
Discrete Adaptive Rejection Sampling

Daniel R. Sheldon

September 30, 2013

Abstract

Adaptive rejection sampling (ARS) is an algorithm by Gilks and Wild for drawing samples from a
continuous log-concave probability distribution with only black-box access to a function that computes
the (unnormalized) density function. The ideas extend in a straightforward way to discrete log-concave
distributions, but some details of the extension and its implementation can be tricky. This report provides
the details of a discrete ARS algorithm. A companion implementation in C, with a MATLAB interface,
accompanies the report.

1 Introduction

Adaptive rejection sampling (ARS) [Gilks and Wild, 1992] is a widely used technique for generating a real-
valued random variable from a distribution with log-concave density function f . It requires only black-box
access to f , and is based on the idea of upper bounding log f , which is concave, with a piecewise linear
function.

ARS belongs to a class of rejection sampling algorithms, many of which preceded ARS, that use piecwise
linear upper bounds for concave log-density functions. Devroye [1986, 1987] describes several related tech-
niques for sampling from log-concave distributions (continuous or discrete) that are universally fast, which
means that their expected running time is constant. In contrast, ARS does not any running time guarantees.

Nevertheless, ARS is very popular. A likely reason is that ARS requires less prior knowledge about
the probability distribution compared with the universally fast alternatives. ARS requires only black-box
access to a function proportional to f . The universally fast methods typically require two additional pieces of
information: the mode of f , and the normalization constant Z =

∫
f (in other words, they require the density

to be normalized).1 In applications such as Gibbs sampling, for which ARS was originally developed, these
quantities are rarely known. Thus, one can “begin sampling” immediately with ARS, while the universally
fast methods would require additional setup steps to compute the mode and/or normalization constant.
This property of ARS is very useful, and it is desirable to have an analogous sampler for discrete log-concave
distributions.

In this report we provide the details of an adaptive rejection sampler for discrete log-concave distributions.
A companion implementation in C, together with a MATLAB interface, accompanies the report. The report
is self-contained. Section 2 provides the necessary background on discrete log-concave distributions and
rejection sampling. Section 3 describes the adaptive rejection sampler.

2 Background

Let p(k) = Z · Pr(X = k) be the unnormalized probability mass function of a discrete random variable X
that is supported on the set of integers {L,L + 1, . . . , U}. Here, Z is an unknown normalization constant
and we allow L = −∞, U =∞, or both.

1Devroye recently developed a universally fast method that works with unnormalized densities [Devroye, 2012]. The setup
step involves a search which takes running time O(| log(Z/Z′)|) where Z is the true normalization constant and Z′ is a prior
estimate.

1

We would like to generate a random variable from the distribution with mass function p(·)/Z, given only
black-box access to the function p(·) and the knowledge that p(·) is log-concave.

2.1 Log-concave Distributions.

A discrete distribution is log-concave if, for all k,

p(k)2 ≥ p(k − 1)p(k + 1). (1)

This property is analagous to log-concavity of a density function f . Let g(k) = log p(k) be the log probability
mass function, which is the function that we want to upper bound in discrete ARS. By rearranging (1), we
see that

g(k)− g(k − 1) ≥ g(k + 1)− g(k). (2)

Define
m(k) = g(k + 1)− g(k),

which can be interpreted as the slope of g(·) at k. Equation (2) shows that the sequence of slopes {m(k)} is
non-increasing, which is analogous to the condition that the second derivative of a log-density function f is
negative.

The idea of adaptive rejection sampling in the continuous case is to upper-bound log f by tangent lines,
which, due to concavity, always lie above log f . The same idea works in the discrete case.

Proposition 1. Fix any integer j (the “tangent point”), and let m(j) be the slope as defined above. Then

g(k) ≤ g(j) + m(j)(k − j). (3)

Proof. Let k ≥ j. Then

g(k) = g(j) +

k−1∑
i=j

(g(i + 1)− g(i))

= g(j) +

k−1∑
i=j

m(i)

≤ g(j) + m(j)(k − j).

The case k < j is similar.

Thus, the linear function hj(k) = g(j) + m(j)(k− j), which is “tangent” to g at j, can be used to upper
bound g. Discrete ARS uses the idea of upper bounding g with the pointwise minimum of a set of functions
tangent to g at points j1, . . . , jn.

2.2 Rejection Sampling.

Rejection sampling is a well-known technique for sampling from the distribution with mass function propor-
tional to p(·) when one knows how to sample from the distribution with mass function proportional to q(·),
where q(k) ≥ p(k) for all k. The simple procedure is shown in Algorithm 1.

To see that the random variable X generated by rejection sampling has a mass function proportional to
p, note that the algorithm terminates when U · q(X) ≤ p(X). Let Z =

∑
k p(k) and Z ′ =

∑
k q(k). The

2

Algorithm 1: Rejection sampling

Input : Unnormalized mass function p, upper bound q
Result: A random variable X from distribution p/

∑
p

repeat
Let X be a random variable with distribution q/

∑
q;

Let U be a uniform random variable;

until U ≤ p(X)/q(X);

probability of termination a given iteration is:

Pr(U ≤ p(X)/q(X)) =
∑
k

Pr(X = k) Pr(U ≤ p(k)/q(k))

=
∑
k

q(k)

Z ′
p(k)

q(k)

=
1

Z ′

∑
k

p(k) = Z/Z ′.

This shows that expected number of iterations is Z ′/Z. The conditional probability that X = k given that
the algorithm terminated in the current iteration is:

Pr(X = k | U ≤ p(X)/q(X)) =
Pr(X = k) Pr(U ≤ p(X)/q(X) | X = k)

Pr(U ≤ p(X)/q(X))

=
q(k)/Z ′ · p(k)/q(k)

Z/Z ′

=
p(k)

Z
.

This shows that X has the desired distribution.

3 Adaptive Rejection Sampling

There are two main ideas underlying adaptive rejection sampling. The first idea is to use a piecewise-linear
upper bound h of the log probability mass function, which is easy to build using tangent lines, to construct
an upper bound for rejection sampling. Specifically, we use the simple observation:

h(k) ≥ log p(k)⇒ exph(k) ≥ p(k).

If h is piecewise-linear, then q = exph consists of pieces that are either exponential or uniform (when the
tangent-line has slope zero), and samples from q can be generated efficiently.

The second idea is to improve the piecewise-linear upper-bound h adaptively during the sampling process.
At all times, h will consist of pieces that are tangent to log p at points j1 < j2 . . . < jn. A small set of initial
points is provided by the user, and then each time a point X = j is rejected, it is added to list to improve
the quality of the upper bound. Gilks and Wild [1992] observed empirically that this process (for continuous
distributions) quickly improves the quality of the upper bounding function and leads to an efficient sampler.

The discrete ARS procedure is presented in Algorithm 2. The algorithm includes the so-called “squeeze
test”: if r is a lower-bound of p, then the condition U ≤ r(X)/q(X) guarantees that U ≤ p(X)/q(X), and,
if r(X) is much easier to compute than p(X), leads to significant running-time savings whenever the first
condition holds.

At a high level, discrete ARS is a straightforward extension to rejection sampling—the only new twists
are that the upper bounding function changes in each iteration, and the squeeze test is performed. The
remaining difficulties are:

3

Algorithm 2: Discrete Adaptive Rejection Sampling

Input : Black box access to an unnormalized mass function p, initial set of points J , number of
samples m

Output: An array of m random numbers drawn from distribution p/
∑

p

Construct piecewise-exponential upper bound q and lower bound r using points J ;
while fewer than m accepts do

Generate X with distribution q/
∑

q;
Generate uniform random variable U ;
// Squeeze test

if U ≤ r(X)/q(X) then
Accept X

end
// Normal rejection test

else if U ≤ p(X)/q(X) then
Accept X

end
else

Add X to J and recompute upper and lower bounds q and r
end

end

• How to construct the upper and lower bounds given the current set of points j1 < j2 < . . . jn.

• How to sample from the piecewise-exponential upper bound.

We discuss each of these in turn.

3.1 The Upper and Lower Bounds

The upper and lower bounds to g = log p are both piecewise-linear. We focus here on the upper bound h,
which consists of linear pieces h1, . . . , hn parameterized as follows:

hi(k) = mik + bi, k ∈ {Li, Li + 1, . . . , Ui}.

The pieces are ordered from left to right and cover the entire domain, i.e.,

L1 = L, Ui = Li+1 − 1, Un = U.

It is worth noting that most rejection methods for log-concave distributions use upper-bounds of this form,
though not necessarily constructed using tangent lines as we will describe next. The sampling method that
will appear in Section ?? is generic to any upper bounds of this form.

3.1.1 Constructing the Upper Bound Using Tangent Lines

We compute the parameters (mi, bi, Li, Ui) of each piece by constructing tangent lines to g = log p at points
j1 < . . . < jn. Recall that the tangent line at ji is given by the equation:

hi(k) = g(ji) +
(
g(ji + 1)− g(ji)

)
(k − ji).

Thus
mi = g(ji + 1)− g(ji), bi = g(ji)−miji.

4

Algorithm 3: Construction of Upper Bounds

Input : Points J = {j1, . . . , jn}, function g = log p
Output: Parameters (mi, bi, Li, Ui) of each piece
for i = 1 to n do

// Slope and intercept of ith piece

mi = g(ji + 1)− g(ji);
bi ← g(ji)−miji;

end
for i = 1 to n− 1 do

// Intersection point between pieces i and i + 1

xi ←
bi+1 − bi
mi −mi+1

;

end
// Lower and upper limits for each piece

(Li, Ui) =

(L, bxic) i = 1,

(dxi−1e, bxic) i = 2, . . . , n− 1,

(dxi−1e, U) i = n.

Each tangent line hi is a valid upper bound over the entire domain, but we restrict the piece to cover only
the domain {Li, . . . , Ui} for which hi is the tightest (i.e. smallest) upper bound. In other words, the overall
function h is the pointwise minimum of the tangent lines:

h(k) = min
i

hi(k).

To compute the intervals over which each piece is minimum, we solve for the (real-valued) intersection point
xi between the tangent lines hi and hi+1, for i = 1, . . . , n− 1. These satisfy

mixi + bi = mi+1xi + bi+1,

and thus

xi =
bi+1 − bi
mi −mi+1

.

The ith piece is minimum for all integers between xi−1 and xi. Thus we set the bounds as follows:

(Li, Ui) =

(L, bxic) i = 1,

(dxi−1e, bxic) i = 2, . . . , n− 1,

(dxi−1e, U) i = n.

The entire procedure is summarized in Algorithm 3.

3.1.2 Constructing the Lower Bound Using Secant Lines

As a byproduct of rejection sampling, it is also easy to construct a valid piecewise linear lower bound of
g = log p. Consider the “secant” line ri that agrees with g at points ji and ji+1:

ri(k) = m̂ik + b̂i,

m̂i =
g(ji+1)− g(ji)

ji+1 − ji
,

b̂i = g(ji)−miji.

5

The reader can verify using log-concavity that ri(k) ≤ g(k) for all k ∈ {ji, . . . , ji+1}. The overall lower
bound is

r(k) =

{
−∞ k < j1 or k > jn,

ri(k) k ∈ {ji, . . . , ji+1}
.

3.2 Sampling

The remaining part of the algorithm is to sample from the distribution q = exph.

3.2.1 The Inversion Method

We will use the well-known inversion method. The cumulative distribution function is:

F (k) =

k∑
i=L

q(i)/Z,

where Z =
∑U

i=L q(i) is the normalization constant. The inversion method works by generating a random
variable U that is uniform on [0, 1], and then letting X be the smallest integer such that F (X) > U . To see
that X has the correct distribution, observe that

Pr(X = k) = Pr
(
F (k − 1) ≤ U < F (k)

)
= F (k)− F (k − 1)

= q(k)/Z.

Remark. Define F−1 : [0, 1] → {L, . . . , U} by letting F−1(p) be the smallest k such that F (k) > p. Then
we obtain X = F−1(U) by inverting the cdf.

3.2.2 Inverting a Piecewise-Geometric Sequence

Because the pieces of q are either geometric or constant, the inversion can be done relatively easily. A
primary operation we need is the ability to compute partial sums of a geometric sequence, so we start by
stating a useful identity.

Proposition 2. Let q(k) = cemk for k ∈ {a, . . . , b}, with m 6= 0. Then

b∑
k=a

q(k) =
q(a)− q(b + 1)

1− em
. (4)

Proof. This is a standard result about geometric sequences:

b∑
k=a

q(k) = cema
b−a∑
k=0

emk =
cema − cem(b+1)

1− em
=

q(a)− q(b + 1)

1− em
.

When m > 0, the numerator and denominator of (4) can both have large magnitudes, so it is best to multiply
both by e−m to avoid the numerical instability, which gives an equivalent identity.

Proposition 3. Let q(k) = cemk for k ∈ {a, . . . , b}, with m 6= 0. Then

b∑
k=a

q(k) =
q(b)− q(a− 1)

1− e−m
. (5)

6

Before we proceed with the inversion, we first need to compute the total mass Zi :=
∑Ui

k=Li
q(k) of each

piece. We use Equations (4) and (5) together with the definition q(k) = exp(mik + bi) for k ∈ {Li, . . . , Ui},
and a simple calcluation for the case mi = 0:

Zi =

Ui∑
k=Li

q(k) =

exp(miLi + bi)− exp(mi(Ui + 1) + bi)

1− exp(mi)
mi < 0,

exp(miLi + bi)(Ui − Li + 1) mi = 0,

exp(miUi + bi)− exp(mi(Li − 1) + bi)

1− exp(−mi)
mi > 0.

(6)

Now let Z = Z1 + . . . + Zn be the overall normalization constant.
To perform the inversion, we generate the uniform random variable U and solve for the smallest integer

X such that
X∑

k=L

q(k) > UZ.

Let i be the smallest integer such that Z1 + . . . + Zi > UZ. Then X belongs to the ith piece, and we now
must search within the ith piece to find the smallest integer X such that

X∑
k=Li

q(k) > U ′, (7)

where U ′ = UZ − (Z1 + . . . Zi−1) is the remainder.
First, consider the case when mi < 0. By Proposition 2, Condition (7) is equivalent to

q(Li)− q(X + 1)

1− emi
> U ′. (8)

Since q(y) = exp(miy + bi) is also well-defined on the real numbers and the left side of (8) is monotone, we
can find the smallest integer for which (8) holds by solving it as an equality for a real value X ′ ∈ [Li, Ui + 1],
and then taking X = dX ′e. The result is:

X =

⌈
log
(
q(Li)− U ′(1− emi)

)
− bi

mi
− 1

⌉
Next, consider the case when mi > 0. The computation is similar except that we use Proposition 3

instead to get the following version of (7):

q(Li − 1)− q(X)

1− e−mi
> U ′. (9)

The result in this case is:

X =

⌈
log
(
q(Li − 1)− U ′(1− e−mi)

)
− bi

mi

⌉

Finally, when mi = 0, then q(·) is constant over the piece, and Condition (7) simplifies to:

q(Li)(X − Li + 1) > U ′,

The smallest integer X for which this holds is

X =

⌈
U ′

q(Li)
+ Li − 1

⌉
.

7

Algorithm 4: Sampling From the Upper Bound

Input : Piecewise-linear function h(k) defined by pieces hi with parameters (mi, bi, Li, Ui)
Output: Random number X from the distribution with mass function q(k) = exph(k)
// Compute mass of each piece

C ← max
(

max
i:mi<0

(miLi + bi), max
i:mi>0

(miUi + bi)
)

;

for i = 1 to n do
b′i ← bi − C;

Zi ←

exp(miLi + b′i)− exp(mi(Ui + 1) + b′i)

1− exp(mi)
mi < 0,

exp(miLi + b′i)(Ui − Li + 1) mi = 0,

exp(miUi + b′i)− exp(mi(Li − 1) + b′i)

1− exp(−mi)
mi > 0.

end
Z ←

∑n
i=1 Zi;

U ← Uniform([0, 1]);
i← smallest integer such that Z1 + . . . + Zi > UZ;
U ′ ← UZ − (Z1 + . . . + Zi);

X ←

⌈
log
(

exp(mLi + b′i)− U ′(1− emi)
)
− b′i

mi
− 1

⌉
mi < 0,⌈

U ′

exp(mLi + b′i)
+ Li − 1

⌉
mi = 0,⌈

log
(

exp(m(Li − 1) + b′i)− U ′(1− e−mi)
)
− b′i

mi

⌉
mi > 0.

Avoiding Overflow. Finally, to avoid numerical overflow and underflow, we follow the standard practice
of subtracting the constant value C from the piecewise-linear function h in each of the above computations
to ensure that the maximum value being exponentiated is not too big. The correct value to subtract is:

C = max
(

max
i:mi<0

(miLi + bi), max
i:mi>0

(miUi + bi)
)
.

This amounts to scaling exph by a constant, which does not change the probability distribution it defines.
The complete sampling procedure is showing in Algorithm 4.

References

W.R. Gilks and P. Wild. Adaptive Rejection sampling for Gibbs Sampling. Journal of the Royal
Statistical Society. Series C (Applied Statistics), 41(2):337–348, 1992. ISSN 0035-9254. URL
http://www.jstor.org/stable/2347565.

L. Devroye. Non-uniform random variate generation, volume 4. Springer-Verlag New York, 1986.

Luc Devroye. A note on generating random variables with log-concave densities. Statistics & Prob-
ability Letters, 82(5):1035 – 1039, 2012. ISSN 0167-7152. doi: 10.1016/j.spl.2012.01.022. URL
http://www.sciencedirect.com/science/article/pii/S0167715212000326.

8

L. Devroye. A simple algorithm for generating random variates with a log-concave density. Com-
puting, 33(3-4):247–257, September 1984. ISSN 0010-485X. doi: 10.1007/BF02242271. URL
http://www.springerlink.com/index/10.1007/BF02242271.

L. Devroye. A simple generator for discrete log-concave distributions. Computing, 39(1):87–91, 1987.

W. Hörmann, J. Leydold, and G. Derflinger. Automatic nonuniform random variate generation. Springer
Verlag, 2004.

9

