link-based reputation systems. Our work focuses on PageRank, an influential

link-analysis algorithm developed by Sergey Brin and Lawrence Page to rank

web pages in the original Google search engine [7]. PageRank is a success story:

it is still today an important ingredient in search technology, and it has been

exported to many other domains.

However, because PageRank is so successful, it is also a popular target for

manipulation in the form of link spam, where web authors manipulate hyper-

links to boost their own reputation. There is a strong economic incentive for

pages to rank highly in search results, and PageRank is a well-known and

simple-to-understand part of a search engine. Moreover, despite the global na-

ture of the PageRank algorithm, it is relatively easy for a page to boost its Page-

Rank by changing only outlinks. This is an undesirable property in a repuation

system: one would like the reputation of a page to determined by the actions of

other participants.

1.2.1 A Short Description of PageRank

It is instructive to take a closer look at the PageRank to see where things go

wrong. Let G = (V, E) be a directed graph (e.g, the web). PageRank assigns

the score π(v) to node v, where π is defined to be the stationary distribution of

a random walk on G, giving the pleasing interpretation that the score of page v
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is the fraction of time a web surfer spends there if she randomly follows links

forever. For technical reasons, the random walk is modified to restart in each

step with probability α, jumping to a page chosen at random, either uniformly

or from a pre-specified distribution. Informally, this allows the random walk

to escape “dangling” portions of the web graph that do not connect back to

main portion. Mathematically, it ensures that π exists, is unique, and efficient

to compute. A well-known fact about Markov chains is that the expected return

time of v — the number of steps it takes a random walk starting at v to return

to v — is equal to 1/π(v) [1]. A heuristic argument for this equivalence is that

a walk that returns to v every r steps on average should spend 1/r of all time

steps there.

1.2.2 Manipulation by Outlinks

The intuition of the manipulation strategy follows easily from the interpretation

of PageRank as the inverse of expected return time. If node v wishes to minimize

the expected return time, it should link only to nodes from which a random

walk will return to v very quickly, in expectation. By partnering with just one

other node to form a 2-cycle with no other outlinks, v ensures a return in two

steps — the minimum possible assuming self-loops are ignored — unless the

walk jumps first. In this fashion, v can often boost its PageRank by a factor

of 3 to 4 for typical settings of α [17]. We will refer to this as the short-cycle

manipulation strategy.
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1.2.3 Contributions

This thesis addresses two issues related to outlink manipulation in PageRank.

In Chapter 2, we develop a reputation system that is nearly identical to Page-

Rank, but provably robust to the type of manipulation described above: no page

can increase its reputation by changing outlinks alone. The result is based on

the following observation: to succeed in the short-cycle manipulation strategy,

a node must increase the probability that the walk will return before the first

random jump. Indeed, the jump destination is independent of v’s outlinks, and

return time is determined once the walk reaches v again, so v’s outlinks have

no further impact once a jump has occurred. This suggests an alternative ex-

periment to determine the reputation of v: measure the expected time to hit v

following the first random jump. This quantity is called the expected hitting time

of v from the restart distribution. We will prove a precise relationship between

expected hitting time and PageRank, and show that a reputation system based

on hitting time is provably resistant to manipulation by placement of outlinks.

In Chapter 3, we address the following question:

How does selfish behavior induced by PageRank affect the structure of the underlying

network?

To answer this question, we introduce a network formation game called the

PageRank Game. The players in the game are the nodes of a directed graph,

and they place outlinks selfishly, attempting to maximize PageRank. We ana-

lyze the outcomes of the game to understand the influence that PageRank has

on network structure. Our theoretical analysis of stable outcomes (Nash equilib-

ria) reveals a rich set of equilibria with surprising connections to several classes
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of graphs that possess strong symmetry or regularity properties. Thus, many

complex and highly connected structures are possible outcomes of the game.

However, our study of best response dynamics, a realistic model of sequential

play, reveals that typical outcomes are highly fragmented, consisting of many

singletons, two-cycles and other small components.

Our main qualitative finding in Chapter 3 is that strategic behavior in the

PageRank game is destructive — PageRank incentivizes the removal of edges

and leads toward fragmentation of the network. Indeed, in the short-cycle ma-

nipulation strategy, node v places outlinks only in its immediate neighborhood,

attempting to ensure a quick return of the random walk. If many nodes behave

this way, small tightly connected neighborhoods emerge from which it is diffi-

cult to escape. In fact, the situation is more extreme: a typical best strategy for v

is to delete all of its links and place a single link to one of its in-neighbors. This,

in turn, gives the neighbor very strong incentive to link only to v, resulting in

“mutual admiration” dynamics that lead to many disconnected two-cycles.

1.2.4 Related Work

Since the introduction of PageRank by Brin and Page [7], it has been adapted

to a variety of applications, including personalized web search [51], web spam

detection [35], and trust systems in peer-to-peer networks [42]. Each of these

uses the same general formulation and our work applies to all of them.

Much work has focused on the PageRank system itself, studying computa-

tion methods, convergence properties, stability and sensitivity, and, of course,

implementation techniques. The survey by Langville and Meyer is an excellent
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summary of this wide body of work [46]. Computationally, the Monte Carlo

methods of Fogaras and Rácz [25] and Avrachenkov et al. [3] are similar to our

algorithms for hitting time in Chapter 2. They use a probabilistic formulation

of PageRank in terms of a short random walk that permits efficient sampling. In

particular, we will use the same idea as [25] to efficiently perform many random

walks simultaneously in a massive graph, with only sequential access to the list

of edges.

Link spam and manipulability of PageRank have been studied in several

contexts [4, 17, 33, 34]. Several methods have been proposed to detect link spam

[32, 48], and to develop reputation systems, often based on principles similar to

PageRank, that are robust to manipulation [26, 38, 66].

For a more general treatment of reputation systems in the presence of strate-

gic agents, Friedman et al. provide an excellent overview with specific results

from the literature [26]. Cheng and Friedman [16] prove an impossibility result

that relates to our work in Chapter 2 — a wide class of reputation systems (in-

cluding expected hitting time) cannot be resistant to a particular attack called

the sybil attack [22]. We will discuss sybils and our work in the context of this

result in Section 2.3.3 of Chapter 2.

Hitting time is a classical quantity of interest in Markov chains. See Chapter

2 of the monograph by Aldous and Fill for an overview [1]. The exact termi-

nology and definitions vary slightly: we will define hitting time as a random

variable, but sometimes it is defined as the expectation of the same random

variable. Also, the term first passage time is sometimes used synonymously. In a

context similar to our research, hitting time was used as a measure of proximity

between nodes to predict link formation in a social network [47]; also, the node
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similarity measure in [40] can be formulated in terms of hitting time.

In Section 2.2 of Chapter 2, we prove a quantitative relationship between ex-

pected hitting time and PageRank; the result relies on the fact that the PageRank

random walk periodically restarts by jumping to a random node. This analysis

is related to a class of models called regenerative stochastic processes. In fact,

Theorem 1 can be derived as a special case of a general result about regenera-

tive stochastic processes. See Equation (15) in [36] and the references therein for

details.

After our initial conference publication on this topic [38], we discovered the

paper by Avrachenkov et al. that independently proved one of the results in our

paper [2]. In their work on the effect of new links on PageRank, they show that

the PageRank of page v can be written as a product of two terms, where only the

first term depends on the outlinks of v. The second term in their formulation —

which is independent of v’s outlinks — is exactly our measure of the reputation

of v.

In Chapter 3, we use the PageRank game to analyze strategic link-placement

on the web. This is an example of a network formation game, in which the nodes of

a network are strategic agents that buy edges attempting to optimize a specific

objective. Network formation games have been used to model various types of

strategic network formation, ranging from communication networks to social

networks. Tardos and Wexler [62] and Jackson [39] provide two recent surveys.

In some models, the players at the two endpoints of the edge must cooperate to

purchase an edge; in others, the decision to place an edge is unilateral. Fabrikant

et al. introduced a unilateral model that received significant attention [24]: in

their model, either u or v may elect to purchase the undirected edge connect-
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ing the two nodes. Our model is also unilateral, but with directed edges: only

node u may buy the directed edge (u, v), corresponding to a page u creating a

hyperlink to page v.

The network formation game most similar to the PageRank game is that of

Rogers in his work on an economic model of social status [57]. Players place

weighted links to other players, and they earn social status from incoming links,

weighted by both the status of the linking player and the weight of the link. A

version of the Rogers model is, in fact, identical to PageRank, and some of the

analysis is similar to that of the PageRank Game. However, the fact that players

may divide their link budget arbitrarily into weighted links is fundamentally

different from the PageRank game where probability is divided equally among

all outgoing links. In the Rogers model, each player solves a continuous opti-

mization problem, while in the PageRank game, that problem is discrete: to

whom should I link?

Finally, our characterization of Nash equilibria in the PageRank game

touches on some topics in algebraic graph theory. An excellent reference is

the book by Godsil [28]. Other useful references are [6, 13, 30]. We define a

graph property called edgewise walk-regularity to characterize Nash equilibria.

This is analogous to two existing concepts: walk-regularity [29] and distance-

regularity [9]. Each of these concepts establishes a combinatorial equivalence

among certain pairs of vertices requiring that for each qualifying pair, the num-

ber of walks of length t connecting the two is the same, for all t. We discuss

these connections in more detail in Chapter 3.

9



CHAPTER 2

MANIPULATION-RESISTANT REPUTATIONS USING HITTING TIME

2.1 Introduction

PageRank is susceptible to the short-cycle manipulation strategy in which nodes

place outlinks to trap the random walk in their local neighborhood and force it

to return quickly. In this chapter, we develop a reputation system based on

hitting time that is robust to this type of manipulation. The main contributions

are:

• In Theorem 1, we develop a precise relationship between PageRank and

expected hitting time in a random walk with restart, and show that the

expected hitting time of v is equal to (1− p)/αp, where p is the probability

that v is reached before the first restart. We will adopt p as our measure of

the reputation of v.

• We prove that the resulting reputation system resists manipulation, using

a natural definition of influence. For example, node v has a limited amount

of influence that depends on her reputation, and she may spread that in-

fluence using outlinks to increase others’ reputations. However, node v

cannot alter her own reputation with outlinks, nor can she damage w’s

reputation by more than her original influence on w. Furthermore, the ad-

vantage that v gains by purchasing new nodes, often called sybils of v, is

limited by the restart probability of the sybils.

• We present an efficient algorithm to simultaneously compute hitting time

for all nodes in a large graph. In addition to one PageRank calculation,
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our algorithm uses Monte Carlo sampling with running time that is linear

in |V | for given accuracy and confidence parameters. This is a signifi-

cant improvement over traditional algorithms, which require a large-scale

computation for each node.1

The chapter is structured as follows. In Section 2.2 we present Theorem 1, a

characterization of hitting time that is the foundation for the following sections.

In Section 2.3 we develop a reputation system using hitting time and show that

it is resistant to manipulation. In Section 2.4 we present algorithms for comput-

ing hitting time.

2.2 Characterizing Hitting Time

Recall that the PageRank is equal to the inverse of expected return time. This

section paves the way toward a reputation system based on hitting time by stat-

ing and proving Theorem 1, which characterizes hitting time and relates it to

return time, and hence PageRank. Part (i) of the theorem shows that expected

hitting time and expected return time are essentially the same except for nodes

where the random walk is likely to return before jumping, the sign of a known

manipulation strategy. Part (ii) proves that the expected hitting time of v is com-

pletely determined by the probability that v is reached before the first jump; this

will lead to precise notions of manipulation-resistance in section 4.

1Standard techniques can simultaneously compute hitting time from all possible sources to
a single target node using a system of linear equations. However, what is desired for reputation
systems is the hitting time from one source, or in this case a distribution, to all possible targets.
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2.2.1 Preliminaries

Let G = (V, E) be a directed graph. Consider the standard random walk on G,

where the first node is chosen from starting distribution q, then at each step

the walk follows an outgoing link from the current node chosen uniformly

at random. Let {Xt}t≥0 be the sequence of nodes visited by the walk. Then

Pr [X0 = v] = q(v), and Pr [Xt = v | Xt−1 = u] = 1/outdegree(u) if (u, v) ∈ E,

and zero otherwise. Here, we require outdegree(u) > 0.2 Now, suppose the

walk is modified to restart with probability α at each step, meaning the next

node is chosen from the starting distribution (henceforth, restart distribution) in-

stead of following a link. The new transition probabilities are:

Pr [Xt = v | Xt−1 = u] =


αq(v) + 1−α

outdegree(u) if (u, v) ∈ E

αq(v) otherwise
.

We call this the α-random walk on G, and we parameterize quantities of interest

by the restart probability α. A typical setting is α = 0.15, so a jump occurs every

1/.15 ≈ 7 steps in expectation. The hitting time of v is Hα(v) = min{t : Xt = v}.

The return time of v is Rα(v) = min{t ≥ 1 : Xt = v | X0 = v}. When v is

understood, we simply write Hα and Rα. We write H and R for the hitting time

and return time in a standard random walk.

2.2.2 Theorem 1

Before stating Theorem 1, we make the useful observation that we can split the

α-random walk into two independent parts: (1) the portion preceding the first

2This is a technical condition that can be resolved in a variety of ways, for example, by adding
self-loops to nodes with no outlinks.
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jump is the beginning of a standard random walk, and (2) the portion following

the first jump is an α-random walk independent of the first portion. The prob-

ability that the first jump occurs at time t is (1 − α)t−1α, i.e., the first jump time

J is a geometric random variable with parameter α, independent of the nodes

visited by the walk. Then we can model the α-random walk as follows: (1) start

a standard random walk, (2) independently choose the first jump time J from

a geometric distribution, and (3) at time J begin a new α-random walk. Hence

we can express the return time and hitting time of v recursively:

Rα =

 R if R < J

J + H ′
α otherwise

, Hα =

 H if H < J

J + H ′
α otherwise

. (2.1)

Here H ′
α is an independent copy of Hα. It is convenient to abstract from our spe-

cific setting and state Theorem 1 about general random variables of this form.

Theorem 1. Let R and H be independent, nonnegative, integer-valued random vari-

ables, and let J be a geometric random variable with parameter α. Define Rα and Hα as

in (2.1). Then,

(i) E [Rα] = Pr [R ≥ J ]
(

1
α

+ E [Hα]
)
,

(ii) E [Hα] = 1
α
· Pr[H≥J ]

Pr[H<J ]
,

(iii) E [Rα] = 1
α
· Pr[R≥J ]

Pr[H<J ]
.

Part (i) relates expected return time to expected hitting time. In the expres-

sion describing the relationship, Pr [R ≥ J ] is the probability that the walk does

not return before jumping. On the web, for example, we expect Pr [R ≥ J ] to be

close to 1 for most pages, so the two measures are roughly equivalent. How-

ever, pages attempting to optimize PageRank can drive Pr [R ≥ J ] much lower,
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achieving an expected return time that is much lower than expected hitting

time.

For parts (ii) and (iii), we adopt the convention that Pr [H < J ] = 0 implies

E [Hα] = E [Rα] = ∞, corresponding to the case when v is not reachable from

any node with positive restart probability. To gain some intuition for part (ii)

(part (iii) is similar), we can think of the random walk as a sequence of inde-

pendent explorations from the restart distribution “looking” for node v. Each

exploration succeeds in finding v with probability Pr [H < J ], so the expected

number of explorations until success is 1/Pr [H < J ]. The expected number of

steps until an exploration is terminated by a jump is 1/α, so a rough estimate

of hitting time is 1
α
· 1

Pr[H<J ]
. Of course, this is an overestimate because the fi-

nal exploration is cut short when v is reached, and the expected length of an

exploration conditioned on not reaching v is slightly shorter than 1/α. It turns

out that Pr [H ≥ J ] is exactly the factor needed to correct the estimate, due to

the useful fact about geometric random variables3 stated in Lemma 1 below. We

stress that the expected hitting time of v in the α-random walk is completely de-

termined by Pr [H < J ], the probability that a given exploration succeeds; this

will serve as our numeric measure of reputation.

Lemma 1. Let X and J be independent random variables such that X is nonnegative

and integer-valued, and J is a geometric random variable with parameter α. Then

E [min(X, J)] = 1
α
Pr [X ≥ J ].

Proof of Lemma 1. Recall that J is the time of the first success in a sequence of

3We mentioned that Theorem 1 can be derived from a result about regenerative stochastic
processes [36]. In fact, Theorem 1 captures most of the generality; to write recurrences as in
(2.1), the process need not be Markovian, it is only necessary that the process following a restart
is a replica of the original. The only non-general assumption made is that the reset time J is a
geometric random variable; this simplifies the conclusions of the theorem.
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independent trials that succeed with probability α, so Pr [J > t] = (1− α)t, and

Pr [J = t + 1] = α · Pr [J > t] = α(1− α)t. The support of J is the set of positive

integers. We use these facts to show the result:

E [min(X, J)] =
∞∑

t=0

Pr [min(X, J) > t]

=
∞∑

t=0

Pr [X > t] Pr [J > t] by independence of X, J

=
1

α

∞∑
t=0

Pr [X > t] Pr [J = t + 1]

=
1

α

∞∑
t=1

Pr [J = t] Pr [X ≥ J | J = t]

=
1

α
Pr [X ≥ J ]

Proof of Theorem 1. We rewrite Rα = min(R, J) + I{R ≥ J}H ′
α, where I{R ≥ J}

is the indicator variable for the event [R ≥ J ]. Note that I{R ≥ J} and H ′
α are

independent. Then, using linearity of expectation and Lemma 1,

E [Rα] = E [min(R, J)] + Pr [R ≥ J ] E [H ′
α]

=
1

α
Pr [R ≥ J ] + Pr [R ≥ J ] E [Hα]

= Pr [R ≥ J ]

(
1

α
+ E [Hα]

)
.

This proves part (i). The proof of (ii) uses part (i), taking advantage of the fact

that the theorem is stated about generic random variables of the form (2.1). Note

that the definition of Hα in (2.1) is a special case of the more general form used

to define Rα, so we can apply the result from part (i) with H substituted for R.
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We get

E [Hα] = Pr [H ≥ J ]

(
1

α
+ E [Hα]

)
.

Solving this expression for E [Hα] gives (ii). Part (iii) is obtained by substituting

(ii) into (i).

2.3 Manipulation-Resistance

In this section we develop a reputation system based on hitting time, and quan-

tify the extent to which an individual can tamper with reputations. It is intu-

itively clear that node u cannot improve its own hitting time by placing outlinks,

but we would also like to limit the damage that u can cause to v’s reputation.

Specifically, u should only be able to damage v’s reputation if u was responsible

for v’s reputation in the first place. Furthermore, u should not have a great in-

fluence on the reputation of too many others. To make these ideas precise, we

define reputation using the quantity Pr [H < J ] instead of E [Hα]. By Theorem 1,

either quantity determines the other — they are roughly inversely proportional

— and Pr [H < J ] is convenient for reasoning about manipulation.

Definition 1. Let rep(v) = Pr [H(v) < J ] be the reputation of v.

In words, rep(v) is the probability that a random walk hits v before jumping. Of

all walks that reach v before jumping, an attacker u can only manipulate those

that hit u first. This leads to our notion of influence.

Definition 2. Let infl(u, v) = Pr [H(u) < H(v) < J ] be the influence of u on v.

Definition 3. Let infl(u) =
∑

v infl(u, v) be the total influence of u.
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When the graph G is not clear from context, we write these quantities as PrG [·],

repG(·) and inflG(·, ·) to be clear. To quantify what can change when u manipu-

lates outlinks, letNu(G) be the set of all graphs obtained from G by the addition

or deletion of edges originating at u. It is convenient to formalize the intuition

that u has no control over the random walk until it hits u for the first time.

Definition 4. Fix a graph G and node u. We say that an event A is u-invariant if

PrG [A] = PrG′ [A] for all G′ ∈ Nu(G). If A is u-invariant, we also say that the

quantity Pr [A] is u-invariant.

Lemma 2. An event A is u-invariant if the occurrence or non-occurrence of A is deter-

mined by time H(u).

Proof of Lemma 2. Let G′ ∈ Nu(G). It is enough to show that PrG [A ∩ (H(u) = t)]

= PrG′ [A ∩ [H(u) = t]] for all t ≥ 0. Let Wu,t be the set of all walks that first hit

u at step t, that is, let Wu,t = {w0 . . . wt : wt = u, wi 6= u for i < t}. For any walk

w = w0 . . . wt, let Pr [w] be shorthand for the probability of the walk w:

Pr [w] = Pr [X0 = w0] Pr [X1 = w1 | X0 = w0] . . . Pr [Xt = wt | Xt−1 = wt−1] .

Then, for w ∈ Wu,t, the transition probabilities in the expression above are inde-

pendent of u’s outlinks, so PrG [w] = PrG′ [w]. Finally, since A is determined by

time H(u), there is a function IA : Wu,t → {0, 1} that indicates the occurrence or

non-occurrence of A for each w ∈ Wu,t. Putting it all together,

PrG [A ∩ [H(u) = t]] = PrG [H(u) = t] PrG [A | H(u) = t]

=
∑

w∈Wu,t

PrG [w] IA(w)

=
∑

w∈Wu,t

PrG′ [w] IA(w)

= PrG′ [A ∩ [H(u) = t]]
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With the definitions in place, we can quantify how much u can manipulate

reputations.

Theorem 2. For any graph G = (V, E) and u, v ∈ V ,

(i) infl(u, u) = 0,

(ii) infl(u, v) ≥ 0,

(iii) infl(u, v) ≤ rep(u),

(iv) infl(u) ≤ 1

α
rep(u).

Let G′ ∈ Nu(G). Then

(v) repG′(v) = repG(v) + inflG′(u, v)− inflG(u, v).

Parts (i)-(iv) bound the influence of u in terms of its reputation. Part (v)

states that when u modifies outlinks, the change in v’s reputation is equal to the

change in u’s influence on v. Substituting parts (i-iii) into part (v) yields some

simple but useful corollaries.

Corollary 1. Let G′ ∈ Nu(G). Then

(i) repG′(u) = repG(u),

(ii) repG′(v) ≥ repG(v)− inflG(u, v),

(iii) repG′(v) ≤ repG(v)− inflG(u, v) + repG(u).
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No matter what actions u takes, it cannot alter its own reputation (part (i)).

Nor can u damage the portion of v’s reputation not due to u’s influence (part

(ii)). On the other hand, u may boost its influence on v, but its final influence

cannot exceed its reputation (part (iii)).

Proof of Theorem 2. For the most part, these are simple consequences of the defi-

nitions. Parts (i) and (ii) are trivial:

infl(u, u) = Pr [H(u) < H(u) < J ] = 0,

infl(u, v) = Pr [H(u) < H(v) < J ] ≥ 0.

For part (iii), a walk that hits u then v before jumping contributes equally to u’s

reputation and u’s influence on v:

infl(u, v) = Pr [H(u) < H(v) < J ] ≤ Pr [H(u) < J ] = rep(u).

Part (iv) uses the observation that not too many nodes can be hit after u but

before the first jump. Let L = |{v : H(u) < H(v) < J}| be the number of all such

nodes. Then,

E [L] = E

[∑
v

I{H(u) < H(v) < J}

]
=

∑
v

Pr [H(u) < H(v) < J ] = infl(u).

But L cannot exceed J −min(H(u), J), so

infl(u) = E [L] ≤ E [J ]− E [min(H(u), J)]

= E [J ] (1− Pr [H(u) ≥ J ]) (by Lemma 1)

= E [J ] Pr [H(u) < J ]

=
1

α
rep(u).
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For part (v), we split walks that hit v before jumping into those that hit u first

and those that don’t:

repG(v) = PrG [H(v) < J ]

= PrG [H(u) < H(v), H(v) < J ] + PrG [H(u) ≥ H(v), H(v) < J ]

= inflG(u, v) + PrG [H(u) ≥ H(v), H(v) < J ]

The event [H(u) ≥ H(v), H(v) < J ] is determined by time H(u), and hence it is

u-invariant. By the preceding calculation, Pr [H(u) ≥ H(v), H(v) < J ] is equal

to repG(v) − inflG(u, v), and repeating the calculation for G′ gives repG′(v) =

inflG′(u, v) + repG(v)− inflG(u, v).

2.3.1 Manipulating the Rankings

The previous results quantify how much node u can manipulate reputation val-

ues, but often we are more concerned with how much u can manipulate the

ranking, specifically, how far u can advance by manipulating outlinks only. The

following two corollaries follow easily from Theorem 2 and Corollary 1. Sup-

pose repG(u) < repG(v) and u manipulates outlinks to produce G′ ∈ Nu(G). We

say that u meets v if repG′(u) = repG′(v), and u surpasses v if repG′(u) > repG′(v).

Corollary 2. Node u cannot surpass a node that is at least twice as reputable.

Corollary 3. Node u can meet or surpass at most 1
αγ

nodes that are more reputable than

u by a factor of at least (1 + γ).
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Proof of Corollary 2. Suppose repG(v) ≥ 2 · repG(u), then

repG′(v) ≥ repG(v)− inflG(u, v) ≥ repG(v)− repG(u)

≥ 2 · repG(u)− repG(u) = repG(u) = repG′(u).

Proof of Corollary 3. Let A = {v : repG(v) ≥ (1 + γ)repG(u), repG′(v) ≤ repG′(u)}

be the set of all nodes with reputation at least (1 + γ) times the reputation of u

that are met or surpassed by u. Then

∑
v∈A

repG(v) ≥ |A|(1 + γ)repG(u),

∑
v∈A

repG′(v) ≤ |A|repG′(u) = |A|repG(u),

so
∑

v∈A(repG(v) − repG′(v)) ≥ γ|A|repG(u). But by Corollary 1, repG(v) −

repG′(v) ≤ inflG(u, v), so

γ|A|repG(u) ≤
∑
v∈A

(repG(v)− repG′(v)) ≤
∑
v∈A

inflG(u, v) ≤ inflG(u) ≤ 1

α
repG(u),

hence |A| ≤ 1
αγ

.

2.3.2 Reputation and Influence of Sets

We have discussed reputation and influence in terms of individual nodes for

ease of exposition, but all of the definitions and results generalize when we

consider the reputation and influence of sets of nodes. Let U,W ⊆ V , and

recall that H(W ) = minw∈W H(w) is the hitting time of the set W . Then

we define rep(W ) = Pr [H(W ) < J ] to be the reputation of W , we define

infl(U,W ) = Pr [H(U) < H(W ) < J ] to be the influence of U on W , and we
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define infl(U) =
∑

v∈V infl(U, {v}) to be the total influence of U . With these defi-

nitions, exact analogues of Theorem 2 and its corollaries hold for any U,W ⊆ V ,

with essentially the same proofs. Note that U and W need not be disjoint, in

which case it is possible that H(U) = H(W ). Further details are omitted.

2.3.3 Sybils

In online environments, it is often easy for a user to create new identities, called

sybils, and use them to increase her own reputation, even without obtaining

any new inlinks from non-sybils. On the web, a spammer might control a large

number of sites, arranging them to boost the PageRank of a given target page;

such a configuration is called a spam farm [34]. In general, a wide class of reputa-

tion systems is vulnerable to sybil attacks [16], and, in the extreme, hitting time

can be heavily swayed as well. For example, if u places enough sybils so the

random walk almost surely starts at a sybil, then adding links from each sybil

to u ensures the walk hits u by the second step unless it jumps. In this fashion, u

can achieve reputation almost 1−α, the probability that the walk does not jump

in the first step, and drive the reputation of all non-sybils to zero. We’ll see that

this is actually the only way that sybils can aid u, by gathering restart probabil-

ity and funneling it towards u. So an application can limit the effect of sybils

by limiting the restart probability granted to new nodes. In fact, applications

of hitting time analogous to Personalized PageRank [51] and TrustRank [35] are

already immune, since they place all of the restart probability on a fixed set

of known or trusted nodes. Applications like web search that give equal restart

probability to each node are more vulnerable, but in cases like the web the sheer

number of nodes requires an attacker to place many sybils to have a substantial
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effect. This stands in stark contrast with PageRank, where one sybil is enough

to employ the 2-cycle manipulation strategy and increase PageRank by several

times [17].

To model the sybil attack, suppose G′ = (V ∪ S, E ′) is obtained from G by

a sybil attack launched by u. That is, the sybil nodes S are added, and links

originating at u or inside S can be set arbitrarily. All other links must not change,

with the exception that those originally pointing to u can be directed anywhere

within S ∪ {u}. Let q′ be the new restart distribution, assuming that q′ diverts

probability to S but does not redistribute probability within V . Specifically, if

ρ =
∑

s∈S q′(s) is the restart probability alloted to sybils, we require that q′(v) =

(1− ρ)q(v) for all v ∈ V .

Theorem 3. Let U = {u} ∪ S be the nodes controlled by the attacker u, and let v be

any other node in V . Then

(i) repG′(u) ≤ repG′(U) = (1− ρ)repG(u) + ρ,

(ii) repG′(v) ≥ (1− ρ)(repG(v)− inflG(u, v)),

(iii) repG′(v) ≤ (1− ρ)(repG(v)− inflG(u, v) + repG(u)) + ρ.

Compared with Corollary 1, the only additional effect of sybils is to diminish

all reputations by a factor of (1−ρ), and increase the reputation of certain target

nodes by up to ρ.

Proof of Theorem 3. We split the attack into two steps, first observing how reputa-

tions change when the sybils are added but no links are changed, then applying

Theorem 2 for the step when only links change. Let G+ be the intermediate

graph where we add the sybils but do not change links. Assume the sybils
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have self-loops so the transition probabilities are well-defined. We can com-

pute repG+(U) by conditioning on whether X0 ∈ V or X0 ∈ S, recalling that

Pr [X0 ∈ S] = ρ.

repG+(U) = (1− ρ) · PrG+ [H(U) < J | X0 ∈ V ] + ρ · PrG+ [H(U) < J | X0 ∈ S]

= (1− ρ) · PrG [H(u) < J ] + ρ

= (1− ρ)repG(u) + ρ.

In the second step, PrG+ [H(U) < J | X0 ∈ V ] = PrG [H(u) < J ] because hit-

ting U in G+ is equivalent to hitting u in G: all edges outside U are un-

changed, and all edges to U originally went to u; also, the conditional distri-

bution of X0 given [X0 ∈ V ] is equal to q, by our assumption on q′. The term

PrG+ [H(U) < J | X0 ∈ S] is equal to one, since X0 ∈ S implies H(U) = 0 < J .

A similar calculation gives

repG+(v) = (1− ρ)repG(v) + ρ · PrG+ [H(v) < J | X0 ∈ S] = (1− ρ)repG(v).

The term PrG+ [H(v) < J | X0 ∈ S] vanishes because S is disconnected, so

a walk that starts in S cannot leave. Another similar calculation gives

inflG+(U, v) = (1 − ρ)inflG(u, v). Finally, we complete the sybil attack, obtain-

ing G′ from G+ by making arbitrary changes to edges originating in U , and

apply Corollary 1 (the version generalized to deal with sets) to G+. Parts (i-iii)

of this theorem are obtained by direct substitution into their counterparts from

Corollary 1.

Theorem 3 can also be generalized to deal with sets.
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2.4 Computing Hitting Time

To realize a reputation system based on hitting time, we require an algorithm

to efficiently compute the reputation of all nodes. Theorem 1 suggests several

possibilities. Recall that π(v) is the PageRank of v. Then E [Rα(v)] = 1/π(v) can

be computed efficiently for all nodes using a standard PageRank algorithm, and

the quantity Pr [R(v) ≥ J ] can be estimated efficiently by Monte Carlo sampling.

Combining these two quantities using Theorem 1 yields E [Hα(v)].

It is tempting to estimate the reputation Pr [H(v) < J ] directly using Monte

Carlo sampling. However, there is an important distinction between the quan-

tities Pr [R(v) ≥ J ] and Pr [H(v) < J ]. We can get one sample of either by run-

ning a random walk until it first jumps, which takes about 1/α steps. However

Pr [H(v) < J ] may be infinitesimal, requiring a huge number of independent

samples to obtain a good estimate. On the other hand, Pr [R(v) ≥ J ] is at least

α since the walk has probability α of jumping in the very first step. If self-loops

are disallowed, we obtain a better lower bound of 1 − (1 − α)2, the probability

the walk jumps in the first two steps. For this reason we focus on Pr [R(v) ≥ J ].

2.4.1 A Monte Carlo Algorithm

In this section we describe an efficient Monte Carlo algorithm to simultaneously

compute hitting time for all nodes. To obtain accuracy ε with probability at

least 1− δ, the time required will be O( log(1/δ)
ε2α2 |V |) in addition to the time of one

PageRank calculation. The algorithm is:
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1. Compute π using a standard PageRank algorithm.4 Then E [Rα(v)] =

1/π(v).

2. For each node v, run k random walks starting from v until the walk either

returns to v or jumps. Let yv = 1
k
· (# of walks that jump before returning

to v).

3. Use yv as an estimate for Pr [R(v) ≥ J ] in part (i) or (iii) of Theorem 1 to

compute E [Hα(v)] or Pr [H(v) < J ].

How many samples are needed to achieve high accuracy? Let µ = Pr [R(v) ≥ J ]

be the quantity estimated by yv. We call yv an (ε, δ)-approximation for µ if

Pr [|yv − µ| ≥ εµ] ≤ δ. A standard application of the Chernoff bound (e.g.,

see [49]) shows that yv is an (ε, δ)-approximation if k ≥ (3 ln(2/δ))/ε2µ. Us-

ing the fact that µ ≥ α, it is sufficient that k ≥ (3 ln(2/δ))/ε2α. Since each walk

terminates in 1
α

steps in expectation, the total expected number of steps is no

more than 3 ln(2/δ)
ε2α2 |V |.

For massive graphs like the web that do not easily fit into main memory of

a computer, it is not feasible to collect the samples in step 2 of the algorithm se-

quentially, because each walk requires random access to the edges, which is pro-

hibitively expensive for data structures stored on disk. We describe a method

from [25] to collect all samples simultaneously making efficient use of disk I/O.

Conceptually, the idea is to run all walks simultaneously and incrementally

by placing tokens on the nodes recording the location of each random walk.

Then we can advance all tokens by a single step in one pass through the entire

graph. Assuming the adjacency list is stored on disk sorted by node, we store

4PageRank algorithms are typically iterative and incur some error. Our analysis bounds the
additional error incurred by our algorithm.
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the tokens in a separate list sorted in the same order. Each token records the

node where it originated to determine if it returns before jumping. Then in one

pass through both lists, we load the neighbors of each node into memory and

process each of its tokens, terminating the walk and updating yv if appropriate,

else choosing a random outgoing edge to follow and updating the token. Up-

dated tokens are written to the end of a new unsorted token list, and after all

tokens are processed, the new list is sorted on disk to be used in the next pass.

The number of passes is bounded by the walk that takes the longest to jump,

which is not completely satisfactory, so in practice we can stop after a fixed num-

ber of steps t, knowing that the contribution of walks longer than t is nominal

for large enough t, since Pr [R ≥ J, J > t] ≤ Pr [J > t] = (1− α)t, which decays

exponentially.

2.4.2 Finding Highly Reputable Nodes Quickly

We noted that estimating rep(v) = Pr [H(v) < J ] directly by Monte Carlo sam-

pling is troublesome in the case when this probability is very small. However,

a benefit of this approach is that a single random walk gives a sample of rep(v)

for all nodes, and in some situations we may not care about nodes of low reputa-

tion. For example, suppose we want to find all nodes with reputation exceeding

some fixed threshold c. A simple approach is to run many random walks and

return all nodes for which the empirical estimate of rep(v) exceeds c. We will

show that the requisite number of walks depends very modestly on the size of

the graph, and in some cases is independent of the size of the graph.

Specifically, we’ll treat this as a classification problem, to label v as high rep-
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utation if rep(v) ≥ c, and low reputation otherwise. It will be very difficult to

classify nodes with reputation almost exactly c, so we relax the problem slightly

and allow either classification for some small interval [a, b] containing c. Let

ε = b−a
b

. Then we have the following result.

Theorem 4. Using O(log(1/δ)/aε2) Monte Carlo samples, we can label all nodes as

high or low reputation, such that the expected number of mislabeled nodes is at most

δ|V |. With O(log(|V |/δ)/aε2) samples, we can classify all nodes correctly with proba-

bility at least 1− δ.

The first result does not depend on the size of the graph, only on the threshold

parameters a and ε. For graphs with highly skewed reputation distributions,

a can be set to a high value to find the most reputable nodes very quickly. It

is likely that real-world graphs will have skewed reputation distributions: for

example, PageRank on the web graph has been observed to follow a power-law

distribution [17].

Proof of Theorem 4. Let µ = rep(v), and suppose we perform k walks, letting

zv =
1

k
· (# of walks that hit v before jumping)

be the empirical estimate for µ. The symmetric Chernoff bounds (see, e.g., [49]

p. 64) give:

Pr [zv ≥ (1 + ε)µ] ≤ exp(−kµε2/3)

Pr [zv ≤ (1− ε)µ] ≤ exp(−kµε2/3)

Recall that ε = b−a
b

, so a = (1 − ε)b, and b > (1 + ε)a. The probability that a
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low-reputation node is misclassified is

Pr [zv ≥ b | µ ≤ a] ≤ Pr [zv ≥ b | µ = a]

≤ Pr [zv ≥ (1 + ε)µ | µ = a]

≤ exp(−kaε2/3).

The probability that a high-reputation node is misclassified is

Pr [zv ≤ a | µ ≥ b] = Pr [zv ≤ (1− ε)b | µ ≥ b]

≤ Pr [zv ≤ (1− ε)µ | µ ≥ b]

≤ exp(−kµε2/3)

≤ exp(−kaε2/3).

Choosing k ≥ 3 ln(1/δ)
aε2

ensures that each node is misclassified with probability

at most δ, so the expected number of misclassified nodes is at most δ|V |. Fur-

thermore, by the union bound, the probability that any node is misclassified is

at most |V | exp(−kaε2/3), so choosing k ≥ 3 ln(|V |/δ)
aε2

ensures that all nodes are

classified correctly with probability at least 1− δ.
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CHAPTER 3

THE PAGERANK GAME

3.1 Introduction

What is the effect of link spam on the network? In this chapter we analyze a

game-theoretic model of strategic outlink placement called the PageRank game.

The main contributions are:

• Characterization of equilibria. We characterize best response strategies and

Nash equilibria in the PageRank game, and present a complete combinato-

rial characterization of α-insensitive equilibria, those graphs that are Nash

equilibria for any setting of the PageRank jump parameter α. Equilibria

may have a rich and varied structure — for example, every edge transitive

graph is a Nash Equilibrium.

• Best response dynamics. We analyze best response dynamics in the Page-

Rank game to determine which equilibria occur in realistic scenarios of

play. We prove that best response dynamics converge as long as a minimal

fairness condition is imposed on order of play. Contrary to the theoreti-

cal possibility of complex and highly-connected equilibria, best response

dynamics lead only to highly fragmented equilibria that consist of many

simple components.

3.2 Preliminaries

First we recall some basic facts about PageRank and related quantities.
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3.2.1 PageRank and the α-Random Walk.

Let G be a directed graph. The α-random walk on G is a random walk that is mod-

ified to restart (also called a jump) with probability α in each step, by choosing

the next node from distribution q instead of following a link. We assume that

G has no self-loops and that 0 < α < 1. Some nodes of G may be “dangling”,

meaning they have no outlinks. We eliminate dangling nodes by preprocessing

the graph as follows: create an artificial node called wait with a self-loop but

no other outlinks, and add a link from each dangling node to wait. Hence,

each time the walk reaches a dangling node, it immediately moves to wait and

remains there until the next restart.

Let π be the stationary distribution (it is guaranteed to be unique by virtue of

the random jump); then the PageRank of node i is defined as π(i). Let {Xt}t≥0 be

the sequence of nodes visited by the α-random walk, where X0 ∼ q. Let J ≥ 1

be the time of the first random jump — i.e., the minimum of all t ≥ 1 such that

Xt is chosen from the restart distribution instead of following a link. Let

φij = Pr
[⋃J−1

t=0 (Xt = j) | X0 = i
]
.

In words, φij is the probability that j is reached before the first jump, given that

the walk starts at i. Let I{·} be an indicator variable for the event in braces, and

let N be the matrix with entries

Nij = E
[∑J−1

t=0 I{Xt = j} | X0 = i
]
.

This is the expected number of visits to j before the first jump, given that the

walk starts at i. Finally, let P be the transition matrix of the standard random

walk on G, i.e., the simple random walk that does not make any random jumps.
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Proposition 1. Let N , P and Φ be defined as above. Then (i) the matrix N is equal to∑∞
t=0 P t(1 − α)t = (I − (1 − α)P )−1, (ii) the PageRank vector πT is proportional to

qT N , (iii) for all i and j, we have Nij = φijNjj , and (iv) for all i and j, the quantity φij

does not depend on j’s outlinks.

Proof. Since the decision to jump is made by coin flips that are independent of

those for following links, J is independent of Xt for all t. Then

Nij = E

[
∞∑

t=0

I{Xt = j}I{J > t} | X0 = i

]

=
∞∑

t=0

Pr[Xt = j | X0 = i]Pr[J > t] =
∞∑

t=0

(P t)ij(1− α)t.

Hence N =
∑∞

t=0 P t(1−α)t. Since P is stochastic and α > 0, this sum converges

and is equal to (I − (1 − α)P )−1. Part (ii) is well-known, and can be verified

algebraically. We prefer a probabilistic argument. The value (qT N)j is the ex-

pected number of visits to j between two restarts. Since the walk is a sequence

of probabilistically identical segments delimited by restarts, the number of vis-

its between restarts is proportional to stationary probability. See Proposition 3

in Chapter 2 of Aldous and Fill [1] for details. Part (iii) is a simple probabilistic

statement. To count the number of visits to j starting from i, we first decide if

the walk hits j, then count the number of visits starting from j. Part (iv) was

proved in Chapter 2. Recall the intuition: to measure the probability that v is hit

before the first jump, say, by Monte Carlo simulation, one need never follow a

link leaving v.

Remark. The matrix N is equal to the “personalized” PageRank matrix:

Proposition 1 shows that qT N is proportional to the PageRank vector for any
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restart distribution q. Hence the ith row of N yields the PageRank vector for a

restart distribution concentrated on node i.

3.2.2 The PageRank Game

In the PageRank game, nodes place outlinks strategically to maximize Page-

Rank. Let V be a set of n players, the nodes in a directed graph. A strategy

for node v is a set of outlinks. An outcome is a directed graph G consisting of

the outlinks chosen by each player. A best response for player v with respect to

G is a set of outlinks Ev, such that, if v deletes its outlinks from G and adds

outlinks Ev, then v maximizes PageRank over all possible choices of Ev. A di-

rected graph G is a Nash equilibrium (or Nash) if the set of outlinks for each node

is a best response: no player can increase its reputation by choosing different

outlinks.

3.3 Nash Equilibria

In this section, we characterize Nash equilibria in the PageRank game. We begin

by characterizing best response strategies and then we prove a decomposition

theorem that allows us to focus on strongly connected graphs. For strongly

connected graphs, we will show the following (summarized in Figure 3.1):

• All edges in a Nash equilibrium are bidirectional.

• The class of α-insensitive equilibria, consisting of those graphs that are

equilibria for all values of α, has an exact combinatorial characterization.
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Bidirectional!

Nash!

"-Insensitive *!

Edge- #

Transitive!

Distance-#

Regular!

Figure 3.1: Venn diagram illustrating characterization of strongly con-
nected Nash equilibria. Inclusion marked by an asterisk is not
known to be proper.

The key property is an equivalence among all (bidirectional) edges: the

number of walks of length t connecting the two endpoints of any edge is

the same, for all t.

• All edge-transitive and distance-regular graphs are α-insensitive equilib-

ria. These provide most known examples of Nash equilibria, including

many with highly-connected and complex structure.

3.3.1 Best Responses

The first step toward understanding equilibria is to characterize best response

strategies. Recall the short-cycle manipulation strategy in which node j places

its outlinks to form short cycles so that the random walk from j will return to j

quickly. This idea is the basis of a best response: one should link to nodes from

which the walk will return quickly. We make a precise statement in terms of the
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quantity φij — recall that this is the probability that a walk starting at i reaches

j before the first jump. Henceforth, we call φij the potential1 of i with respect to j.

Lemma 3. A best response for node j consists of links to any subset of nodes that

maximize φ·j . If j has no inlinks, the empty set is also a best response.

Proof. From Proposition 1, the PageRank vector is proportional to qT N , and

Nij = φijNjj , so node j wishes to maximize

(qT N)j =
n∑

i=1

qiNij = Njj

n∑
i=1

qiφij.

Since φij is independent of j’s outlinks for all i, it suffices to maximize Njj , the

expected number of returns to j. Let φ+
jj be the probability that a walk starting

at j returns to j before the first jump. Then the number of returns is a geometric

random variable with parameter φ+
jj : it counts the number of successes (returns)

before the first failure (non-return) in a sequence of independent experiments

that each succeed with probability φ+
jj . Hence the expected number of returns is

Njj =
1

1− φ+
jj

,

so it suffices for j to maximize φ+
jj . By conditioning on the first step of the walk,

this can be written as

φ+
jj =

1− α

|Γ(j)|
∑

k∈Γ(j)

φkj,

where Γ(j) is the set of neighbors of j. We see that φ+
jj is equal to a constant

times the average potential of j’s out-neighbors, and, as before, these potentials

are independent of j’s outlinks. Hence, node j can only control which terms

appear in the average. To maximize the average, node j should link only to

1For an undirected graph G, take the electrical network corresponding to G having unit
conductance on each edge, and additional links of conductance α from each node to a sink.
Connect a one-volt battery causing potential of 1 volt at j and 0 volts at the sink. Then φij is the
electrical potential, in volts, at node i.
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nodes of maximum potential. If j places no links, our preprocessing step creates

a link to wait, which has zero potential. This can only be a best response if all

nodes have zero potential, meaning that j has no inlinks.

3.3.2 Bidirectionality

Lemma 3 has a very interesting consequence. It is straightforward to show that

only in-neighbors can maximize potential, leading to a bidirectional structure in

all Nash equilibria.

Lemma 4. If j has any inlinks, then j links only to in-neighbors in best response strate-

gies.

Proof. Suppose, for contradiction, that j has an in-neighbor i but elects to link

to some other node k which is not an in-neighbor. If φkj = 0, then k cannot be

a best response because φij > 0. If φkj > 0, then we again condition on the first

step of the walk to write

φkj =
1− α

|Γ(k)|
∑

`∈Γ(k)

φ`j.

Since the entire expression is nonzero and 1 − α < 1, we have φkj <

|Γ(k)|−1
∑

`∈Γ(k) φ`j . Hence, at least one term in this average must exceed φkj ,

so there is a node ` such that φ`j > φkj , and k cannot be a best response.

Lemma 4 indicates that all edges are bidirectional except for those that orig-

inate at a node with no inlinks. It also allows us to restate the Nash conditions

in a useful way.

Corollary 4 (Restatement of Nash conditions). A graph G is a Nash equilibrium if

and only if for all (i, j), (i, k) ∈ E, we have φji = φki (or, equivalently, Nji = Nki).
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Proof. If G is a Nash, then for any node i, all of its neighbors must maximize

potential. Hence any two neighbors j and k have the same potential. Con-

versely, if all neighbors have the same potential, they necessarily maximize

potential because a non-neighbor cannot maximize potential. Finally we note,

since N`i = φ`iNii for all `, that

φji = φki ⇐⇒ φjiNii = φkiNii ⇐⇒ Nji = Nki.

These facts allow us to characterize the strongly connected components of

Nash equilibria. We say that a graph is bidirectional if all of its edges are bidi-

rectional.

Theorem 5 (Decomposition). In a Nash equilibrium, every strongly connected com-

ponent is either: (i) a component of size two or more with no outlinks whose induced

subgraph is a bidirectional Nash equilibrium, or (ii) a single node with no inlinks, and

with outlinks only to non-singleton strongly connected components.

Proof. Suppose C is a strongly connected component of size two or more. Each

node i ∈ C must have at least one in-neighbor, so Lemma 4 ensures that i links

only to in-neighbors. Hence, all links originating in C are reciprocated, so there

are no links leaving C and the induced subgraph is bidirectional.

To see that the induced subgraph is a Nash, we must consider how potentials

in the subgraph differ from those in G. Let i, j ∈ C, and let φC
ij be the potential

of i with respect to j in the induced subgraph. Because C has no outlinks, a

random walk in G that starts at node i is probabilistically identical to a random

walk that starts at i in the subgraph, until the time of the first restart, at which point
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the walk in G may escape to some other component. However φij measures the

probability of hitting j before the first restart, so φC
ij = φG

ij . Since potentials within

C do not change, the restated Nash conditions from Corollary 4 remain true in

the induced subgraph.

Let {j} be a strongly connected component of size one. Node j cannot have

an inlink (i, j), otherwise j would link to i to form a non-singleton component

by Lemma 4. Similarly, j cannot link to another singleton because that link

would also be reciprocated. Node j may link to a node k in a non-singleton

component, as long as j does not become a unique best response for k.

Remark. The decomposition theorem allows us to focus on strongly con-

nected Nash equilibria, which must be bidirectional, as the building blocks for

any other equilibrium. Henceforth, we restrict attention to strongly connected

graphs and dispense with directionality, speaking only of degrees, links, and

neighbors, instead of their directed equivalents.

3.3.3 Examples

It is instructive to look at some examples using the tools developed thus far. In

Figure 3.2, graph (a) is not a Nash equilibrium. It is easy to see that φji = 1− α,

because the only way the walk starting at j can fail to hit i before jumping is

if it jumps in the very first step, an event that happens with probability α. But

φki < 1 − α, because the walk starting at k may fail to hit i either by jumping

in the first step (which happens with probability α), or by stepping away from i

(which happens with probability (1 − α)/2). Hence φki < φji, so i will drop its

link to k in a best response.

38



i j i

k

(b) (c)(a)

k

j

j k

i

Figure 3.2: Nash equilibrium examples. Graph (a) is not a Nash equilib-
rium; graphs (b) and (c) are Nash equilibria.

However, it is easy to see that graphs (b) and (c) are equilibria by a sim-

ple symmetry argument. Both have the property that, for any node i, all of its

neighbors “look identical” in the following sense: if j and k are two neighbors

of i, then there is a graph automorphism mapping j to k that fixes i. Such an

automorphism ensures that φki = φji, and hence the restated Nash conditions of

Corollary 4 are satisfied. This symmetry property is related to another property

called edge-transitivity. We discuss both in more detail in Section 3.3.5.

3.3.4 α-Insensitive Equilibria

Examples (b) and (c) in Figure 3.2 have an additional property. Because we

argued that they are equilibria by symmetry, and without appealing to the par-

ticular value of the jump parameter α, they are Nash equilbria all settings of

α.

Definition 5 (α-insensitive Nash equilibrium). G is an α-insensitive Nash equi-

librium is G is a Nash equilibrium for all 0 < α < 1.

In this section we present a combinatorial characterization of α-insensitive

equilibria. The result is a means to compare Nash equilibria with other classes

39



of graphs from the literature, and to construct nearly all known examples of

equilibria.

At first glance, α-insensitivity seems to be an unnatural condition. The Page-

Rank random walk behaves very differently for extreme values of α: when α

is close to zero, the walk rarely jumps and behaves similarly to the standard

random walk on G, while for values of α that are close to one, almost every

step is made by sampling from the restart distribution. In any real application,

there is only one choice of α, and one expects strategic nodes to optimize link-

placement for that particular parameter setting. However, we justify the study

of α-insensitivity by showing that it is equivalent to a (seemingly) much weaker

condition that is very natural. Suppose that α0 is the stated parameter setting,

but we restrict to equilibria that have a minimal amount of stability with respect

this value.

Definition 6 (α0-stable Nash equilibrium). G is an α0-stable Nash equilibrium if

there exists some ε > 0 such that G is a Nash equilibrium for all α ∈ [α0 − ε, α0 + ε].

If G is a Nash equilibrium that is not α0-stable, then some node is playing a

strategy that is a best response for parameter α0, but is no longer a best response

after aribtrary perturbation with any interval containing α0. The condition of

α0-stability is very natural to consider, because the exact parameter setting of a

reputation system is rarely known to participants. For example, many research

papers cite the parameter setting of α = .15, but the true value used by Google is

a trade secret. The following Lemma implies that the two conditions are actually

equivalent.

Lemma 5. If G is a Nash for at least n different values of α, then G is α-insensitive.
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Proof. We use the restated Nash conditions from Corollary 4. To indicate depen-

dence on α, we now write φij(α) and Nij(α) instead of φij and Nij . We will show

that the equality of Nji(α) and Nki(α) can be expressed as the equality between

two polynomials of degree n−1 in the variable α. Hence, if they are equal for at

least n values of α, they are equal for all α ∈ (0, 1). Let M(α) = I− (1−α)P , and

recall from Proposition 1 that N(α) = M−1(α). Let M[j,i](α) denote the matrix of

size (n−1)× (n−1) obtained from M(α) by deleting row j and column i. Using

the formula for the matrix inverse in terms of cofactors,

Nji(α) = M−1
ji (α) =

(−1)j+i det M[j,i](α)

det M(α)
.

Hence, Nji(α) = Nki(α) if and only if

(−1)j+i det M[j,i](α) = (−1)k+i det M[k,i](α). (3.1)

Each determinant in (3.1) is a sum of products of n− 1 matrix elements, each of

which is a monomial in α. Hence both sides of (3.1) are polynomials of degree

n − 1 in α; if they are equal for at least n distinct values of α, they are equal as

polynomials.

Corollary 5. G is an α-insensitive Nash equilibrium if and only if G is an α0-sensitive

Nash equilibrium for some 0 < α0 < 1.

Combinatorial Characterization

Before we proceed to characterize α-insensitive Nash equilibria, we recall two

basic definitions from graph theory. A graph is regular if all of its vertices have

the same degree. A bipartite graph is semiregular if, within each of the two par-

titions, every vertex has the same degree.
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Theorem 6 (Characterization of α-insensitive Nash equilibria). Let G = (V, E)

be a bidirectional connected graph with adjacency matrix A. Then G is an α-insensitive

Nash equilibrium if and only if both of the following properties hold: (i) G is either

regular or bipartite and semiregular, and (ii) for all (i, j), (k, l) ∈ E, and for all t ≥ 0,

(At)ij = (At)kl.

Proof. G is an α-insensitive Nash equilibrium if and only if

∀ 0 < α < 1 and ∀(i, j), (i, k) ∈ E, Nji(α) = Nki(α). (3.2)

Recall that Nji(α) =
∑∞

t=0(P
t)ji(1 − α)t, so Nji(α) is the generating function for

the sequence {(P t)ji}t≥0, evaluated at 1 − α. Similarly, Nki(α) is the generating

function for {(P t)ki}t≥0. The two generating functions are equal if and only if

the sequences are identical, so an equivalent statement of the Nash conditions

is:

∀t ≥ 0 and ∀(i, j), (i, k) ∈ E, (P t)ji = (P t)ki. (3.3)

Now, we will show that (3.3) implies the two conditions in the theorem. Tak-

ing t = 1 in (3.3), we have that for all (i, j), (i, k) ∈ E,

deg(j)−1 = Pji = Pki = deg(k)−1.

Hence, any two nodes that share a neighbor have the same degree. Then, it is

easy to see that any walk in G is a sequence of nodes in which either: (a) all

nodes have the same degree, or (b) the sequence alternates between nodes with

degree d1 and nodes with degree d2. Because G is connected, this implies that G

is either regular or bipartite and semiregular.

To prove property (ii) from the statement of the theorem, let W t
ji be the set of

all walks of length t from j to i. Note that |W t
ji| = (At)ji. We already argued that
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all walks in G are sequences of nodes that alternate in degree between d1 and d2

(where d1 = d2 in the regular case). Let d1 be the degree of j. Then all walks of

length t starting at j have probability
(
d
dt/2e
1 d

bt/2c
2

)−1

. Hence,

(P t)ji =
∑

w∈W t
ji

Pr[w] = (At)ji

(
d
dt/2e
1 d

bt/2c
2

)−1

(3.4)

A similar argument holds for (P t)ki, allowing us to conclude for any t and for

any (i, j), (i, k) ∈ E, that (P t)ji = (P t)ki if and only if (At)ji = (At)ki. Hence, the

Nash conditions can be restated as

∀t ≥ 0 and ∀(i, j), (i, k) ∈ E, (At)ji = (At)ki. (3.5)

In other words, any two edges that share an endpoint have the same number

of walks of length t connecting their endpoints, for all t. Because G is bidirec-

tional, (At)ji = (At)ij . Using this fact and the fact that G is connected, we can

extend the equality in (3.5) along paths to conclude that any two edges have

the same number of walks of length t connecting their endpoints. Hence (3.3)

implies condition (ii) from the statement of the theorem:

∀t ≥ 0 and ∀(i, j), (k, `) ∈ E, (At)ij = (At)k`. (3.6)

We have proven that properties (i) and (ii) in the theorem are necessary. To

see that they are sufficient, note that property (i) is all that is needed to derive

(3.4) and (3.5). Then, using these two equations, it is easy to see that (3.6) implies

(3.3).
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3.3.5 Related Classes of Graphs

The characterization in Theorem 6 is important because it allows us to compare

α-insensitive Nash equilibria to several other classes of graphs, and, in particu-

lar, to construct many examples of Nash equilibria.

We start by comparing property (ii) from Theorem 6 to two graph-theoretic

concepts from the literature. In each case, we define a property by first defining

a relation ∼ among pairs of vertices, and then imposing the condition that a

combinatorial equivalence exist among all vertex pairs that are related by ∼:

(At)ij = (At)kl for all t ≥ 0, and for all i, j, k, ` ∈ V such that (i, j) ∼ (k, `).

(3.7)

Three different properties are obtained from the three relations:

(i, j) ∼A (k, `) ⇐⇒ i = j and k = `

(i, j) ∼B (k, `) ⇐⇒ (i, j), (k, `) ∈ E

(i, j) ∼C (k, `) ⇐⇒ d(i, j) = d(k, `)

The property obtained by using relation ∼A in (3.7) defines the class of walk-

regular graphs, due to Godsil and MacKay [29]. The relation∼B results in condi-

tion (ii) from Theorem 6 — we call a graph that satisfies this condition edgewise

walk-regular. The relation ∼C results in a property held by all distance-regular

graphs. Distance-regular graphs are defined by a slightly different combinato-

rial equivalence among all pairs of vertices at distance d. See [9] and Chapter 11

of [28] for more details; the fact the property above is held by distance-regular

graphs is a consequence of Lemmas 1.1 and 1.2 in Chapter 13 of Godsil [28].

Lemma 6. Every distance-regular graph is an α-insensitive Nash.
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Proof. Every distance-regular graph is regular [28], hence property (i) of Theo-

rem 6 is satisfied. It is easy to see that (i, j) ∼B (k, `) implies (i, j) ∼C (k, `):

if (i, j), (k, `) ∈ E, then d(i, j) = d(k, `) = 1. Hence, (3.7) holds for all

(i, j) ∼B (k, `), so property (ii) is also satisfied.

Another relevant concept from graph theory is edge-transitivity (see, e.g., [6]).

Recall that an automorphism on G is a permutation π of the vertices such that

(π(i), π(j)) ∈ E if and only if (i, j) ∈ E. Let Aut(G) be the set of all automor-

phisms on G. An undirected graph is edge-transitive if, for any pair of edges,

there is an automorphism mapping one edge to the other.

Definition 7. G is edge-transitive if for all (i, j), (k, `) ∈ E, there exists π ∈ Aut(G)

such that either π(i) = k and π(j) = `, or π(i) = ` and π(j) = k.

Recall also the related symmetry property from Section 3.3.3; we argued in-

formally that a graph is a Nash if for each node, all of its neighbors “look iden-

tical”.

Condition 1. For all (i, j), (i, k) ∈ E, there exists π ∈ Aut(G) such that π(i) = i and

π(j) = k.

It is not hard to show that any graph that satisfies Condition 1 is edge-

transitive, but the converse may not be true. However, from the characterization

in Theorem 6 we can see that the weaker condition of edge-transitivity is also

sufficient to be an α-insensitive Nash.

Lemma 7. Every edge-transitive graph is an α-insensitive Nash.

Proof. Every edge-transitive graph is either regular or bipartite and semiregular.

If G is edge-transitive, then for all (i, j), (k, `) ∈ E, there is an automorphism that
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Cycle Dual cycle Clique Petersen

Figure 3.3: Edge-transitive Nash equilibria.

Hypercube Kn,n Petersen Dodecahedral

Figure 3.4: Distance-regular Nash equilibria.

maps (i, j) to (k, `). This gives a bijection between the set of walks connecting

(i, j) and those connecting (k, `), so (At)ij = (At)k` for all t.

In fact, edgewise walk-regularity (property (ii) from Theorem 6) can be seen

as a combinatorial relaxation of edge-transitivity: rather than requiring an au-

tomorphism mapping any edge to another, it requires the weaker combinatorial

equivalence that all edges share the same number of walks of each length con-

necting their endpoints.

Examples. We have already seen two examples of edge-transitive graphs: the

star and bipartite clique from Figure 3.2, parts (b) and (c). Figure 3.3 shows

several more examples. In addition to stars and bipartite cliques, all cycles,

dual cycles, cliques, hypercubes and many more families of graphs (some of
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them substantially more complex, and often based on algebraic constructions)

are edge-transitive [6,64]. Figure 3.4 shows several examples of distance-regular

graphs. All of the following graphs are distance-regular: cliques, hypercubes,

bipartite cliques with equally-sized partitions (Kn,n), and odd cycles [9, 63]. All

of these examples happen to also be edge-transitive, a fact that is true of most

small distance-regular graphs but not in general — e.g., Phelps constructed

distance-regular graphs based on Latin squares that have no nontrivial auto-

morphisms [53].2 On the other hand, it is easy to point out examples of edge-

transitive graphs that are not distance-regular: any edge-transitive graph that is

not regular, such as the star or asymmetric bipartite clique, cannot be distance-

regular.

3.3.6 α-Sensitive Equilibria

At the time of our initial work on this subject, we left open the question of

existence of Nash equilibria that are not α-insensitive. Since that time, Chen

et al. [15] have resolved this question. They constructed a family of graphs that

are α-sensitive Nash equilibria, i.e., that are Nash equilibria only for a particular

value of α. In this section, we review their construction.

The example is called Gn,m, and it is parameterized by n ≥ m ≥ 0. The

construction is illustrated in Figure 3.5. It consists of vertices U = {u1, . . . , un}

and V = {vij | i = 1, . . . ,m, j = 1, . . . , n} such that

• The sets Vi = {vij | j = 1, . . . , n} are fully connected,

• Each vertex uj ∈ U is connected to the node vij ∈ Vi for all i = 1, . . . ,m,
2Thanks to Chris Godsil for pointing out this example.
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· · ·

n vertices with degree m

· · · · · ·

m n-cliques

U u1 u2 un

V

v1,n v1,1
v1,2

v2,n v2,1
v2,2

vm,n

vm,2

· · ·

n×m cross edges

vm,1

Fig. 1. The graph Gn,m.

3.2 Equivalent condition of Gn,m being Nash equilibria

By Lemma 5, given α, n and m, Gn,m is a Nash equilibrium if and only if the
following statements hold

∀different i, i′ ∈ [m], j ∈ [n], M−1
α vi,j ,uj

= M−1
α vi′,j ,uj

(2)

∀ i ∈ [m],different k, k′, j ∈ [n], M−1
α vi,k,vi,j

= M−1
α vi,k′ ,vi,j

(3)

∀ i ∈ [m],different k, j ∈ [n], M−1
α vi,k,vi,j

= M−1
α uj ,vi,j

(4)

It is easy to see that equations in (2) and (3) hold for any α, n, m by symme-
try. Moreover, for all i ∈ [m] and different k, j ∈ [n], M−1

α vi,k,vi,j
has the same

value, and for all i ∈ [m] and j ∈ [n], M−1
α uj ,vi,j

has the same value in Gn,m.
We define two functions based on this observation:

fn,m(α) = M−1
α vi,k,vi,j

, for i ∈ [m] and j, k ∈ [m], j #= k,

gn,m(α) = M−1
α uj ,vi,j

, for i ∈ [m] and j ∈ [n].

The above argument together with Lemma 5 implies the following lemma.

Lemma 6. Given α, n and m, Gn,m is a Nash equilibrium for the PageRank
game with parameter α ∈ (0, 1) if and only if

fn,m(α)− gn,m(α) = 0 (5)

3.3 α-sensitivity of Gn,m : Proof outline

Given n, m, by Lemma 6, to prove Gn,m is α-sensitive, we only need to show that
there is some α satisfying Equation (5), while there is also some other α that

Figure 3.5: Construction of Gn,m from [15]. Figure courtesy of the authors.

• All edges are bidirectional.

It is easy to see by symmetry that the Nash conditions are satisfied for every

node in U . Similarly, for any node vij , all of its neighbors within the clique Vi

have the same potential. But, node vij has one additional neighbor: the node

uj ∈ U . For Gn,m to be a Nash, it must be the case that uj has the same potential

with respect to vij as do the neighbors of vij within the clique; by symmetry, this

condition is sufficient. The result of Chen et al. is that there exists a parameter

setting for which these two potentials are equal.

Theorem 7 (Chen et al. [15]). If 4 ≤ m ≤ n − 2, then there exists α such that Gn,m

is an α-sensitive Nash equilibrium.

The idea of their proof is as follows. For clarity of notation, we now write

potentials as φα(u, v) instead of φuv(α). For α near 1, the walk jumps frequently,

so the short-term behavior of the walk is the dominant consideration in deter-

mining potential. For example, consider the first order approximation given by
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the probability of hitting vij in the first step:

φα(uj, vij) ≈
1− α

m
, φα(vik, vij) ≈

1− α

n
.

By this heuristic, vij should link to uj , the node with smaller degree. Indeed

they prove that there is some α1 < 1 such that φα(uj, vij) > φα(vik, vij) for all

α ∈ [α1, 1).

Next, they argue that for α very close to zero, the long-term behavior of the

random walk is dominant. If vij links to vik, then the walk is likely to stay inside

Vi for some time and has many chances to hit vij directly before jumping. How-

ever, if vij links to uj , the walk will move to another clique with probability 1− 1
m

,

and may take a long time to return to Vi. Hence vij should link to vik. Again,

they show formally that there exists α0 > 0 such that φα(vik, vij) > φα(uj, vij) for

all α ∈ (0, α0].

Finally, they argue that each potential is a continuous function of α, and then

invoke the mean value theorem to conclude that there is some α∗ ∈ [α0, α1] such

that φα∗(vik, vij) = φα∗(uj, vij). This indicates that Gn,m is an α∗-sensitive Nash

equilibrium.

3.4 Best Response Dynamics

We have seen that the PageRank game has a rich set of equilibria, includ-

ing edge-transitive graphs, distance-regular graphs, and the family Gn,m of α-

sensitive equilibria. However, these examples are somewhat surprising: those

that are large and highly connected require a great deal of symmetry or reg-

ularity in their link structure, a property that we do not expect in real-world
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networks, and one that is difficult to imagine as the result of uncoordinated

competitive play.

In this section, we will refine the analysis of Nash equilibria by analyzing best

response dynamics, a realistic model of sequential play for the PageRank game in

which nodes take turns playing best response strategies. This helps overcome

the fact that the Nash equilibrium can be a rather coarse solution concept: it

describes only the stability of an outcome, but does not consider how players

might arrive at such an outcome in any realistic scenario of play. Best response

play, if it converges, always leads to a Nash equilibrium, but in this case we

have also modeled an explicit sequence of strategic moves that leads there from

an initial state of our choosing. With reasonable choices for the initial network

and order of play, best response dynamics differentiate between common versus

uncommon Nash equilibria. For the PageRank game, we find that, in contrast to

the theoretical possibility of large and highly connected equilibria, best response

dynamics always lead to highly fragmented equilibria, consisting of many small

disjoint components.

3.4.1 Definition

To define best response dynamics, we choose an initial network and a method

to determine the order of play. Then, during each turn, a single node rewires its

links to play a best response in the current network. In general, we allow a node

to play any best response, i.e., to link to any subset of nodes that maximize po-

tential. However, we always assume that a singleton does not place any outlinks. We

will focus primarily on random round robin play: the game proceeds in rounds
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during which each node plays in a random order selected at the beginning of

the round. However, several other variants are possible and we will show that

best response dynamics converge as long as the order of play satisfies a minimal

fairness condition.

Condition 2 (Fair order of play). For all i, j ∈ V , after any turn of player i, there is

probability at least 1/2 that player j will be the next of the two nodes to play.

This condition is obviously satisfied by random round robin player-order. It

is also satisfied by other common ordering methods, such as: (1) deterministic

round robin, in which play proceeds in rounds, but, during each round, players

always play in the same pre-determined order, and (2) random, in which the next

player is always chosen uniformly at random.

3.4.2 Convergence

If, after some finite number of turns, no player changes its strategy, we say that

best response play has converged. In this case, the outcome is a Nash equilib-

rium, because every node is playing a best response in the current network. We

will see that, under Condition 2, best response dynamics always converge.

Lemma 8. If Condition 2 is satisfied, then any time an edge (i, j) is deleted, there is

probability at least 1/2 that it will never be added again.

Proof. Suppose (i, j) is deleted during turn t. If edge (j, i) does not exist, then

neither edge can be re-created after time t, because neither node links to the

other, and hence neither is a best response for the other. Assume (j, i) does

exist. If j is the next of the two nodes to play, then j will remove the edge (j, i)
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because i is not an in-neighbor and hence not a best response. Again, neither

edge can be re-created. The event that j plays next happens with probability at

least 1/2.

Theorem 8. Best response dynamics in the PageRank game converge with probability

1.

Proof. If play does not converge, then some edge (i, j) must be deleted and then

re-created infinitely often. However, the probability that (i, j) is deleted and re-

created k times is no more than 2−k, which goes to zero as k → ∞, so the event

that (i, j) is deleted and added infinitely often has probability zero.

Remark. Best response dynamics can fail to converge if player order is chosen

adversarially. For example, consider a Nash equilibrium where player i has two

neighbors j and k. Player i may delete its link to j and then re-create that link as

long as j does not play in the interim. The order can be arranged so this happens

infinitely often, but any such ordering has probability zero under Condition 2.

3.4.3 Tie-Breaking

Consider a simple variant of best-response dynamics where a player must al-

ways break ties when selecting a best response strategy, so it links to a single

node that maximizes potential.

Lemma 9. Suppose players always link to a single node of maximum potential. Then

best response dynamics converge to a union of singletons and two-cycles.

52



Proof. Convergence is guaranteed by Theorem 8. Tie-breaking ensures that the

resulting graph has out-degree at most one. Furthermore, all links are bidirec-

tional (recall our assumption that singletons place no outlinks). The only bidi-

rectional components with outdegree at most one are the singleton and two-

cycle.

We can prove a similar result if players choose among best response strate-

gies at random, as long as there is some chance during each turn that a player

does not link to all nodes that maximize potential.

Lemma 10. Suppose each player chooses among best response strategies randomly in a

way that satisfies the following condition: if S is the set of nodes that maximize potential

and |S| > 1, then, with probability at least c, the player links to a proper subset of S.

Then, with probability one, best response dynamics converge to a union of singletons

and two-cycles.

Proof. The proof is similar to the proof of Theorem 8. Let St
i be the set of nodes

that maximize potential for player i during its tth turn. If |St
i | > 1, then there is

constant probability that |St+1
i | < |St

i | because i fails to link to some node j ∈ St
i ,

and that node plays again before i. Hence, with probability one, all nodes have

degree one upon convergence, so the outcome must be a union of singletons

and two-cycles.

3.4.4 Experiments

With no assumptions about tie-breaking, we cannot guarantee that best re-

sponse play leads to very simple equilibria. In this section, we conduct ex-
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periments that simulate best response dynamics in a real web hostgraph. Our

starting point is the hostgraph G from the WEBSPAM-UK2006 dataset [12]. The

nodes of G are the 11,402 web hosts (e.g., www.bbc.co.uk) taken from a crawl

of the .uk domain conducted in 2006; a link is present from u to v if any page

from host u links to any page from host v. There are a total of 730,774 links.

We simulate best response dynamics in random round robin order. During

each turn, the current player rewires to link to all neighbors that maximize po-

tential. This choice is made to maximize the number of links retained during

play; we have already shown that that tie-breaking strategies that remove links

always lead to singletons and two-cycles. We ran ten runs of best response dy-

namics until convergence, each time with different random seeds to determine

the order of play in each round. Convergence happened quickly: seven of ten

trials converged in just 3 rounds, while the longest took 9 rounds.

Outcomes. Once again, contrary to the possibility of complicated equilibria,

all equilibria reached by simulation consisted of many small and simple com-

ponents. Table 3.4.4 shows the classification of all components. Since all edges

are bidirectional, it is simpler to classify the graphs as if they were undirected,

e.g., we classify the directed two-cycle as an undirected path P2 on two nodes.

This was by far the most commonly occurring component. Other graphs that oc-

curred were singletons, stars (Sn), cycles (Cn), cliques (Kn) and bipartite cliques

(Km,n), most occurring only in relatively small sizes. The biggest component in

each trial was a star; the largest contained 109 vertices. The closest runner-up

was a bipartite clique K2,58, essentially a star with dual hubs.
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Table 3.1: Classification of strongly connected components in Nash equi-
libria reached by best response dynamics. (Note: components
are counted toward the most specific classification, as ordered
from left to right. For example a P2 is not counted as a Sn or Kn,
and a C3 is not counted as a Kn.)

Trial
Single-

tons

Paths Stars Cycles Cliques

P2 P3 Sn C3 C4 Kn K2,n

1 1274 3642 340 113 191 34 19 13

2 1192 3630 341 134 182 24 20 17

3 1178 3612 345 127 183 33 21 15

4 1278 3609 325 120 204 29 20 21

5 1158 3641 304 125 212 31 22 16

6 1244 3566 394 147 157 25 19 11

7 1284 3578 361 116 179 27 20 22

8 1205 3639 342 115 196 25 20 25

9 1174 3710 342 129 191 25 19 12

10 1286 3559 367 134 171 23 21 16

Dismantling connectivity. In addition to the final outcome, we are interested

in what happens along the way. How quickly does best response play converge?

What happens to global connectivity? We observed that best response play con-

verges very quickly and is incredibly efficient at dismantling global connectivity

in the graph. During most turns, a player deletes all but a single link. Moreover,

because the PageRank game favors “mutual admiration” dynamics in which

pairs of nodes break off into two-cycles, it is much more damaging to global

connectivity than other schemes that remove a similar number of edges.
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Figure 3.6: Evolution of connectivity during (a) best-response dynam-
ics and (b) random-rewiring. Each plot shows the fraction
of nodes in SCC, IN, and OUT, and the average outdegree
(dashed) during the first two rounds of play. Results are av-
eraged over 10 trials, with error bars indicating one standard
error.

Figure 3.6, part (a) shows the evolution of several connectivity measure-

ments during the first two rounds of play. We measured the average degree

and the sizes of the “bow-tie” components SCC, OUT and IN [8]. SCC is the

largest strongly connected component, OUT is the set of remaining nodes that

are reachable from the SCC, and IN is the set of remaining nodes that can reach

the SCC. The initial graph (round 0) is typical of web graphs, with a large frac-

tion of nodes in SCC, and the remaining nodes split between IN and OUT. In

this case, IN is very small, a property we expect in a web crawl done from a

small initial set because, by definition, IN is not reachable from most pages on

the web.

During the first round, SCC is completely dismantled. At the end of the

round, the average degree is 3.3 and OUT contains about half the nodes, but

then proceeds to break apart during the second round. For comparison, part (b)

of Figure 3.6 shows the results of a random rewiring strategy, where, instead of
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playing a best response, each player selects a single outlink uniformly at ran-

dom (the result after one round will be a random graph with outdegree exactly

one). This is guaranteed to remove more edges than best response dynamics,

yet we see that the global bow-tie structure remains relatively stable until the

average degree has is reduced to be very close to one, while best response play

has already systematically dismantled SCC at a much higher average degree.3

3The explosion of IN during round two in Figure 3.6 part (b) is an artifact of the fact that
after one round of play this is a random graph with outdegree one. In such a graph, paths can
converge but never split or end, implying that each component contains a single directed cycle
with directed trees pointing into the cycle. Hence OUT is necessarily empty, and IN contains
the directed trees leading into the biggest cycle.
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CHAPTER 4

COLLECTIVE HIDDEN MARKOV MODELS FOR MODELING BIRD

MIGRATION

4.1 Introduction

In this chapter, we explore a family of inference problems on collective hidden

Markov models, a generalization of hidden Markov models (HMMs) designed

to model population-wide behavior that results from a collection of individuals

that each behave according to a HMM. We present algorithms and hardness re-

sults for the hidden-data reconstruction problem in several different variants of

the model obtained by making different assumptions about how the population

is observed, and what data about individuals should be reconstructed. The re-

construction problems we consider are analogous to that solved by the Viterbi

algorithm in HMMs, which can be interpreted as finding a shortest path in the

HMM trellis graph; our algorithms use convex optimization based on network

flows in the trellis graph.

4.1.1 Motivating Application

This work was motivated by a novel and important application in ecology:

inferring bird migration paths from a large collection of spatial observations.

The eBird database hosted by the Cornell Lab of Ornithology contains millions

of bird observations from throughout North America, reported by the general

public at the eBird website1 [50, 61]. Observations report location, date, species

1http://www.ebird.org
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and number of birds observed. The eBird data set is very rich; the human eye

can easily discern migration patterns from animations showing the observations

as they unfold over time on a map of North America. However, the eBird data

are static, and they do not explicitly record movement, only the locations of birds

(or relative number of birds at different locations) at different points in time.

Conclusions about migration patterns are made by the human observer. Our

goal is to build a mathematical framework to infer dynamic migration models

from the static eBird data. Quantitative migration models are of great scientific

and practical import: for example, this problem originally arose out of an inter-

disciplinary project at Cornell University to model the possible spread of avian

influenza in North America through wild bird migration.

The migratory behavior for a species of birds can be modeled as a generative

process that independently governs how individual birds fly between locations.

At any given time step, the eBird data reveal partial information about the status

of the population. In particular, we assume that, from eBird, one can derive esti-

mated counts Nt(`) of the number of birds at location ` at time t, for all locations

` and times t (note that we deal with a finite set of locations and times, e.g., by

quantizing space and time). Hence, we observe a sequence of snapshots, each

showing the approximate spatial distribution of birds at a given time. However,

a number of aspects of the migration process as a whole are unobserved:

1. Transitions. Because individual birds are indistinguishable, we cannot

match observations at time t to those at time t + 1. Hence we do not know

the flights that occurred to shift the population between its spatial distri-

bution at time t and its distribution at time t + 1.

2. Hidden state of individuals. The transition model for individual birds de-
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scribes their flights between locations. The model may include, in addi-

tion to location, a number of other aspects of a bird’s state that affect its

migratory behavior but cannot be observed, such as life-history status or

energy reserves.

3. True counts. The problem of estimating the location counts Nt(`) from

eBird is itself a very challenging problem, so we must assume that these

counts are inexact, and that they provide only approximate information

about the true underlying counts.

Our primary goal will be to make inferences about these unobserved quan-

tities given the eBird data and appropriate assumptions about models for gen-

erating the data. In what follows, we present the collective HMM framework

generically. We will discuss its applicability to migration inference and other

problems, including an example application in multiple target tracking.

4.1.2 Hidden Markov Models

A hidden Markov model (HMM) is a generative model for sequential data in

which a sequence of states X = (X1, . . . , XT ) is drawn from a Markov chain. The

states are hidden from the observer, who sees instead a sequence of output sym-

bols Y = (Y1, . . . , YT ), each depending probabilistically on the current state. We

often describe this as an object transitioning from state to state, and emitting an

output symbol in each state. For an observed output sequence y = (y1, . . . , yT ),

the observer would like to reconstruct the most probable state sequence, i.e., to

find the state sequence x maximizing p(x |y).

The Viterbi algorithm is a dynamic programming algorithm to solve this
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reconstruction problem [55]; it is well suited to labeling or tagging a single se-

quence of data. For example, in part of speech tagging, one assumes that the

words Y1, . . . , YT in a sentence are generated in two steps: first, parts of speech

X1, . . . , XT (e.g., noun, verb, noun), are generated from a language-based tran-

sition model. Then, for all t, the word Yt is chosen at random from all words

with part of speech Xt. Although this is a crude model for generating actual

sentences, it is a powerful inference framework. The Viterbi algorithm deter-

mines the part of speech for each word in a sentence by reconstructing the most

probable part-of-speech sequence given the word sequence. HMMs have been

successfully applied in many areas including speech recognition [55], natural

language processing [14], and biological sequencing [23].

4.1.3 Collective Hidden Markov Models

Collective HMMs generalize this framework to consider the case when many

objects independently evolve and emit output symbols according to a hidden

Markov model. However, the objects are identical in appearance, so the ob-

server cannot distinguish between identical symbols emitted by different ob-

jects. The information available to the observer is then the multiset of sym-

bols emitted at each time step, represented by counts that indicate the num-

ber of times each symbol appears. Suppose there are M objects in total. Let

X
(m)
1 , . . . , X

(m)
T be the state sequence of object m, and let Y

(m)
1 , . . . , Y

(m)
T be

the corresponding sequence of output symbols. Then the tth observation is

the multiset At = {Y (1)
t , . . . , Y

(M)
t }, and the inference problem analogous to

the Viterbi reconstruction problem is to find the collection of state-symbol se-

quences {X(m)
t , Y

(m)
t }M

m=1 to maximize p({X(m)
t , Y

(m)
t }M

m=1|A1, . . . , AT ). We call
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this the multiple path reconstruction problem — the observer attempts to recon-

struct a specific set of M sample paths from the HMM, given collective obser-

vations of the entire population. In what follows, it is usually more convenient

to think directly in terms of symbol-counts instead of multisets: for symbol α,

let Nt(α) be the number of times that α appears in At, i.e., the number of objects

that emit α at time t.

Example: Multiple Target Tracking. Suppose M identical targets are tracked

by a collection of sensors. The state of a target consists of the pair (`, d), where

` is one of a finite number of locations, and d is one of a finite number of

directions. A pre-defined Markov model gives the probability of transition-

ing between states. For example, the probability p((`, d), (`′, d)) that the target

moves from location ` to location `′ while continuing to traveling in direction

d is nonzero only if `′ can be reached by moving in direction d from `. Sensors

placed at each location can detect the presence of a target but not its direction

of travel: a target in state (`, d) emits the output symbol `. Moreover, sensors

can accurately count the number of targets present, so the observed data are the

counts Nt(`) of the number of targets at location ` during time t, for all ` and

t. Then the problem of reconstructing the most probable tracks for each target

given these counts is an instance of the multiple path problem.

4.1.4 Problem Variants and Summary of Results

There is a rather direct analogy between the preceding target-tracking example

and migration inference, if one considers birds to be “targets”. However, the

assumptions are slightly different. In the bird migration application, the true
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population size M is large and unknown. Furthermore, for birds, we generally

consider the location-specific counts Nt(`) to be relative values instead of abso-

lute counts, and subject to estimation error. Finally, we do not wish to make

inferences about individual birds, but about portions of the population: e.g.,

“10% of the population flies from A to B during March.”

These examples illustrate some of the different modeling assumptions one

can make in applications of collective HMMs, and the choices impact the diffi-

culty of the corresponding inference problem. We will consider several specific

variants of the multiple path reconstruction problem that arise from particular

assumptions about states and observations.

• States: hidden vs. observed. In hidden Markov models, the true state is never

known to the observer, otherwise the reconstruction problem is trivial. In

our model, it remains interesting to consider the case when states are ob-

served, but objects are indistinguishable. In this case, the observer sees

counts of states at each time step, instead of symbols. For example, sup-

pose the target-tracking example is simplified so the state consists only of

a target’s location. Then the problem of reconstructing the tracks of indi-

vidual targets remains challenging.

• Counts: exact vs. noisy. We have so far assumed that the observed quantity

Nt(α) is the exact count of the number of objects that emit symbol α at

time t, but it will be useful to consider the case when these counts are

corrupted by noise to give only approximate counts. For a number of

useful noise models, this does not significantly affect the difficulty of the

inference problem.

• Reconstruction: integer vs. fractional. When the number of objects is large
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and unknown, as in the bird example, it is more appropriate to consider

counts to be relative values that indicate a fraction of a population, rather

than integer values. In this case, we also seek a fractional reconstruction,

and the inference problem becomes easier to solve.

Table 4.1: Summary of inference results for collective HMMs.

states counts reconstruction algorithm comment

hidden * integer IP NP-hard

hidden * fractional LP

observed exact * transportation decomposes by t

observed noisy * flow

Table 4.1 summarizes the algorithms for solving the reconstruction problems

that arise from these different choices. All of the algorithms to be presented

later in this chapter are based on an integer program (IP) formulation of a mod-

ified network flow problem. The problem as originally presented, with hidden

states and an integer reconstruction, is NP-hard (first row), but a fractional re-

construction can be obtained in polynomial time by solving the linear program

(LP) relaxation of the IP (second row). When states are observed, the problem

becomes tractable for both fractional and integer reconstructions. With exact

counts (third row), the reconstruction problem simplifies to a sequence of T − 1

problems that are instances of the transportation problem [19], a variant of bipar-

tite matching. When counts are noisy (fourth row), the reconstruction problem

no longer decomposes by time step, but can be solved as a min-cost flow prob-

lem [18], where the edge-cost functions depend on the noise model. In Section

4.5.3, we will discuss a number of noise models that lead to convex cost func-
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tions, in which case the noisy versions of each problem can be solved at little

increase in computational complexity.

Structure of chapter. The remainder of the chapter is structured as follows. In

section 4.2, we discuss related work. Section 4.3 introduces preliminary mate-

rial. Sections 4.4 and 4.5 present hardness results and algorithms, respectively,

for difference problem variants. Finally, section 4.6 presents experiments that

evaluate collective HMMs on a synthetic target-tracking problem and demon-

strate its use for migration inference.

4.2 Related Work

We briefly mention some related work. Caruana et al. [10] and Phillips et al. [54]

used machine learning techniques to model bird distributions from observa-

tions and environmental features. For problems on sequential data, many vari-

ants of HMMs have been proposed [23], and recently, conditional random fields

(CRFs) have become a popular alternative [45]. Roth and Yih [58] present an in-

teger programming inference framework for CRFs that is similar to our problem

formulations.

While developing the example target tracking application for this chapter,

we discovered two closely related papers from the radar tracking community

that were omitted from our conference publication [59]. Wolf et al. introduced a

dynamic programming algorithm to find the best collection of M disjoint paths

through a trellis graph for tracking multiple objects by radar [65]. The algorithm

was exponential in M , but Castañon later observed that the same problem could
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be solved in polynomial time by min-cost flow [11]. Although the premise of

tracking a small number of objects in a continuous state space is substantially

different from our premise of tracking the collective behavior of a large popu-

lation in a discrete space, the model of Wolf et al. is equivalent to a collective

HMM with non-hidden states. A continuous state space may be used because

only states corresponding to observed data need be instantiated (see the discus-

sion of pruning the trellis graph in Section 4.6.1); all state counts are then either

zero or one because multiple objects never collide in exactly the same state. The

“false alarm” observations in the Wolf et al. model that do not correspond to a

real target can be modeled by noisy counts in our framework. The algorithm of

Castañon is then equivalent to the min-cost flow algorithm that would be ap-

plied in our framework (fourth row of Table 4.1). The target tracking example

that appears later in this chapter has an additional twist: part of a target’s state

(the direction) is unobserved, so that a collective HMM with hidden states is

used.

Similar ideas have also appeared in the computer vision community. After

our initial publication, Zhang et al. independently introduced a model very

similar to that of Wolf et al. for tracking multiple objects in video sequences,

again solved by min-cost flow [67]. Prior to that, Jiang et al. presented a linear

programming approach for multiple object tracking that simultaneously found

paths through M trellis graphs [41]. The work of Jiang et al. differs from col-

lective HMMs and the Wolf et al. model in that objects are distinguishable, so

observations for object m are matched against a template for that object, and that

M copies of the trellis graph are instantiated, each consisting of the observations

for a different (distinguishable) object.
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4.3 Preliminaries

4.3.1 Models and Notation

A hidden Markov model (I, Σ, π, σ) is a Markov chain with state set I and tran-

sition probabilities p(i, j) = πij for all i, j ∈ I. We assume that 0 ∈ I is a

distinguished start state, so the initial distribution over states is given by π0i. In

each state, an output symbol from alphabet Σ is emitted. The probability that

symbol α is emitted given that the current state is i is equal to the emission prob-

ability p(α|i) = σiα. Let X = (X1, . . . , XT ) be a random sequence of states drawn

from the HMM, and let Y = (Y1, . . . , YT ) be the corresponding observation se-

quence. Let x = (x1, . . . , xT ) and y = (y1, . . . , yT ) be a particular state sequence

and observation sequence, respectively. We write p(x,y) for the joint probability

Pr [X = x, Y = y]. In general, we will adopt a similar convention: for a random

variable A that takes value a, we write p(a) to mean Pr [A = a] whenever this

notation is unambiguous. Henceforth, assume that every state sequence x is

augmented to begin with x0 = 0, the distinguished start state. Then, by the

Markov assumptions,

p(x,y) =
T∏

t=1

p(xt−1, xt)p(yt|xt).

A collective HMM (M, I, Σ, π, σ) is an HMM with an additional parameter

M indicating the number of objects in the population. Let X(m) denote the mth

state sequence and let Y (m) denote the mth observation sequence. We repre-

sent a particular collection of samples by the pair of M × T matrices X and Y

with rows x(m) and y(m) that represent the mth state sequence and observation
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Figure 4.1: Trellis graph for HMM with states {0, i, j, k} and alphabet
{α, β}, and the observed output sequence y = (α, β, α, α).
The path indicated in bold corresponds to sample path x =
(0, i, i, k, j), and the joint probability is p(x,y) = π0iσiα×πiiσiβ×
πikσkα × πkjσjα.

sequence, respectively. By independence,

p(X,Y) =
M∏

m=1

p(x(m),y(m)) =
M∏

m=1

T∏
t=1

p(x
(m)
t−1, x

(m)
t )p(y

(m)
t |x(m)

t ).

We will also consider arbitrary distributions λ over state-symbol sequences.

When (X, Y ) is distributed according to λ, we write Prλ [·] and Eλ [·] to repre-

sent probabilities and expectations under this distribution.

4.3.2 The Trellis Graph and Viterbi as Shortest Path

To develop our flow-based algorithms, it is instructive to build upon a shortest-

path interpretation of the Viterbi algorithm (e.g., see [58]). In the reconstruction

problem for standard HMMs, we are given a model (I, Σ, π, σ) and observations

y = (y1, . . . , yT ), and seek the state sequence x that maximizes p(x |y). The

problem is conveniently illustrated using the trellis graph of the Markov model

(see Figure 4.1). Here, nodes represent the states at each time step, and edges
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connect a state at time t − 1 to its possible successors at time t. A path through

the trellis corresponds to a particular state sequence. For a known output se-

quence y, the edge from state i to state j between times t − 1 and t is labeled

with probability p(i, j)p(yt | j), equaling the probability that an object makes the

specified transition and emits the observed symbol. For any state sequence x,

the joint probability p(x,y) is given by the product of the edge probabilities for

the corresponding path through the trellis.

The Viterbi algorithm solves the problem arg maxx p(x |y) = arg maxx p(x,y),

i.e., it finds a path of maximum probability through the trellis. We can equiv-

alently work with costs instead of probabilities by making the transformation

c(·) = − log p(·) for all relevant quantities. Then

c(x,y) = − log p(x,y) =
T∑

t=1

(c(xt−1, xt) + c(yt |xt)).

Under this transformation, the Viterbi algorithm solves the problem

arg minx c(x,y), where the cost c(x,y) is equal to the sum of the edge costs of

the trellis path corresponding to x. Thus the Viterbi algorithm finds the shortest

path in the trellis graph.

4.4 The Multiple Path Reconstruction Problem

In collective HMMs, M independent state-symbol sequences {X(m), Y (m), m =

1, . . . ,M} are drawn from a HMM, and the observations reveal the number of

objects that emit the symbol α at time t, for all α and t. Let N be the |Σ| × T

matrix containing the counts Nt(α) =
∑

m I{Y (m)
t = α}. The multiple path

reconstruction problem is to find X and Y to maximize p(X,Y |N). Written
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more explicitly, the problem is

max
X,Y

M∏
m=1

T∏
t=1

p(x
(m)
t−1, x

(m)
t ) p(y

(m)
t |x(m)

t )

subject to Nt(α) =
M∑

m=1

I{y(m)
t = α} for all α, t.

(4.1)

4.4.1 Reduction to Viterbi

A naive approach to the multiple path reconstruction problem is to reduce

the collective HMM to a standard HMM on state set IM × ΣM , where state

〈i(1), . . . , i(M), α(1), . . . , α(M)〉 encodes an entire tuple of states and output sym-

bols from the original model, and the transition probabilities are given by the

product of the element-wise transition probabilities, with emissions probabili-

ties also rolled in:

p(〈i(1), . . . , i(M), α(1), . . . , α(m)〉, 〈j(1), . . . , j(M), β(1), . . . , β(m)〉)

=
M∏

m=1

p(i(m), j(m))p(β(m) | j(m))

A state from IM × ΣM represents a pair of columns from the matrices X and

Y; hence a sequence of T states corresponds to complete matrices X and Y

representing the entire collection of state-symbol sequences. Furthermore, it is

easy to see that the probability of a state sequence in the new model is equal to

the joint probability p(X,Y) of the entire collection of state-symbol sequences in

the original model. To complete the reduction, we form a new alphabet Σ̂ whose

symbols represent multisets of size M on Σ. The emission probability in the

new model, p(A | 〈i(1), . . . , i(M), α(1), . . . , α(m)〉), is equal to 1 if A is equal to the

multiset {α(1), . . . , α(m)}, otherwise it is equal to zero. Then the solution to (4.1)

can be found by running the Viterbi algorithm to find the most likely sequence
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of states from IM×ΣM that produce output symbols (multisets) A1, . . . , AT . The

running time is polynomial in |IM × ΣM | and |Σ̂|, but exponential in M .

4.4.2 Network Flow Formulation

Can we do better than the naive approach? Just as a single sample path cor-

responds to a path through the trellis, a collection of M paths corresponds to

a flow of M units through the trellis — given M paths, we can route one unit

along each to get a flow, and we can decompose any M -unit flow into M paths

each carrying a single unit of flow. Thus we can write the optimization problem

in (4.1) as the flow-based integer program that appears below. Let cij = − log πij ,

and let diα = − log σiα. The variable f t
ij indicates the amount of flow traveling

from i to j at time t; or, the number of objects that transition from state i to state

j at time t. The variable et
iα represents the number of objects in state i that emit

symbol α at time t.

Problem IP:

min
∑
i,j,t

cijf
t
ij+

∑
i,α,t

diαet
iα (4.2)

s.t.
∑

i

f t−1
ij =

∑
k

f t
jk for all j, t, (4.3)

∑
i

f t−1
ij =

∑
α

et
jα for all j, t, (4.4)

∑
j

et
jα = Nt(α) for all α, t, (4.5)

f t
ij, e

t
iα ≥ 0, integer for all i, j, α, t.

The objective (4.2) arises by transforming the probabilities in (4.1) to costs
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and rearranging the resulting sum to collect terms for identical transitions and

emissions made in each time step. The flow conservation constraints (4.3) are

standard: the flow entering j at time t must equal the flow leaving j at time

t. The flow-output conservation constraints (4.4) ensure that the total number

of symbols emitted by objects in state j at time t is correct — it must equal the

incoming flow. The observation constraints (4.5) specify that the total number

of times α is emitted at time t (by objects in any state) is equal to the observed

count Nt(α). Without the observation constraints (4.5), IP could be massaged

into an instance of the minimum-cost flow problem2 [18], which is solvable in

polynomial time by a variety of algorithms [31]. However, we cannot hope to

encode the observation constraints into the flow framework, due to the follow-

ing result.

Lemma 11. The multiple path reconstruction problem is NP-hard.

Proof. The proof is by reduction from SET COVER. An instance of SET COVER

consists of a ground set A = {a1, . . . , an} and a collection of subsets A1, . . . , AL ⊆

A. The problem is to determine, for a given integer k, whether there exist k

subsets A`1 , . . . , A`k
whose union is equal to A. If so, the subsets are said to

cover A. For the reduction, let the states I = {1, . . . , L} be indices of sets, and

let the output symbols Σ = A ∪ {0} be the elements of the ground set plus

an additional null symbol. Let the initial distribution over states be uniform,

after which self-transitions have probability one and all other transitions have

probability zero. Hence, every object selects a single state i, corresponding to

set Ai, and remains there forever; the collection of sequences belonging to any k

objects then corresponds to a selection of k sets. State i can output any symbol

2To do so, replace each trellis node by a gadget such that paths in the trellis encode state
transitions and symbol emissions.
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from the set Ai, or the symbol 0, each with equal probability. Finally, let the

counts N be such that there are k objects in total, and at time t the symbol at is

emitted once and the symbol 0 is emitted k − 1 times, for t = 1, . . . , n. These

counts ensure that each element of A must be covered by the set corresponding

to one of the k objects. Then, for any collection of k state sequences X and output

sequences Y, we have p(X,Y) > 0 if and only if the paths X correspond to a

selection of subsets that cover A.

A consequence of the proof is that it remains NP-hard to approximate the

problem within any factor, because an algorithm need only find an outcome

with nonzero probability to decide SET COVER. One may use a general purpose

integer program solver to solve IP directly; our experiments show that this may

be very efficient in some cases despite the lack of polynomial time performance

guarantees. In the following sections we discuss alternatives with polynomial

time guarantees.

4.5 Efficiently Solvable Problem Variants

4.5.1 Fractional Reconstruction

In applications like migration inference, where the true population size is large

and unknown, it is more appropriate to consider population measurements to

be relative values instead of absolute counts, and to make inferences about the

behavioral patterns of portions of the population, instead of individuals. These

are the assumptions behind the fractional reconstruction problem. Conceptu-

ally, the problem arises by letting M → ∞ in the multiple paths problem. Op-
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erationally, it is modeled by dropping the integrality constraints in IP. We also

normalize the input values, letting qt(α) = Nt(α)/M specify the fraction of paths

that output α at time t. The resulting LP is shown below; all variables now

represent fractions of the total population, instead of absolute counts.

Problem RELAX:

min
∑
i,j,t

cijf
t
ij+

∑
i,α,t

diαet
iα

s.t.
∑

i

f t−1
ij =

∑
k

f t
jk for all j, t,

∑
i

f t−1
ij =

∑
α

et
jα for all j, t,

∑
j

et
jα = qt(α) for all α, t,

f t
ij, e

t
iα ≥ 0 for all i, j, α, t.

The relaxed problem has the following interpretation. A feasible solution

to RELAX is a single-unit flow, which can be decomposed over unique state-

symbol sequences such that π(x,y) fractional units of flow follow the trellis path

corresponding to state sequence x and emit output symbols y. Hence, the ob-

server chooses π(x,y) fractional units of each possible state-symbol sequence

(x,y), totaling one unit, such that qt(α) units emit symbol α at time t. Put an-

other way, π is a distribution over state-symbol sequences (X, Y ), and π satisfies

Prπ [Yt = α] = qt(α), that is, qt specifies the marginal distribution over symbols at

time t. The objective is to minimize
∑

(x,y)∈IT×ΣT π(x,y)c(x,y), or, equivalently,

to maximize Eπ [log p(X, Y )]. Hence, we seek the distribution π with the speci-

fied marginal distributions that maximizes the expected log-probability, under

the HMM probability measure p(·), of a random state-symbol sequence (X, Y )
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drawn from π.

This formulation is similar in concept to maximum entropy or mini-

mum cross entropy modeling, but the details are slightly different: such

a model would typically find the distribution π with the correct marginals

that minimizes the cross entropy or Kullback-Leibler divergence [60] between

p and π, which, after removing a constant term, translates to maximizing

Ep [log π(X, Y )].

4.5.2 Non-Hidden States

A useful simplification to collective HMMs is to dispense with output symbols

and allow states to be observed directly. In this case, the counts Nt(i) specify

the number of objects in state i at time t, for all i and t. For example, we can use

such a model for the bird migration problem when we do not wish to model the

transitions as depending on any hidden aspects of the state of a bird, such as

its migratory direction or energy reserves. The reconstruction problem in this

case is arg maxX p(X |N), and the integer program simplifies by eliminating the

e variables.
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Problem OBS:

min
∑
i,j,t

cijf
t
ij (4.6)

s.t.
∑

i

f t−1
ij =

∑
k

f t
jk for all j, t, (4.7)

∑
i

f t−1
ij = Nt(j) for all j, t, (4.8)

f t
ij ≥ 0, integer for all i, j, t.

OBS is an instance of the min-cost flow problem, for which a variety of efficient

algorithms exist [18,31], or, one may use a general purpose LP solver; any basic

solution to the LP relaxation is guaranteed to be integral [18].

Exact Counts. When the counts are exact as we have assumed thus far, the

problem OBS simplifies even further, because the observation constraints (4.8)

specify the exact flow through each node in the trellis. Hence, the flow conser-

vation constraints (4.7) can be replaced by the following equivalent constraints:

Nt(j) =
∑

k

f t
jk for all j, t. (4.7′)

In the new constraint set for OBS, each constraint refers only to variables f t
ij for

a single time step t. Hence, the problem can be decomposed into T − 1 disjoint

subproblems for t = 1, . . . , T − 1. The tth subproblem is:
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Problem SPt:

min
∑
i,j

cijf
t
ij

s.t.
∑

i

f t
ij = Nt+1(j) ∀j, (4.7′)

∑
j

f t
ij = Nt(i) ∀i, (4.8)

f t
ij ≥ 0, integer ∀i, j.

Problem SPt is illustrated on the trellis in Figure 4.2. State i at time t has a

supply of Nt(i) units of flow coming from the previous step, and we must route

Nt+1(j) units of flow to state j at time t + 1, so we place a demand of Nt+1(j) at

the corresponding node. Then the problem reduces to finding a minimum cost

matching of the supply from time t to meet the demand at time t + 1, solved

separately for all t = 1, . . . , T − 1. This is a variant of bipartite matching called

the transportation problem [19], and a special case of min-cost flow.

4.5.3 Noisy Counts

In cases when the counts Nt(·) are themselves estimates, it is useful to allow the

solution to deviate somewhat from these counts to find a better overall recon-

struction. To model this, we assume that the true counts Nt(·) are unobserved,

and instead, a corrupted count Zt(·) is available. We furthermore assume that

the corruption process operates independently on each count, so the variables

Zt(·) are conditionally independent given N, and that the conditional distribu-

tion of Zt(α) given Nt(α) is specified by the density p(z |n). The reconstruction

problem then becomes arg maxX,Y p(X,Y |Z) (in the case of hidden states), or
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Figure 4.2: Illustration of subproblem on the trellis, with example supply
and demand values for M = 5.

arg maxX p(X |Z) (in the case of observed states).

The modification of either problem is similar; to be concrete, we focus on the

case of observed states. Because Z is now observed in place of N, the problem

no longer has hard constraints on state counts; instead, an additional likelihood

term appears in the joint probability:

p(X,Z) = p(X)p(Z |X) = p(X)
∏
t,i

p
(
Zt(i) |Nt(i)).

Here, we recall that Nt(i) =
∑

m I{x(m)
t = i} is a deterministic function of X. The

problem OBS from the previous section is modified by dropping the observation

constraints (4.8) and adding the negative log-likelihood term − log p(Z |X) in

the objective. Let `(n; z) = − log p(z |n). Then the modified problem is
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Problem OBS+NOISE:

min
∑
i,j,t

cijf
t
ij+

∑
t,i

`(nt
i; Zt(i))

s.t.
∑

i

f t−1
ij = nt

j for all j, t,

∑
k

f t
jk = nt

j for all j, t,

∑
i

nT
i = M (4.9)

f t
ij, n

t
i ∈ N for all i, j, t.

We have split the flow conservation constraints and introduced the variable nt
j

to represent the true unobserved count for state j at time t. For linear problems,

these variables can be eliminated to obtain a more compact formulation. How-

ever, when ` is nonlinear, this formulation is preferable because the objective

function is separable: it is a sum of terms where each nonlinear term is a function

of only one variable [20]. We have added the constraint (4.9) to ensure that a

total of M units of flow travel through the trellis; this constraint was implicit in

previous formulations, due to the fact that the observations constraints required

M output symbols at each time step.

The OBS+NOISE formulation corresponds to a min-cost flow problem in a

modified trellis where each node is split into two nodes connected by a single

edge, as illustrated in Figure 4.3. The amount of flow on the new edge is nt
i, and

the cost function of the edge is `(·; Zt(i)).

Convexity. The convexity of the negative log-likelihood function `(n; z) is an

important consideration. This is the cost function applied to the nt
i variable,

and it determines the convexity of the modified optimization problem. Each of
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Figure 4.3: Illustration of the gadget that replaces each trellis node in the
flow problem represented by OBS+NOISE.

the problems we have discussed incurs only a slight increase in computational

complexity when noisy counts are incorporated in the case that `(n; z) is convex.

We comment briefly on each in turn:

(i) Hidden states, integer reconstruction. When states are hidden, the inte-

ger problem remains NP-hard. To solve the problem as an integer pro-

gram, the function ` may be replaced by a piecewise-linear function ˆ̀ that

matches ` on integer values.

(ii) Hidden states, fractional reconstruction. In this case, the modified problem

is a convex optimization problem with linear constraints and a separable

convex objective. One approach to solve such a problem is to approximate

the convex objective with a piecewise-linear objective and solve the result-

ing linear program (e.g., see Section 24-3 of [20]). An optimal solution of

arbitrary precision can be obtained by solving a sequence of polynomially

many piecewise-linear approximations [37].

(iii) Observed states, integer reconstruction. In this case, the problem is a flow

problem with convex edge costs, for which there are specialized strongly

polynomial time algorithms [43]. To ensure an integer reconstruction, the

objective term ` should be replaced by the piecewise linear version ˆ̀ de-

scribed in case (i).

(iv) Observed states, fractional reconstruction. This case is similar to case (iii), ex-

cept the original objective ` is used instead of the piecewise linear version
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ˆ̀because fractional variables are allowed.

Log-Concave Noise Models. It remains to explore specific noise models that

result in a convex objective. A function f(n) is said to be log-concave if log f(n)

is concave. In our case, a likelihood function p(z |n) that is log-concave in n is

the essential property for efficient inference, because it coincides with a convex

negative log-likelihood function `(n; z). A similar situation arises in maximum

likelihood estimation for generalized linear models, and, in that context, many

useful log-concave models have been explored (see, for example, [21]). In this

section we will discuss three specific noise models with log-concave likelihoods

that are relevant to collective HMMs, and then outline a general situation that

yields log-concave likelihoods: when n is the natural parameter of a single-

parameter exponential family of distributions.

Examples. For clarity of notation, fix i and t and let let Z = Zt(i) be the noisy

version of the true count N = Nt(i).

• Additive Laplacian Noise. Suppose that Z = N+ε where ε ∼ Laplace(0, b), so

the conditional density and corresponding negative log-likelihood func-

tions are

p(z |n) =
1

2b
exp

(
−|z − n|

b

)
, `(n; z) = log 2b +

|z − n|
b

.

We see that p(z |n) is log-concave because `(n; z) is convex in n. Laplacian

noise is especially practical because `(n; z) is piecewise linear in this case,

and hence the optimization problems can be written as linear optimization

problems for added efficiency.3

3The support of p(z |n) may be restricted to [0,∞) to reflect the typical case that the observa-
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• Additive Gaussian Noise. Perhaps the most common noise model is additive

Gaussian noise. Suppose Z ∼ Normal(N, σ2). Then

p(z |n) =
1√

2πσ2
exp

(
−(z − n)2

2σ2

)
, `(n; z) =

1

2
log 2πσ2 +

(z − n)2

2σ2
.

Wee see that `(n; z) is again convex in n.

• Poisson counts. Consider the following model of the eBird counts, in

which the number of birds Z counted by an observer has distribution

Poisson(αn). This corresponds to a model where each bird in the popula-

tion is observed independently according to a Poisson process with rate α.

Then

p(z |n) =
(αn)z exp(−αn)

z!
, `(n; z) = log z!− z log αn + αn.

It is easy to see by differentiating `(n; z) twice that this model is also log-

concave.

Exponential Families. The log-concavity of the Gaussian noise model is a spe-

cial case of a more general result. We say that a family of distributions is a

single-parameter exponential family with natural parameter n if the density can be

written as p(z |n) = h(z) exp(n T (z) − A(n)) for some functions h(·), T (·) and

A(·). Many of the most common distributions form an exponential family with

respect to some parameter (e.g., the unknown mean of a Gaussian distribution),

and each has a natural parameterization that allows it to be written in the form

above.

Lemma 12. Suppose p(z |n) is the density function of a single-parameter exponential

family with natural parameter n. Then p(z |n) is log-concave in n.

tion Z must be non-negative. However, this change affects only the normalization term log 2b
in `(n; z). Since that term is constant with respect to n, we may ignore it during optimization.
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Proof. In this case, `(n; z) = − log h(z) − nT (z) + A(n), and `′′(n; z) = A′′(n).

Let Z be a random variable from this distribution. In a naturally parameterized

exponential family, Var(T (Z)) = A′′(n) (see, for example, [5]). Hence A′′(n) ≥ 0,

so `(n; z) is convex.

Lemma 12 implies that a multitude of other models are log-concave, includ-

ing those based on the binomial, Gamma, and negative binomial distributions.

It is important to note that Lemma 12 only applies directly to our situation when

n is the natural parameter of the exponential family. In some cases, this is quite

sensible: for example, in the Gaussian example, the natural parameter is the

mean. In other cases, the natural parameter may be less appropriate. For exam-

ple, the Poisson distribution with unknown rate λ forms an exponential family

with natural parameter log λ, so the fact that the Poisson example we discussed

is log-concave with respect to n = λ/α does not follow directly from Lemma 12.

However, the parameterization in the example is a better match for our applica-

tion, and, in this case, it is also log-concave.

Repeat Counts. Any log-concave noise model can be extended to the case

of multiple independent counts. For example, in the eBird problem, it is of-

ten the case that many different observers submit counts for a given loca-

tion and time period; these all depend probabilistically on the same underly-

ing count. Let Z(1), . . . , Z(K) be drawn independently from p(z |n) with un-

known n. By independence, p(z(1), . . . , z(K) |n) =
∏K

k=1 p(z(k) |n), so we have

`(n; z(1), . . . , z(K)) =
∑K

k=1 `(n; z(k)). Hence, for each unknown count N , the like-

lihood term in the objective is a sum of the individual likelihood terms `(n; z(k)),

and this is convex in n because each member of the sum is convex.
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Fractional Counts. Although we have called the unknown value n a count,

suggesting that it is integer-valued, the preceding discussion of noisy counts

pertains equally well to the case encountered in the fractional reconstruction

problem, when the unknown value q is a real number.

4.6 Experiments

In this section, we conduct several experiments with collective HMMs. We eval-

uate the performance of the integer reconstruction problem on a synthetic target

tracking application for which ground truth is known, and then we demonstrate

the use of collective HMMs to build visualizations using eBird data for the mi-

gration of Ruby-Throated Hummingbird. First, we turn to a practical consider-

ation to reduce the size of the inference problems.

4.6.1 Pruning the Trellis

The optimization problems we have discussed scale with the size of the trellis

graph, which scales quadratically with the number of states; this can pose dif-

ficulties for large state spaces. However, for smaller values of M , it is often the

case that only a tiny fraction of the HMM state space is occupied. When the

problem has an appropriate sparsity structure, we can do substantial pruning

of the trellis graph based on the observations before solving the optimization

problem.

For example, if a symbol α is not emitted at time t, the emission variables et
iα

must all be zero, so they can be eliminated. Similarly, state i can be eliminated
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at time t if it cannot produce any symbol observed at time t, or if it is not reach-

able from an allowed state at time t − 1. Call a state sequence x feasible if each

transition has nonzero probability and, for all t, state xt can emit some symbol α

that is observed at time t with nonzero probability. Below, we outline a method

to prune the trellis so that it consists only of nodes that lie on some feasible path.

First, for S ⊆ I and B ⊆ |Σ|, define π(S) to be the set of states that can be

reached by a transition of nonzero probability from S, and define π−1(S) be the

set of states with transitions of nonzero probability to S. Similarly, let σ(S) be

the symbols that can be emitted by some state in S and let σ−1(B) be the states

that can emit some symbol in B. Let Bt be the set of symbols observed at time

t, or, in the case of noisy counts, the set of symbols that may be emitted at time t

(i.e., Bt = {α : Pr [Nt(α) > 0 |Zt(α)] > 0}).

To begin, eliminate all emission variables et
iα where α /∈ Bt. Next, build a

set of active states At for each time t as follows. Initialize A0 = {0}, and At =

σ−1(Bt) for all t ≥ 1. This ensures that each active state can emit an observed

output symbol. In a forward pass through the trellis, set At = At∩π(At−1) for t =

1, . . . , T . Next, in a reverse pass, set At = At∩π−1(At+1) for t = T−1, . . . , 1. These

two passes ensure that each retained state lies on a path through active states

from the beginning to the end of the trellis. In the final problem, instantiate only

flow variables f t
ij such that i ∈ At and j ∈ At+1.

4.6.2 Target Tracking

Our first example is a synthetic target tracking application. Unlike the example

given earlier, we consider a more realistic scenario where the true target dynam-
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ics are continuous and deterministic based on physical quantities. For inference,

a discrete model is used, with stochastic transitions used to accommodate errors

in the modeling process that arise from measurement error, quantization error,

or uncertainty as to the true initial state or dynamics of targets.

Target Dynamics. Figure 4.4 shows examples of the true target dynamics. We

assume that targets are unit velocity and that measurements occur once per sec-

ond. Targets follow curved paths within an L × L bounding box and reverse

direction at boundaries. The state (x, y, θ, dθ) of a target consists of its location

(x, y), its direction of travel θ, and the rate of change in direction dθ. The ini-

tial target positions and directions are chosen uniformly at random, and dθ is

chosen uniformly in the interval [− π
30

, π
30

], to limit maximum curvature.

The continuous track of a target is approximated by a discrete track with F

locations per second (so a measurement occurs every F locations on the discrete

track). Let dx = cos(θ), dy = sin(θ). The update rule is given by

x = x +
dx

F
, y = y +

dy

F
, θ = θ +

dθ

F

If a target crosses a boundary, its position is reflected across the boundary and

the directional component orthogonal to that boundary is reversed.

Observations. For the purposes of observation, the bounding box is divided

into an L × L grid, and a sensor at the center of each cell counts the number of

targets inside that cell. We assume that measurements detect all targets within

the cell at the instant of measurement.

86



Transition Model. The transition model approximates the continuous dynam-

ics with a Markov model. The state (`1, `2, ρ) consists of the discrete grid loca-

tion (`1, `2) ∈ {1, . . . , L}2, and a discrete direction ρ among D evenly spaced

directions. The transition probabilities may be estimated using example tracks,

but here we specify the model directly. Given the current state, the direction

and location of the next state are chosen independently. The target continues

in the same direction with probability 1 − β1, and for each of the two adjacent

directions, it adopts that direction with probability β1/2. We used D = 8 in all

our experiments, so the two adjacent directions cover a wide enough angle to

accommodate the maximum curvature of the true target dynamics.

The new grid cell is chosen as follows. With probability 1 − β2, the target

moves assuming the true location in continuous space is uniformly distributed

within the current grid cell, and that the target moves exactly 1 unit in direction

ρ. In this case, it may reach up to four cells depending on the actual starting

location within the cell and the direction. Let dx = cos(ρ) and dy = sin(ρ).

Then, with probability (1 − |dx|)(1 − |dy|) the target stays in the current cell;

with probability (1 − |dx|)|dy| it moves in the y direction only; with probability

|dx|(1 − |dy|) it moves in the x direction only; and with probability |dx||dy|, it

moves in both directions. With the remaining probability of β2, the next cell

is chosen uniformly from the 6 grid cells in a “forward” direction: draw a line

through the center of the current cell orthogonal to ρ, and take any cell in the

positive ρ direction. These transitions account for curved trajectories that reach

a cell that is not possible under the straight line assumption. The parameters

used in these experiments were L = 20, D = 8, and β1 = β2 = .2.

87



Figure 4.4: Example track reconstruction. True target paths are curved,
with red circular markers indicating observation locations.
Each reconstructed track is identified by a different marker
type, placed at the center of the grid cells on the path.

Results. We ran 10 trials each for increasing numbers of targets (M =

1, 2, 4, . . . , 128) and observation sequences of length T = 20. Each time, the ini-

tial target states were chosen randomly. We pruned the trellis graph as described

in section 4.6.1, and then solved the resulting integer program with the CPLEX

mixed integer optimizer. Figure 4.4 shows an example of four reconstructed

tracks using this method. Before pruning, the problem has 1.02M variables and

72,000 constraints (these numbers depend only on the transition and emission

model, not the targets, and they exclude any transitions or emissions of zero

probability). Figure 4.5 shows the reduced problem size for different values of

M . For this example, all problems are greatly reduced in size. In each case, the

problem contains less than 10% of the possible variables, and the size grows

modestly in M , showing only a slight super-linear trend.

Figure 4.6 (a) shows the reconstruction error for different values of M . The

error metric is calculated on the flows f1 and f2 that are induced on grid cells

by the true paths and the reconstructed paths, respectively. If f1 = f2, the recon-
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struction can be decomposed into grid-cell paths that exactly match the grid-cell

paths of the true tracks. The error metric is equal to |f1 − f2|/(2M(T − 1)), the

fraction of transitions per time step that must be swapped to obtain f1 from f2.

The reconstruction quality is very good: 95% or better for 50 or fewer targets.

Error increases approximately linearly as the number targets grows; as this hap-

pens, targets collide in grid cells more frequently so there are more unique re-

constructions that explain the data well. Figure 4.6 (b) shows the running time

per variable as the number of targets grows. It is approximately constant for

M ≤ 64, suggesting that running time grows linearly in the size of the pruned

problem for sparsely occupied state spaces. Running time jumps considerably

for M = 128. We noted that for smaller problem sizes, CPLEX takes some time

to find an integer feasible solution, but proves optimality quickly once it does.

It may be possible to speed up the solution process by seeding the optimization

routine with an integer solution constructed via a heuristic method.
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Figure 4.5: Problem size growth with number of targets: (a) percent of
variables retained (of 1.02× 106) after pruning, (b) percent con-
straints retained (of 72, 000).
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Figure 4.6: Results as number of targets grows: (a) fraction of correctly
labeled transitions, (b) running time per variable.

4.6.3 eBird

In this section, we demonstrate the use of fractional reconstruction prob-

lem to visualize likely migration routes of the Ruby-throated Hummingbird

(Archilochus colubris). This species was chosen because it is relatively common

and exhibits a consistent migration pattern in the eastern United States, a re-

gion that is relatively well covered by eBird observations. As with most song-

bird species, there is almost no quantitative data about the migration of the

Ruby-Throated Hummingbird. Hence the evaluation in this section is necessar-

ily qualitative.

Background. Launched in 2002, eBird is a citizen science project run by the

Cornell Lab of Ornithology. On the eBird website, bird-watchers submit check-

lists of birds they observe, indicating a count for each species, along with the

location, date, time and additional information. Our data set consists of the

428,648 complete checklists from 1995 through 2007, meaning the reporter listed

all species observed. This means we can infer a count of zero, or a negative ob-
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servation, for any species not listed. Using a USGS land cover map, we divide

North America into grid cells that are roughly 225 km on a side. All years of

data are aggregated into one, and the year is divided into weeks so t = 1, . . . , 52

represents the week of the year.

Observations. For this problem, the observations are estimates zt(i) of the rel-

ative number of birds in each grid cell during each week. Producing these es-

timates is a difficult problem, but not our primary focus. In these experiments,

we use a relatively simple method detailed in our conference publication [59]

based on harmonic energy minimization [68]. Since the actual eBird observations

are highly non-uniform in space and time, this technique performs smoothing

on a space-time lattice to infer values for locations with few or no observations

by “borrowing” observations from nearby points in space and time. Improved

distribution modeling, especially by regression-based methods that incorporate

environmental variables (e.g., []), is likely to greatly improve the overall quality

of these visualizations.

The smoothing method also yields a confidence heuristic γt(i) for each es-

timated relative cell count zt(i); lower values indicate a more confident esti-

mate that is based either on direct observations, or observations that were made

nearby in space or time. The confidence heuristic is used as the parameter of a

Laplace noise model:

p(zt(i) | qt(i)) ∝ exp

(
|zt(i)− qt(i)|

γt(i)

)

This typical noise magnitude is thus greater for less confident estimates, and

it is less costly for the optimization procedure to deviate from these estimates.
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Transition Model. It remains to specify the Markov model. We use a simple

Gaussian model favoring short flights, letting p(i, j) ∝ exp(−d(i, j)2/σ2), where

d(i, j) measures the distance between grid cell centers. This corresponds to a

squared distance cost function on flights. To reduce problem size, we set p(i, j)

to zero when when d(i, j) > 1350 km. We also found it useful to impose the up-

per bound qt(i) ≤ 2zt(i), so the inferred value cannot the exceed the estimate by

more than a factor of 2; this is equivalent to restricting the support of the noise

model p(z | q). The final flow problem, which was solved using the MOSEK

optimization toolbox, had 78,521 constraints and 3,031,116 variables.

Results. Figure 4.7 displays the migration paths our model inferred for the

four weeks starting on the dates indicated. The left column shows the distri-

bution and paths inferred by the model; presence of birds is indicated by red

shaded grid cells, with darker shades reflecting higher density (i.e., higher val-

ues for the inferred quantity qt(i)). Arrows indicate flight paths (f t
ij) between

the week shown and the following week, with line width in proportion to f t
ij .

In the right column, the raw data is given for comparison. Yellow dots indicate

negative observations; blue squares indicate positive observations, with size

proportional to count. Locations with both positive and negative observations

appear a charcoal color. The general pattern of the inferred distributions and

migration paths matches qualitative descriptions of Ruby-Throated Humming-

bird migration (e.g., see [56]). It is an open problem to evaluate this approach

quantitatively.

Poisson Model. We also implemented a Poisson observation model that does

not do a separate estimation step for the cell counts. Instead, the eBird counts
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Week 20
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Week 30
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Week 40
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Figure 4.7: Ruby-throated Hummingbird migration. See text for descrip-
tion.

93



Figure 4.8: Comparison of Poisson model versus standard model. Left:
week 30 transitions for standard model. Right: week 30 transi-
tions for Poisson model, α = 8.

are incorporated directly into the model as noisy observations that depend on

the true underlying density. Specifically, we model each eBird count as an inde-

pendent Poisson(αq) random variable, where q is the fraction of the population

present in the grid cell where the individual went bird-watching.

This model is substantially simpler and more elegant than the previous ver-

sion because it incorporates cell count estimation directly into the migration

inference procedure. The Poisson likelihood function automatically controls for

different confidence levels when estimates are based on more or less data: the

likelihood is always maximized when αq is equal to the average of the counts

conducted in that cell, but the penalty for deviating from the maximum is much

greater for cells with many counts. However, the method also suffers somewhat

in comparison with the previous approach because no smoothing is performed.

Some cells have few or no observations, and hence the likelihood function is

indifferent to the inferred count for those cells. It is a promising area of future
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research to combine elements of these two models.

Qualitatively, we observed that the Poisson model produces similar patterns

to the standard model, but with less apparent “jitter”, where birds are seen mak-

ing significant flights during non-migratory seasons to accommodate fluctuat-

ing cell counts. Figure 4.8 compares the transitions of the standard model (left)

and the Poisson model (right, α = 8) for week 30, during the non-migratory

season. Self-transitions are marked by squares instead of arrows; these indicate

that the birds stay in their current location. This week is a typical comparison:

the Poisson model has fewer transitions that are known to be spurious, but pre-

dicts a spatial distribution that is less smooth than the standard model.
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[35] Zoltán Gyöngyi, Hector Garcia-Molina, and Jan Pedersen. Combating web
spam with TrustRank. In Proceedings of the 30th International Conference on
Very Large Databases, pages 576–587. Morgan Kaufmann, 2004.

[36] Philip Heidelberger. Fast simulation of rare events in queueing and re-
liability models. ACM Transactions on Modeling and Computer Simulation,
5(1):43–85, 1995.

[37] D.S. Hochbaum and J.G. Shanthikumar. Convex separable optimization is
not much harder than linear optimization. Journal of the ACM, 37(4):843–
862, 1990.

[38] J. Hopcroft and D. Sheldon. Manipulation-Resistant Reputations Using
Hitting Time. Lecture Notes in Computer Science: Algorithms and Models for
the Web Graph, 4863:68–81, 2007.

[39] M.O. Jackson. A Survey of Models of Network Formation: Stability and
Efficiency. In Group Formation in Economics: Networks, Clubs and Coalitions,
pages 11–58. Cambridge University Press, 2005.

[40] Glen Jeh and Jennifer Widom. SimRank: A measure of structural-context
similarity. In Proceedings of the Eighth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2002.

[41] H. Jiang, S. Fels, and JJ Little. A linear programming approach for multiple
object tracking. In IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2007, pages 1–8, 2007.

[42] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. The
eigentrust algorithm for reputation management in P2P networks. In
WWW ’03: Proceedings of the 12th international conference on World Wide Web,
pages 640–651, New York, NY, USA, 2003. ACM Press.

[43] A.V. Karzanov and S.T. McCormick. Polynomial methods for separable
convex optimization in unimodular linear spaces with applications. SIAM
Journal on Computing, 26(4):1245, 1997.

[44] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment.
Journal of the ACM, 46(5):604–632, 1999.

[45] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Condi-
tional random fields: Probabilistic models for segmenting and labeling se-

99



quence data. In Proceedings of the International Conference on Machine Learn-
ing, pages 282–289, 2001.

[46] Amy N. Langville and Carl D. Meyer. Deeper inside PageRank. Internet
Mathematics, 1(3):335–380, 2004.

[47] David Liben-Nowell and Jon Kleinberg. The link prediction problem for
social networks. In Proceedings of the 12th International Conference on Infor-
mation and Knowledge Management (CIKM), 2003.

[48] Kahn Mason. Detecting Colluders in PageRank - Finding Slow Mixing States
in a Markov Chain. PhD thesis, Stanford University, 2005.

[49] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Random-
ized Algorithms and Probabilistic Analysis. Cambridge University Press, New
York, NY, USA, 2005.

[50] M. Arthur Munson, Kevin Webb, Daniel Sheldon, Daniel Fink, Wes-
ley M. Hochachka, Iliff, Mirek Riedewald, Daria Sorokina, Brian Sullivan,
Christopher Wood, and Steve Kelling. The eBird Reference Dataset. Cor-
nell Lab of Ornithology and National Audubon Society, Ithaca, NY, June
2009.

[51] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
PageRank citation ranking: Bringing order to the web. Technical report,
Stanford Digital Library Technologies Project, 1998.

[52] Christos Papadimitriou. The Algorithmic Lens: How the Computational
Perspective is Transforming the Sciences. Computing Community Con-
sortium Presentation at Federated Computing Research Conference, San
Diego, CA, 2007.

[53] Kevin T. Phelps. Automorphism free latin square graphs. Discrete Mathe-
matics, 31(2):193–200, 1980.

[54] S. J. Phillips, M. Dudı́k, and R. E. Schapire. A maximum entropy approach
to species distribution modeling. In Proceedings of the International Confer-
ence on Machine Learning, 2004.

[55] L. R. Rabiner. A tutorial on hidden Markov models and selected applica-
tions in speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

100



[56] T. R. Robinson, R. R. Sargent, and M. B. Sargent. Ruby-throated Humming-
bird (Archilochus colubris). In A. Poole and F. Gill, editors, The Birds of North
America, number 204. The Academy of Natural Sciences, Philadelphia, and
The American Ornithologists’ Union, Washington, D.C., 1996.

[57] Brian W. Rogers. A Strategic Theory of Network Status. Manuscript.
http://www.its.caltech.edu/∼leectr/workshop06/talks/
JacksonTalk.pdf, 2009 (last accessed December, 2009).

[58] D. Roth and W. Yih. Integer linear programming inference for conditional
random fields. In Proceedings of the International Conference on Machine
Learning, page 743. ACM, 2005.

[59] D. Sheldon, M. A. S. Elmohamed, and D. Kozen. Collective inference
on Markov models for modeling bird migration. In J.C. Platt, D. Koller,
Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing
Systems 20, pages 1321–1328. MIT Press, Cambridge, MA, 2008.

[60] J. Shore and R. Johnson. Properties of cross-entropy minimization. IEEE
Transactions on Information Theory, 27:472–482, 1981.

[61] B.L. Sullivan, C.L. Wood, M.J. Iliff, R.E. Bonney, D. Fink, and S. Kelling.
eBird: A citizen-based bird observation network in the biological sciences.
Biological Conservation, 142(10):2282–2292, 2009.
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