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Abstract

Originally, hyperlinks on the web were placed for organic reasons, presumably to aid navigation
or identify a resource deemed relevant by the human author. However, link-based reputation measures
used by search engines (e.g., PageRank) have altered the dynamics of link-placement by introducing
new incentives into the system. Strategic authors — spammers and others — now explicitly attempt to
boost their own PageRank by careful link-placement. This paper investigates the consequences of such
strategic behavior via a network formation game. Our model assumes that authors may place outlinks
arbitrarily, but have no control over their inlinks, and their objective is to maximize reputation. What
is the best link-placement strategy? What are the equilibrium outcomes? What properties do equilibria
possess?

We show that two similar reputation measures — PageRank and hitting time — lead to dramatically
different equilibrium outcomes. Since hitting time is immune to strategic placement of outlinks, any
directed graph is a Nash equilibrium. On the other hand, equilibria in the PageRank game have a very
rich structure: unless the links are delicately balanced, some page can increase its PageRank by dropping
all of its links and pointing to just one carefully chosen page. Every equilibrium has a core in which all
edges are bidirectional. In a slightly restricted setting, equilibria are characterized exactly by simple
properties, the essential of which is a combintorial equivalence among all (bidirectional) edges called
edgewise walk-regularity. We also demonstrate surprising algebraic properties of equilibria, relating
eigenvalues and their multiplicities to graph structure.
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1 Introduction
In network reputation systems, participants rate others by placing links. For example, link analysis algo-
rithms for web search interpret a hyperlink as a positive rating, then analyze the global link structure to
determine the reputation of each page; reputations are then used to help rank search results and organize
indexes. Most link analysis algorithms rely on some notion of transitivity, propagating endorsement along
paths so highly connected nodes receive high reputation scores. The popular PageRank [4] reputation sys-
tem scores pages according to their stationary probability in a random walk on the web that periodically
jumps to a random page. Similar reputation systems are also used in peer-to-peer networks [18] and social
networks [15].

A common problem in reputation systems is manipulation: strategic users arrange links attempting to
boost their own reputation. On the web, this phenomenon is called link spam, and usually targets PageRank.
An obvious boosting strategy for PageRank is to obtain inlinks, which is possible by a variety of meth-
ods [13], but sites can also boost PageRank significantly by carefully arranging outlinks [2, 6, 12]. Thus
PageRank incentivizes certain link placement strategies that undermine its original premise, that links are
placed organically and reflect human judgments. In fact, the phenomenon of strategic link-placement is
much more widespread than “spam” sites. In 2007, businesses spent over $1 billion on search engine op-
timization (SEO) [22], the practice of optimizing website content and link structure to be better ranked by
search engines.

Previous work has focused on understanding and detecting manipulation [2, 6, 11–13, 19], and design-
ing reputation systems that are robust to manipulation [7, 16, 24]. This paper does not attempt to combat
manipulation, but instead investigates its consequences:
How does a reputation system affect the dynamics of link formation and the structure of the underlying

network by inducing selfish behavior?
We address this question with tools from game theory, introducing a network formation game called the
network reputation game, where players are nodes attempting to optimize their reputation by placement of
outlinks. Then, a Nash equilibrium reflects the outcome of selfish play — it is a directed graph where no
player can further improve her own reputation by choosing different outlinks. This game depends on the
choice of reputation system; we show that two qualitatively similar reputation systems lead to dramatically
different outcomes. PageRank requires a delicately balanced link structure for a graph to be in equilibrium;
otherwise, some node can improve its reputation by dropping all of its links and linking to one carefully
chosen target. In this sense, the dynamics are destructive. We also look at a reputation system based on
hitting time in a random walk, introduced by the authors in [16] to combat manipulation in PageRank; since
a page cannot alter its own hitting time using outlinks, every graph is a Nash equilibrium. Though our model
is simple — all participants are selfish and their sole objective is to optimize reputation — these differences
highlight the nuances of designing a reputation system.

Equilibria in the PageRank game possess surprisingly rich structure, to which we devote considerable
attention. We characterize equilibria, and demonstrate fruitful connections to algebraic graph theory, using
properties derived from the Nash conditions (in a slightly restricted setting) to prove new spectral results
about edge-transitive graphs. Here is a brief highlight of our results:

Best Responses. We describe best responses in the PageRank game. PageRank assigns score π(v) to each
node v in a directed graphG, where π is the stationary distribution in a random walk onG that is modified to
make a random jump with probability α at each step, choosing the next node at random instead of following
a link. Intuitively, node v has no control over the walk until it reaches v, at which point, barring a random
jump, it can direct the next step to a favorable location by choice of outlinks, with the goal of maximizing
the expected number of times the walk visits v. We show that v’s optimal strategy is to link to nodes from
which the probability of returning to v before the first random jump is maximum.
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Bidirectionality. We show that all equilibria contain a core in which edges are bidirectional. All nodes
outside the core have no inlinks; they may link to the core, but not each other. Furthermore, the core
decomposes into connected components that are themselves equilibria when taken as subgraphs. We may
then restrict our focus to bidirectional connected graphs.

α-Insensitive Nash Equilibria. Certain equilibria (from which all known equilibria are derived) are α-
insensitive, meaning they do not rely on the particular setting of the PageRank parameter α controlling the
random jump probability. For example, edge-transitive graphs possess enough symmetry that we can show
they are Nash equilibria without appealing to the particular value of α. Hence, an edge-transitive graph is
an α-insensitive Nash equilibrium. We give an exact characterization of α-insensitive Nash equilibria using
a simple graph property called edgewise walk-regularity, in which all (bidirectional) edges are equivalent in
the following combinatorial sense: for all t, the number of walks of length t connecting the endpoints of an
edge is a constant independent of the identity of the edge.

Algebraic Implications. We demonstrate strong algebraic implications for α-insensitive Nash equilibria,
borrowing two concepts from algebraic graph theory: graph representations and quotients with respect to
equitable partitions. Informally, a representation of G is a drawing of G in an eigenspace of its adjacency
matrix A. For α-insensitive Nash equilibria, the geometry of these drawings is highly constrained and tied
to the eigenvalues. Two-dimensional representations (corresponding to eigenvalues of multiplicity two) are
particularly simple: the drawing ofG is a regular k-gon. Furthermore, grouping vertices ofG that are drawn
at the same location yields an equitable partition, whose definition we defer. Then, using the theory of
quotients with respect to equitable partitions, we can conclude quite a lot about G — every α-insensitive
Nash equilibrium with an eigenvalue of multiplicity two satisfies all of the following:

• All vertex degrees are even,
• The spectrum (set of eigenvalues) of G contains the entire spectrum of a certain weighted k-cycle; the

only additional eigenvalue possible is zero,
• IfG is edge-transitive, then the automorphism group ofG has the cyclic group of order k as a quotient.

Since every edge-transitive graph is an α-insensitive Nash equilibrium, these results are of independent
interest when viewed as results about edge-transitive graphs, which have been widely studied.

1.1 Related Work

We briefly mention some additional related work. Since PageRank was introduced [4], it has been modified
and adapted to various applications, including personalized web search [20], web spam detection [14], and
trust systems in peer-to-peer networks [18]. As mentioned above, manipulation of PageRank has received
considerable attention; Friedman et al. [7] provide an overview of manipulation in reputation systems.

Network formation games have been proposed to model various types of strategic network formation,
ranging from communication networks to social networks. Tardos and Wexler [23] and Jackson [17] provide
two recent surveys. Most games deal with undirected graphs, in which case modelers face a decision: are
links formed unilaterally by a single player, or through cooperation by the players at the two endpoints? In
our model, graphs are directed and players have unilateral control over their outlinks.

Finally, our work has strong ties to algebraic graph theory, especially the theory of representations
of distance-regular graphs. All of the relevant concepts are found in the book of Godsil [8], particularly
Chapters 5 and 13. Other useful references are [3, 5, 10]. Our definition of edgewise walk-regularity is
analogous to two existing concepts from this literature: walk-regularity (introduced in [9]), and distance-
regularity. Each defines an equivalence among certain pairs of vertices based on the number of walks of
length t connecting them. In edgewise walk-regular graphs, all pairs (u, v) ∈ E are equivalent. In walk-
regular graphs, all pairs (v, v) are equivalent; that is, each vertex has the same number of closed walks of
length t. In distance-regular graphs, all pairs of vertices at a given distance have the same number of walks
of length t connecting them.
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2 Preliminaries
PageRank and Hitting Time. Let G be a directed graph. The α-random walk on G is a random walk
on G modified to restart (also called a jump), with probability α in each step, by choosing the next node
from distribution q instead of following a link. Self-loops are ignored, and we assume that 0 < α < 1.
To specify the transitions for nodes with no outlinks (dangling nodes), we preprocess the graph as follows:
create an artificial node called wait which has a self-loop but no other outlinks, and add a link from each
dangling node to wait. Hence, each time the walk reaches a dangling node, it immediately moves to wait
and remains there until the next restart. PageRank assigns score π(v) to node v, where π is the stationary
distribution of the α-random walk; this is guaranteed to be unique by virtue of the random jump.

The hitting time of node j is a random variable counting the number of steps to first hit j in a random
walk, given a particular distribution over starting nodes. In [16], the authors of this paper proposed ranking
nodes by expected hitting time in the α-random walk when the start node is chosen from q, and showed that
it is equivalent to ranking nodes by the probability of being reached before the first random jump. Let Φ be
the matrix with entries φij = Pri[hit j before first jump], where Pri[·] indicates conditioning on the walk
starting at i (below, we use the notation Ei[·] analogously). If not specified, the start node is distributed ac-
cording to q. Then, the reputation score assigned in [16] is rep(j) = Pr[hit j before first jump] = (qTΦ)j .
This reputation score does not depend on j’s outlinks.

The following proposition, proved in the appendix, will allow us to reason about PageRank and hitting
time more simply. Let N be the matrix with entries Nij = Ei[# visits to j before first jump], and let P be
the transition matrix of the unmodified random walk on G (after preprocessing to handle dangling nodes).

Proposition 1. Let N , P and Φ be defined as above. Then (i) the matrix N is equal to
∑∞

t=0 P
t(1− α)t =

(I − (1 − α)P )−1, (ii) the PageRank vector πT is proportional to qTN , (iii) for all i and j, we have
Nij = φijNjj , and (iv) for all j, the quantities rep(j) and φij do not depend on j’s outlinks.

3 The Hitting Time Game
First, we introduce the reputation game and analyze the simple case when we use the hitting time reputation
function rep(·). Let V be a set of n players, the nodes in a directed graph. A strategy for node v is a set of
outlinks. An outcome is a directed graph G consiting of the outlinks chosen by each player. A best response
for player v with respect to G is a set of outlinks Ev, such that, if v deletes its outlinks from G and adds
outlinks Ev, then v maximizes its reputation score over all possible choices of Ev. A directed graph G is
a Nash equilibrium (or Nash) if the set of outlinks for each node is a best response: no player can increase
its reputation by choosing different outlinks. Since v’s outlinks have no effect on rep(v), no matter what
links are placed by others, node v can never improve its reputation. Hence, any directed graph is a Nash
equilibrium in the hitting time game.

4 The PageRank Game
The PageRank game is much more sophisticated. In this section, we will begin by characterizing best
response strategies, then prove two main theorems describing equilibria. The decomposition theorem de-
scribes the strongly connected components of a Nash equilibrium, which consist of (1) bidirectional compo-
nents and (2) additional nodes that have no inlinks but may link to the bidirectional components. Ignoring
the additional nodes, we can restrict our attention to Nash equilibria that are bidirectional and connected.
We also make one additional restriction, considering only α-insensitive Nash equilibria. Then, the charac-
terization theorem shows that for a bidirectional and connected graph, the property of being an α-insensitive
Nash is essentially equivalent to edgewise walk-regularity.

4.1 Best Responses

Recall that node j is scored according to the stationary probability π(j) — in other words, the fraction
of time spent at j in a very long random walk. Intuitively, node j should place its outlinks so that upon
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each visit to j, the links direct the walk to a neighbor from which a quick return to j is likely. Recall
that φij = Pri[hit j before first restart]. Henceforth, call φij the potential1 of i with respect to j. By our
definition, φjj is equal to one. We define φ+

jj to be the probability of a similar event that excludes the first
visit — that is, φ+

jj is the probability that a walk starting at j returns to j before restart. Several of our
arguments make use of the simple relationship among potentials obtained by conditioning on the first step
of the random walk. Let Di be the outdegree of node i, and let Γ(i) be the set of out-neighbors of i. For
i 6= j,

φij =
1− α
Di

∑
k∈Γ(i)

φkj , φ+
jj =

1− α
Dj

∑
k∈Γ(j)

φkj . (1)

The following lemma indicates that j should always link to nodes that maximize potential, matching our
intuition about directing the walk to return quickly.

Lemma 1. In the PageRank game, a best response strategy for node j is any strategy which links to a
nonempty subset of nodes that maximize potential with respect to j. If j has no inlinks, then all nodes have
zero potential, and the empty set is also a best response.

Proof of Lemma 1. From Proposition 1, the PageRank vector is proportional to qTN , and Nij = φijNjj =
φij

1−φ+
jj

. In the final equality, we use the fact that Njj is a geometric random variable counting the number

of returns to j before jumping; each time, the walk returns with probability φ+
jj independent of previous

returns. Node j seeks the placement of links to maximize

(qTN)j =
∑
i

qiNij =
1

1− φ+
jj

∑
i

qiφij

But in the final expression, all terms inside the sum are independent of j’s outlinks, so it suffices for j
to maximize φ+

jj . From (1), we see that φ+
jj is equal to a constant times the average potential of j’s out-

neighbors, and, as before, these potentials are independent of j’s outlinks. Hence j can only control which
terms appear in the average. To maximize the average, node j should link to any nonempty subset of nodes
that maximize potential. Placing no outlinks is equivalent to linking to wait, which has zero potential. This
is never a best response unless j has no inlinks, in which case all nodes have zero potential.

4.2 Bidirectionality

In this section we prove that every Nash consists of a core of bidirectional connected components, each of
which is a Nash when taken as a subgraph, plus additional nodes that have no inlinks but may link to the
bidirectional core. The crux of the argument is the following lemma.

Lemma 2. If j has any inlinks, then j links only to in-neighbors in best response strategies.

Proof. Suppose j has an in-neighbor i, and that k does not link to j. We will show that k cannot maximize
potential with respect to j. Since i links to j, we know that φij > 0. Suppose for contradiction that k
maximizes potential. Then φkj ≥ φij > 0. By conditioning on the first step from k as in Equation (1), we
have φkj = 1−α

Dk

∑
`∈Γ(k) φ`j . Since φkj and α are both nonzero, we see that φkj is strictly less than the

average potential over k’s out-neighbors; one of these must have strictly greater potential.

Theorem 1 (Decomposition). Let G be an Nash, and let C1, . . . , CK be the strongly connected components
of G consisting of two or more nodes. Let S be the set containing all other nodes. Then (i) for all i, the
subgraph induced by Ci is a Nash that is bidirectional and connected, and there are no links leaving Ci,
and (ii) nodes in S have no inlinks.

1For an undirected graphG, take the electrical network corresponding toG having unit conductance on each edge, and additional
links of conductance α from each node to a sink. Connect a one-volt battery causing potential of 1 volt at j and 0 volts at the sink.
Then φij is the electrical potential, in volts, at node i.
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Proof of Decomposition Theorem. Suppose G is a Nash and let v be a vertex in a strongly connected com-
ponent Ci with two or more nodes. Then v must have at least one in-neighbor, and by Lemma 2, vertex v
links only to in-neighbors. Hence, if v links to w, it must be the case that w links to v, and that w is in Ci.
This establishes that Ci is bidirectional and connected, and that there are no links leaving Ci.

To see that the subgraph induced by Ci is a Nash, we must consider how potentials with respect to v
change when we remove Ci from G, and argue that all of v’s neighbors (we no longer distinguish in- and
out-neighbors because Ci is bidirectional) continue to maximize potential. Consider a random walk in G
that starts in Ci. Since there are no edges leaving Ci, this walk is probabilistically identical to a walk in the
subgraph induced by Ci until the time of the first restart, at which point the walk may escape to some other
component. But potential with respect to v measures the probability of hitting v before the first restart, so
restricting to Ci does not change the potential of nodes in Ci. Since v’s neighbors maximize potential in G,
they continue to maximize potential in the subgraph induced by Ci.

Finally, we show that nodes in S have no inlinks. Let {v} be a strongly connected component of size
one. If v had any inlinks, by Lemmas 1 and 2, v would link to a non-empty set of in-neighbors, hence
forming at least one bidirectional edge, contradicting our assumption that {v} is a a strongly connected
component of size one.

Remark. With the decomposition theorem in hand, we can restrict our attention to equilibria that are
bidirectional and connected. Henceforth, we dispense with directionality, speaking only of degrees, links,
and neighbors, instead of their directed equivalents.

Examples. It is instructive to look at some examples. In Figure 1, graph (a) is not an equilibrium because
node i has incentive to drop its link to k. The potential φji is equal to 1 − α, because the walk from j is
guaranteed to hit i in one step unless it jumps. But φki is strictly smaller, because the walk from k could
step away from i. Hence, i should not link to k.

However, it is easy to see by symmetry arguments that graphs (b) and (c) are equilibria. Both have
the property that, for any node i, all of its neighbors “look identical” in the following sense: if j and k
are two neighbors of i, then there is an automorphism mapping j to k that fixes i. Hence φji = φki,
and all neighbors have the same potential, which must be maximum since non-neighbors cannot maximize
potential. This symmetry property is related to edge-transitivity. A graph is edge-transitive if, for all edges
e = (e1, e2) and f = (f1, f2), there is a graph automorphism π mapping e to f , setwise (that is, π could
map e1 to either f1 or f2). In fact, our symmetry property implies edge-transitivity: for any pair of edges
e = (i, j) and f = (i, k) that share an endpoint, there is an automorphism mapping e to f . For arbitrary
e and f , because the graph is connected, there is a path containing both e and f , and we can compose
automorphisms at each node along the path to map e to f . It turns out that the weaker property of edge-
transitivity is also enough to guarantee that a graph is a Nash. Edge-transitive graphs provide most known
examples of Nash equilibria, and all that are simple to describe: cycles, cliques, bipartite cliques, and many
more combinatorial and algebraic constructions (e.g., the Peterson graph). Our analysis in the following
section will reveal additional Nash equilibria.

Since we argued that the examples in Figure 1 are Nash equilibria by symmetry, without appealing to
the particular value of α, they are Nash for all settings of α, and we call them α-insensitive. All currently
known equilibria are α-insensitive — it is an interesting open question to determine whether others exist. In
the next section, we will study α-insensitive equilibria in much more detail. Requiring G to be a Nash for
all values of α seems a severe restriction, but we can restate α-insensitivity in a more innocuous form:

Lemma 3. If G is a Nash for at least n different values of α, then G is α-insensitive.

For example, if G is a Nash for all α in some tiny interval, reflecting a minimal amount of stability with
respect to the specific parameter setting, then G is α-insensitive. Lemma 3 is proved in the appendix; it is
best read following the proof of Theorem 2.
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Figure 1: Graph (a) is not a Nash equilibrium; graphs (b)
and (c) are Nash equilibria. See text for explanation.

(a) (b)

Figure 2: The (2, 4)-weighted 10-cycle, plotted (a) using
the eigenvectors x(1) and y(1), and (b) using the eigenvec-
tors x(4) and y(4).

4.3 Characterizing α-Insensitive Equilibria

In this section we give a complete combinatorial characterization of α-insensitive Nash equilibria. The
essential property is called edgewise walk-regularity.

Definition 1. A graphG is edgewise walk-regular if for all t ≥ 0, the number of walks of length t connecting
the two endpoints of an edge does not depend on the identity of the edge. In other words, ifA is the adjacency
matrix of G, then there exist constants ct such that (i, j) ∈ E implies Atij = ct.

We also recall some basic definitions from graph theory. A graph is regular if all of its vertices have the
same degree. A bipartite graph is semiregular if, within each of the two partitions, every vertex has the same
degree.

Theorem 2 (Characterization). A bidirectional, connected graph G is an α-insensitive Nash if and only if
the following properties hold: (i) G is edgewise walk-regular, and (ii) G is either regular or bipartite and
semiregular.

Proof. Suppose G is bidirectional and connected. To indicate dependence on α, we now write φij(α) and
Nij(α) instead of φij and Nij . We begin by stating the Nash conditions succinctly and working out a
sequence of equivalent formulations. Node i plays a best response if all of its neighbors maximize potential.
Since a non-neighbor cannot maximize potential, it is equivalent for all of i’s neighbors to have the same
potential. Let Γ(i) be the neighbors of i. Then, G is an α-insensitive Nash if and only if, for all i,

j, k ∈ Γ(i) =⇒ ∀α, φji(α) = φki(α). (2)

Since Nji(α) = φji(α)Nii(α), multiplying both sides of the equality in (2) by Nii(α), we get the following
equivalent conditions:

j, k ∈ Γ(i) =⇒ ∀α, Nji(α) = Nki(α). (3)

Recall that Nji(α) =
∑∞

t=0 P
t
ji(1 − α)t, so Nji(α) is the generating function for the sequence {P tji}t≥0,

evaluated at (1 − α). The two generating functions in (3) are equal if and only if their corresponding
sequences are identical, so the following is equivalent to (3):

j, k ∈ Γ(i) =⇒ ∀t ≥ 0, P tji = P tki. (4)

We have shown that the Nash conditions are equivalent to (4). Now, we will show that (4) holds if and only
if the conclusions of the theorem hold. First, we assume that (4) holds; we will show that G is either regular
or bipartite and semiregular. Let j and k be neighbors of i. Taking t = 1 in (4), we get (Dj)−1 = P 1

ji =
P 1
ki = (Dk)−1. Hence, j and k have the same degree. But i, j, k were chosen arbitrarily, so for any node, all
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of its neighbors have the same degree. If G is not regular, then consider a vertex i with degree d1. All of i’s
neighbors have degree d2, and all neighbors of i’s neighbors (this set includes i) have degree d1. It is easy
to see that the connected component containing i is bipartite and semiregular. Since G is connected, this is
the entire graph.

We will now show that G must be edgewise walk-regular, using (4) and the fact that G is either reg-
ular or bipartite and semiregular. We implicitly assume the semiregular case, letting vertices of degree d1

have neighbors of degree d2, and vice versa. In all cases, if we let d1 = d2, then the statements hold for
the regular case as well. Write W t

ji for the set of all walks of length t from j to i. Then we can write
P tji =

∑
w∈W t

ji
Pr[w]. Note that |W t

ji| = Atji. Suppose j has degree d1. All walks in W t
ji have the same

probability, because the degrees of vertices visited by the walk alternate between d1 and d2, starting with

d1. Specifically, if w ∈W t
ji, then Pr[w] =

(
d
dt/2e
1 d

bt/2c
2

)−1
. Hence we have

P tji =
Atji

d
dt/2e
1 d

bt/2c
2

. (5)

We conclude that if P tji = P tki as in (4), then Atji = Atki; in other words, any two edges incident on i have
the same the number of walks of length t connecting their endpoints. Since i is arbitrary, this is true for all
vertices. SinceG is connected, any two edges are connected by a path, and we can extend this equality along
each vertex in the path to conclude that all edges have the same number of walks of length t connecting their
endpoints. Hence G is edgewise walk-regular.

Now we show the converse, that the conclusions of the theorem imply (4). Suppose G is edgewise
walk-regular and either regular or bipartite and semiregular, and let j and k be neighbors of i. Nodes j and
k have the same degree, say d1, and by the same argument as before, equation (5) holds for edges (j, i) and
(k, i). Because G is edgewise walk-regular, we know that Atji = Atki for all t, so by (5) we have P tji = P tki
for all t.

Additional Equilibria. Theorem 2 makes it easy to see that edge-transitive graphs are α-insensitive Nash:
there is an automorphism mapping any edge to any other, which guarantees the combinatorial equivalence of
edgewise walk-regularity. Also, it is well known that edge-transitive graphs are either regular or bipartite and
semiregular. Distance-regular graphs (see Chapters 11 and 13 of Godsil’s book [8]) are also α-insensitive
Nash equilibria. They are regular, and Lemmas 1.1 and 1.2 of Chapter 13 in [8] imply that in distance-
regular graphs, the number of walks of length t between vertices v and w depends only on the distance
d(v, w). Taking d(v, w) = 1, this implies edgewise walk-regularity. Distance-regular graphs, of which
strongly-regular graphs are a special case, provide examples of Nash equilibria that are not edge-transitive:
there are strongly-regular graphs based on Latin squares that have no nontrivial automorphisms [21].2

5 Algebraic Properties
The α-insensitive Nash conditions have surprising algebraic implications. Our results in this section will
use two concepts from algebraic graph theory: graph representations and equitable partitions. We introduce
all of the necessary concepts below; more details can be found in Chapters 5 and 13 of [8]. A representation
of G is an embedding into a Euclidean space constructed from an eigenspace of the adjacency matrix. If G
is an α-insensitive Nash, then the embedding places all vertices on two concentric spheres, and for all edges,
the distance separating the endpoints is the same.

The picture is particularly simple in two dimensions: the representation is a regular k-gon. Furthermore,
grouping vertices of G that map to the same vertex of the k-gon (the representation need not be one-to-one),
yields an equitable partition: every vertex in a given cell of the partition has the same number of neighbors
in each other cell. Then, using the theory of quotients with respect to equitable partitions, we learn quite

2Thanks to Chris Godsil for pointing out that strongly-regular graphs are edgewise walk-regular, and providing this example.
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a lot about G, simply from the fact that there exists an eigenvalue of multiplicity two. In particular, all
vertex degrees must be even, we can identify all possible eigenvalues (and many eigenvectors), and if G is
edge-transitive, then its automorphism group must have a cyclic quotient structure.

5.1 Representations of α-Insensitive Nash

Let A be the adjacency matrix of G. Since A is symmetric, it admits an eigenvalue decomposition A =∑
λ λUλU

T
λ . The sum is over distinct eigenvalues. The matrix Uλ has dimension n × mλ, where mλ

is the multiplicity of λ, and its columns form an orthonormal basis for the eigenspace associated with λ.
Let uλ(v) be the transpose of the vth row of Uλ; then uλ is a map from V to IRmλ which we call the
representation belonging to λ. We call the point uλ(v) the image of v under this representation. The Gram
matrix UλUTλ determines the geometry of the representation by specifying all inner products between points:
(UλUTλ )vw = uλ(v)Tuλ(w).

The next lemma shows that for α-insensitive Nash equilibria, a great deal of this geometry is determined
by the spectrum and simple graph parameters: for any vertex v, the norm of uλ(v) is proportional to

√
Dv,

and for any edge, the inner product between the images of its endpoints is a constant.

Lemma 4. LetG = (V,E) be edgewise walk-regular, let λ be an eigenvalue ofA, and letCλ = mλ/(2|E|).
For any vertex v, we have ‖uλ(v)‖2 = DvCλ. For any edge (v, w), we have uλ(v)Tuλ(w) = λCλ.

Lemma 4 is proved in the appendix. In a semiregular graph, there are only two possible degrees, so all
vertices map onto two spheres centered at the origin. For a vertex v, we can describe the arrangement of the
images of v’s neighbors: all have the same inner product with uλ(v), hence they lie on an affine hyperplane
H . If v has degree d1, then v’s neighbors all have degree d2, so the images also lie on the sphere S opposite
the image of v. The intersection of H and S is a sphere S′ of dimension mλ − 1 containing the images of
v’s neighbors. We can also show that the images are “evenly distributed” on S′: their centroid coincides
with the center of the sphere. Lemma 5, proved in the appendix, makes these statements precise.

Lemma 5. In the representation belonging to λ, the images of v’s neighbors lie on a sphere of dimension
mλ−1 centered at the point y = λuλ(v)

Dv
, and contained in the affine hyperplane orthogonal to uλ(v) through

y. For mλ > 1, the sphere has nonzero radius r, given by r2 = Cλ
Dv

(d1d2− λ2). Furthermore, the images of
v’s neighbors are distributed on the sphere so their centroid is also equal to y.

5.2 Two-Dimensional Representations

Next, we look at the particularly simple geometry of a two-dimensional representation: it is a regular k-gon.
Given this observation, the connection between the geometry and the spectrum allows us to draw many
conclusions about G whenever there is an eigenvalue of multiplicity two. A key ingredient in the analysis is
the theory of equitable partitions and their quotients.

Equitable Partitions. Let C = (C1, C2, . . . , Ck) be a partition of the vertex set of G into k cells. We call
C an equitable partition if there exist constants cij such that any vertex v in cell Ci has exactly cij neighbors
in cell Cj . Note that cij need not equal cji. The quotient of G with respect to an equitable partition C,
denoted G/C, is the weighted directed graph with vertices {1, 2, . . . , k} representing the cells, and having
cij directed edges from cellCi to cellCj . LetQ be the n×k matrix whose jth column indicates membership
in cell Cj , so Qij is equal to one if vertex i is in cell Cj , and zero otherwise. Let B be the adjacency matrix
for the quotient G/C. The following lemma states that eigenvectors of B “lift” to eigenvectors of A with
the same eigenvalue. The lift operation is simple if we view x as a function on cells, the lift of x is the vector
Qx, which assigns the value of a cell to all of its members. If Bx = λx, we call (λ, x) an eigenpair of B.

Lemma 6 (Godsil [8] Chapter 5, Lemma 2.2). If (λ, x) is an eigenpair of B, then (λ,Qx) is an eigenpair
of A. All nonzero eigenvalues of A are also eigenvalues of B.
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Eigenvalues of (a, b)-Weighted k-Cycles. We will show that partitioning vertices according to their im-
ages in a representation of dimension two gives an equitable partition, and the quotient of G with respect to
this partition is a cycle described as follows. The (a, b)-weighted k-cycle is a bidirectional cycle on vertices
{1, 2, . . . , k}. For odd i, vertex i has directed edges of weight a/2 to its two neighbors: the vertices i − 1
(mod k) and i+ 1 (mod k). Even vertices are similar, but the outgoing edges both have weight b/2. Hence
the parameters a and b specify the degrees — the total weight of outgoing edges — of odd and even vertices,
respectively. If a 6= b, we require k to be even so the degrees alternate around the cycle.

Lemma 7. The eigenvalues of the (a, b)-weighted k-cycle are the values λi =
√
ab cos

(
2πi
k

)
, for i =

0, 1, . . . ,
⌊
k
2

⌋
, with corresponding eigenvectors x(i) and y(i) given by

x(i)
v =

{√
a cos

(
2πiv
k

)
v odd√

b cos
(

2πiv
k

)
v even

, y(i)
v =

{√
a sin

(
2πiv
k

)
v odd√

b sin
(

2πiv
k

)
v even

.

If i = 0 or i = k
2 , the vector y(i) is identically zero, so we disregard it as an eigenvector, and the eigenvalue

λi has multiplicity one instead of two.

Lemma 7 is proved in the appendix. Geometrically, one can plot the (a, b)-weighted k-cycle in two dimen-
sions (see Figure 2) using the vectors x(i) and y(i) as the coordinates. An odd vertex lies on the circle of
radius

√
a, and its neighbors are the points on the circle of radius

√
b that are 2πi

k radians in either direction.

Main Result. We are ready for the main result of this section. Let Aut(G) be the automorphism group
of G. For a fixed eigenvalue λ, let Cx1 be the set of vertices v such that uλ(v) = x1, and let C =
(Cx1 , . . . , Cxp) be the partition of vertices according to their image under uλ.

Theorem 3. Let G be a connected α-insensitive Nash where vertices of degree d1 have neighbors of degree
d2, and vice versa (allowing the possibility that d1 = d2). Suppose G has an eigenvalue λ of multiplicity
two, and let the partition C be defined as above. Then all of the following are true: (i) the degrees d1 and
d2 are even, (ii) the partition C is equitable, and the quotient G/C is a (d1, d2)-weighted k-cycle, and (iii)
if G is edge-transitive, the cyclic group of order k is a quotient of Aut(G).

As a consequence, all eigenpairs of the (d1, d2)-weighted k-cycle lift to G as described in Lemma 6, and
these are the only nonzero eigenvalues. For a given eigenvalue, there may be additional eigenvectors.

Proof of Theorem 3. Suppose λ has multiplicity two. For any neighbor w of v, Lemma 5 tells us that uλ(w)
lies in a sphere of dimension one orthogonal to uλ(v) with center y and radius r given by the lemma. Such
a sphere contains exactly two points: y ± z, where z is a vector of length r orthogonal to uλ(v).

Let a be the number of neighbors of v with image y + z, and let b be the number of neighbors with
image y − z. By Lemma 5, the centroid of these points is also equal to y. Hence

y =
a(y + z) + b(y − z)

Dv
= y +

(a− b)z
Dv

We conclude that a = b, and since a+ b = Dv, that both are equal to Dv/2. Since a and b are integers, Dv

is even, proving (i). Furthermore, the values of y and z depend on v only through the image uλ(v), and the
degree of v, which itself is determined by the norm of uλ(v) according to to Lemma 4. Hence, any vertex
with the same image as v will have neighbors at the same points y ± z.

Let Cx be the cell containing all vertices v such that uλ(v) = x. By the above argument, all vertices in
cell Cx have the same degree, say d1, and have d1/2 neighbors in each of the two neighboring cells Cy+z

and Cy−z . Since this number depends only on the cells and not the vertex, the partition is equitable. Each
cell has exactly two neighbors, so the cells are arranged in a cycle — it must be connected and not a union of
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disjoint cycles because G is connected. If a cell contains vertices of degree d1, the neighboring cells contain
vertices of degree d2, so the degrees alternate. Hence the quotient is a (d1, d2)-weighted k-cycle.

Next, we demonstrate a natural group homomorphism from Aut(G) to the automorphism group of the
quotient. Now, we consider the unweighted quotientGλ with vertex set uλ(V ) = {uλ(v) : v ∈ V } and edge
set uλ(E) = {(uλ(v), uλ(w)) : (v, w) ∈ E}. This is the same as the quotient G/C, except all edges have
unit weight. Then, by the previous argument,Gλ is a k-cycle. Clearly uλ is a homomorphism fromG toGλ.
We will demonstrate a group homomorphism ρ : Aut(G) −→ Aut(Gλ) such that, for any π ∈ Aut(G), the
following diagram commutes

G
uλ−−−−→ Gλyπ yρπ

G
uλ−−−−→ Gλ

We define ρ in terms of the permutation matrix P associated with π, which satisfies Pev = eπ(v) for each
vertex v. For any x ∈ uλ(V ), we define ρπ(x) = UTλ PUλx. Since π is an automorphism, the matrix P
commutes with A (that is, PA = AP ). Equivalently, P and A are simultaneously diagonalizable, so P
commutes with UλUTλ for all λ. Then, to see that the diagram above commutes, for any vertex v, we have

ρπuλ(v) = UTλ PUλU
T
λ ev = UTλ UλU

T
λ Pev = UTλ eπ(v) = uλπ(v)

To show that ρπ is an automorphism, we first show it maps edges onto to edges. Here, we consider edges
as unordered pairs; for an edge e = {u, v} and a map h, we write h(e) = {h(u), h(v)}. Let f ∈ uλ(E)
be an edge in the quotient. Then there exists an edge e ∈ E such that uλ(e) = f , and we have ρπ(f) =
ρπuλ(e) = uλπ(e). But uλπ(e) is an edge because both π and uλ are graph homomorphisms. Therefore,
ρπ is a graph homomorphism. Furthermore, ρπ is bijective because the matrix UTλ PUλ is nonsingular (it is
orthogonal). To see that ρ is a group homomorphism, we must argue that ρ(πσ) = (ρπ)(ρσ). Suppose P is
the permutation matrix associated with π and Q is the permutation matrix associated with σ. Then for any
x,

ρ(πσ)(x) = UTλ (PQ)Uλx = (UTλ Uλ)UTλ (PQ)Uλx = (UTλ PUλ)(UTλ QUλ)x = (ρπ)(ρσ)(x)

Hence ρ is a representation of Aut(G) as a subgroup of Aut(Gλ). Finally, we show that, if G is edge-
transitive, then the im(ρ) acts transitively on the edges of Gλ. Let f1 and f2 be two edges of Gλ. Then there
exist edges e1 and e2 in G such that uλ(e1) = f1 and uλ(e2) = f2. Since G is edge-transitive, there is an
automorphism π such that π(e1) = e2. Then

ρπ(f1) = ρπuλ(e1) = uλπ(e1) = uλ(e2) = f2.

Since im(ρ) acts transitively on the edges of a k-cycle, it contains the cyclic group of order k as a subgroup;
by the properties of group homomorphisms, any subgroup of im(ρ) is a quotient of Aut(G).
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A Additional Proofs
Proof of Proposition 1

Proof. Let {Xt}t≥0 be the sequence of nodes visited by the random walk, let T be the time of the first jump,
and let I{·} be the indicator variable for the event in braces. Since the decision to jump is independent of
location, T is independent of Xt for all t. Then

Nij = Ei

[ ∞∑
t=0

I{Xt = j}I{T > t}

]
=
∞∑
t=0

Pri[Xt = j]Pri[T > t] =
∞∑
t=0

P tij(1− α)t.

Hence N =
∑∞

t=0 P
t(1 − α)t. Since P is stochastic and α > 0, this sum converges and is equal to

(I − (1 − α)P )−1. Part (ii) is well-known, and can be verified algebraically. We prefer a probabilistic
argument. The value (qTN)j is the expected number of visits to j between two restarts. Since the walk is a
sequence of probabilistically identical segments delimited by restarts, the number of visits between restarts
is proportional to stationary probability. See Proposition 3 in Chapter 2 of Aldous and Fill [1] for details.
Part (iii) is a simple probabilistic statement. To count the number of visits to j starting from i, we first decide
if the walk hits j, then count the number of visits starting from j. Part (iv) is proved in [16]. The intuition
is: to measure the probability that v is hit before the first jump by Monte Carlo simulation, one need never
follow a link leaving v.

Proof of Lemma 3

Proof. We use the Nash conditions in Equation (3) from the proof of Theorem 2. We will show that Nji(α)
and Nki(α) can be expressed using polynomials of degree n− 1 in the variable α. Hence, if they are equal
for at least n values of α, they are equal for all α ∈ (0, 1). Let M(α) = I − (1 − α)P , and recall from
Proposition 1 that N(α) = M−1(α). Let M[j,i](α) denote the matrix of size (n − 1) × (n − 1) obtained
from M(α) by deleting row j and column i. Using the formula for the matrix inverse in terms of cofactors,

Nji(α) = M−1
ji (α) =

(−1)j+i detM[j,i](α)
detM(α)

.

Hence, Nji(α) = Nki(α) if and only if

(−1)j+i detM[j,i](α) = (−1)k+i detM[k,i](α). (6)

Each determinant in (6) is a sum of products of n − 1 matrix elements, each of which is a monomial in α.
Hence both sides of (6) are polynomials of degree n− 1 in α; if they are equal for at least n distinct values
of α, they are equal as polynomials.
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Proof of Lemma 4

Proof. Since G is edgewise walk-regular, there exist constants ct for all t ≥ 0 such that Atvw = ct for any
edge (v, w). Also,

At+1
vv = (AAt)vv =

∑
w∈V

AvwA
t
wv =

∑
w∈Γ(v)

Atwv = Dvct.

We can write two different expressions relating the spectrum of G to the constants ct. First, the trace of
At+1 is the sum of the (t+ 1)th powers of eigenvalues, taken according to their multiplicities:∑

λ

mλλ
t+1 = tr(At+1) =

∑
v

At+1
vv =

∑
v

Dvct = 2ct|E|

Dividing by 2|E|, we get
ct =

∑
λ

λt+1 mλ

2|E|
=
∑
λ

λt+1Cλ. (7)

Second, we can compute ct using the eigenvalue decomposition. Let (v, w) ∈ E. Then

ct = Atvw =
∑
λ

λt(UλUTλ )vw. (8)

Combining (7) and (8), ∑
λ

λt(UλUTλ )vw =
∑
λ

λt+1Cλ (9)

Let zλ = (UλUTλ )vw − λCλ, and rewrite equation (9) as
∑

λ λ
tzλ = 0. This is a linear equation in the

variables zλ. Since it holds for all t ≥ 0, we can take the equations for t = 0, 1, . . . , ` − 1, where ` is the
number of unique eigenvalues, obtaining a linear system whose coefficient matrix is an `× ` Vandermonde
matrix. Such a matrix is nonsingular, so it must be the case that zλ = 0 for all λ, giving (UλUTλ )vw = λCλ.
For the diagonal entries, we write

ct =
At+1
vv

Dv
=
∑
λ

λt+1 (UλUTλ )vv
Dv

. (10)

Combining (10) and (7), we follow a similar argument to conclude that (UλUTλ )vv = DvCλ.

Proof of Lemma 5

Proof. Fix a vertex v. First we show that the centroid of v’s neighbors is equal to y. Since the columns of Uλ
are eigenvectors, we haveAUλ = λUλ. Taking the vth row of this matrix equation, we get

∑
w∈Γ(v) uλ(w) =

λuλ(v), and dividing both sides by Dv, we see the centroid is equal to y.
Next we show that for all neighbors w, the vectors uλ(w)−y are orthogonal to uλ(v) and have length r.

By Lemma 4, if w is a neighbor of v, then uλ(w) lies in the affine hyperplane H = {x : uλ(v)Tx = λCλ}.
But y is the centroid of points in H , so y also lies in H . Hence uλ(w)−y is orthogonal to the normal vector
uλ(v), and also orthogonal to y, which is a scalar multiple of uλ(v). Assume v has degree d1 and w has
degree d2. Using orthogonality and Lemma 4,

‖uλ(w)− y‖2 = ‖uλ(w)‖2 −
∥∥∥∥ λd1

uλ(v)
∥∥∥∥2

= d2Cλ −
λ2

d2
1

· d1Cλ =
Cλ
d1

(
d1d2 − λ2

)
= r2

It remains to show that r > 0 whenevermλ > 1. Suppose r = 0. Then uλ(w) is equal to y, which is a scalar
multiple of uλ(v). By the same argument, if r = 0 then the images of w’s neighbors are scalar multiples
of uλ(w); continuing this argument, since G is connected, the images of all vertices are scalar multiples of
uλ(v). In other words, all rows of Uλ are scalar multiples of the vth row, which cannot happen unless the
rank of Uλ is equal to one, i.e., unless mλ = 1.
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Proof of Lemma 7

Proof. We verify that x(i) is an eigenvector. Let B be the adjacency matrix of the (a, b)-weighted k-cycle.
Suppose v is odd. Then

(Bx(i))v =
a

2
· x(i)

v−1 +
a

2
· x(i)

v+1

=
a
√
b

2

(
cos
(

2πi(v − 1)
k

)
+ cos

(
2πi(v + 1)

k

))
=
a
√
b

2

(
cos
(

2πiv
k
− 2πi

k

)
+ cos

(
2πiv
k

+
2πi
k

))
=
a
√
b

2

(
2 cos

(
2πiv
k

)
cos
(

2πi
k

))
=
√
ab cos

(
2πi
k

)√
a cos

(
2πiv
k

)
= λix

(i)
v

The calculation is similar when v is even, and for the eigenvector y(i).
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