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Abstract—Network performance has been the subject of much
research over the past decades. However, the impact of perfor-
mance on a network’s users is much less understood from a
scientific standpoint. This gap in our knowledge is particularly
stark since the primary role of real-world network performance
is to increase user satisfaction, and encourage user behaviors
that lead to greater monetization. As an example, consider
the video delivery ecosystem consisting of content delivery net-
works (CDNs), video content providers, and their users. Content
providers use CDNs to deliver videos to their users with higher
performance. In turn, content providers expect the higher quality
stream delivery to translate into lesser viewer abandonment,
greater viewer engagement, and more repeat viewers, all of which
lead to greater profits. Thus, whether and to what extent video
performance causally impacts viewer behavior is at the core of
the online video ecosystem. We review our prior research that for
the first time derives the causal impact of video performance as
measured by failures, startup delay and freezes on metrics of user
behavior that content providers care about. A centerpiece of our
work is a novel technique based on quasi-experimental designs
(QEDs) that enable us to derive cause-effect relationships between
performance and behavior with a greater degree of confidence
than just correlation. While QEDs are used extensively in the
social and medical sciences, we adapt the technique for network
measurement research that is likely to be useful in a number
of other contexts. We hypothesize that the availability of large
amounts of performance and behavioral data and the develop-
ment of novel analytical tools will finally put the users back at
the center of network performance research, revolutionizing both
how networks are architected for performance and how business
models are evolved for real-world networks.

I. INTRODUCTION

Large distributed network services are at core of a wide
range of human activity. Billions of users routinely interact
with networks of various kinds for commerce, entertainment,
news, and social networking. Networks are often designed with
a notion of performance in mind. The notion of performance
of a network is related to the service that it provides it’s users.
For instance, a content delivery network (CDN) provides the
service of delivering content to users on behalf of content
providers [5], [16]. The notion of performance of a CDN
depends on the type of content that it delivers. For a CDN
that delivers an e-commerce site to users, performance is
typically measured by page availability and page download
times. Availability measures the percent of time a user is
able to download a page of the web site without failure, and
download time measures how quickly the page is downloaded
and rendered by the browser. CDNs for e-commerce are

often architected to optimize these metrics. Likewise, a CDN
designed to deliver videos has a somewhat different notion of
performance. Such as CDN is often measured by whether the
video is available without failures (availability), whether the
video starts up quickly (startup delay), and whether the video
plays without freezing (rebuffers). Customarily, a CDN for me-
dia is architected to provide highest performance along these
axes. Other examples of network services include cloud ser-
vices, Software-as-a-Service (SaaS) platforms, Infratructure-
as-a-Service (IaaS) platforms, and online gaming. Each such
network service is implemented with a notion of performance
that is often measured and optimized.

Real-world network services also have a business rationale
for their existence. From a business context, the role of net-
work performance is simply to increase user satisfaction and
encourage user behaviors that lead to greater monetization. For
instance, the goal of an e-commerce provider is to encourage
users to shop more and buy more on their website, leading
greater revenues and profits. Likewise, a content provider who
provides online videos such as news, sports or movies wants
to decrease the fraction of viewers who abandon their videos,
to increase the amount of time each video is watched, and
to improve the likelihood that viewers return to their web site
over time. A video content provider relies on advertisement or
subscription revenues that depend on greater opportunities for
ad insertion and a larger viewership. Thus, all three goals of
reducing abandonment, increasing engagement, and improving
repeat viewership lead to favorable business outcomes for the
content provider,

A. The Virtuous Cycle

At the center of the economic life of a network service, there
is often a virtuous cycle where enhancing the performance
of the network favorably impacts the manner in which users
interact with the service. This leads to greater profits for the
enterprise that uses the network service. The increased profits,
in turn, justify current and future investments in improving the
network performance of the service.

For instance, consider a gaming company that uses a
network service to deliver online games to their users. Key
network performance metrics for online games include the
time for a user to start a new game and the speed at which
users playing the game can interact with each other. Improving
performance is expected to attract more users who play longer,
both of which relate directly to the business objectives of the978-1-4673-5494-3/13/$31.00 c� 2013 IEEE
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Fig. 1: The Virtuous Cycle of Content Delivery.

gaming company.
As another example of a virtuous cycle, consider the content

delivery ecosystem. There is a virtuous cycle that links the
content provider, network service provider (i.e., CDN) and the
users (c.f Figure 1). Content providers typically invest in a
CDN to deliver videos to their users with higher performance.
The expectation of the content providers is that the higher
performance enjoyed by their users will cause changes in
the viewing habits of their user population in ways that are
favorable to their business, i.e., users will abandon less, watch
more, and return more often.

While network performance and its associated metrics have
been well-studied in isolation, the critical question is what
impact do those metrics have on user behavior. For instance,
if web pages download faster would users shop more on an
e-commerce site? If users experience less failures, are they
more likely to come back to the same web site? If videos
start up slowly, would more viewers abandon the videos?
Would frequent freezes during video playback lead to viewers
watching less of the video? The critical link in the virtuous
cycle is the impact of network performance on user behavior.
This link is often the most important while at the same time
the least understood from a truly scientific standpoint.

B. Understanding the Missing Link
A scientific understanding of the impact of network perfor-

mance on user behavior is the primary focus of this paper. The
fact that better performance would have a positive impact on
users would seem almost tautological. So, why study this at
all? The key reason is that any study of the impact must have
two characteristics to be useful: it must be quantifiable and it
must establish causality to an acceptable degree.

1) Quantifiability: Let us examine what we mean by “quan-
tifiable”. Taking video delivery as an example, suppose we
hypothesize that video freezes due to rebuffering cause users
to play fewer minutes of the video. There is certainly value in
establishing the hypothesis as is. However, it is more valuable
to show quantitatively that an x% increase in video freezes

causes a y% decrease in the minutes of video watched. A
quantitative statement of this sort enables the content provider
to estimate the potential business impact of reducing freezes
and to determine if it is worth obtaining that extra bit of
performance. As a concrete example1, suppose that a content
provider with an ad-supported business model knows that
video freezes cause viewers to watch 5% fewer minutes. Using
this information, the content provider can estimate the fewer ad
impressions that result from the fewer minutes of video played.
That in turn can be translated into the amount of ad revenues
lost due to video freezes. This enables the content provider
to quantitatively justify investment in a higher performing
network service (such as those offered by a CDN) to eliminate
the freezes. Thus, a quantitative understanding of the impact
of performance on users closes the virtuous cycle, enabling an
understanding of the business value of network performance.

2) Causality: The impact of performance on the user must
be established in a causal manner. The virtuous cycle is one
of cause and effect. A content provider investing in additional
performance needs hard evidence that his/her investment in
additional performance was the cause for the favorable change
in viewer behavior, and not just something that would have
happened for other reasons anyway.

Establishing causality can be tricky as there are both secular
trends and confounding factors that can obfuscate a causal con-
clusion. As an example of secular trends, consider that some
metrics have generally trended higher over the past several
years, albeit with varying rates of growth. The e-commerce
industry tracks a key user behavioral metric called conversion
rate which is the fraction of user visits to an e-commerce site
that result in the user buying a product from the site. For many
online retailers, conversion rates have been increasing over
the past several years due to improved checkout procedures,
and better product selection [20]. Suppose now that the online
retailer makes improvements to the performance of their e-
commerce web site. Further, suppose that conversion rates
increase after the performance enhancements are complete. Is
the increase due to enhanced performance? Or, is it just the
secular trend of higher conversion rates over time?

As another example, in a recent study [11] we examined
almost 23 million video playbacks over 10 days and correlated
the amount of freezes experienced by the viewer due to
rebuffering and the number of minutes of the video that the
viewer watched (c.f Figure 2). While it is clear from the figure
that play time and rebuffer delay are inversely correlated, can
we conclude on this basis that video rebuffering caused the
viewers to watch fewer minutes of the video?

Most network measurement work stop at correlations, but
it is generally not sufficient evidence for causality. As the
popular dictum states “correlation is not causation”. Note that
it is generally not possible to prove causality beyond any
doubt, in this or any other scientific endeavor. However, it
behooves us to eliminate the common threats to causality, so

1The example is highly simplified for illustration. The actual business
impact computation is likely based on a more complex revenue model.



Fig. 2: Correlation of normalized rebuffer delay with play time.
Normalized rebuffer delay is the total time the video froze due
to rebuffering divided by the duration of the video [11].

that we can have a greater confidence in a causal conclusion.
For instance, a threat to a causal conclusion based on the
observed correlation in Figure 2 is the following plausible
scenario. Suppose that viewers who live in wealthier geo-
graphic locations have better broadband connectivity. Due
to their superior network connectivity their videos tend to
freeze less often due to rebuffering. Further, suppose that
those same viewers can afford access to more captivating
premium video content that makes them watch longer. This
scenario can result in the amount of rebuffering and the play
time to be inversely correlated without the first causing the
second. In fact in this scenario, more rebuffering and less
play time are both caused by a set of confounding factors.
Geography, network connectivity and the content itself are
almost always confounding factors as each capture aspects of
the video viewing experience that must be accounted for in
any causal study of video performance and viewer behavior.

C. Our Research Enablers: Big Data and New Techniques

Our research is focused on the urgent need to evolve a
scientific foundation for understanding the impact of network
performance on users in a quantitative and causal manner,
thereby establishing the missing link and closing the virtuous
cycle. Such research would not have been possible even a few
years ago for lack of large-scale measurements of performance
and user behavior. But, today the time is ripe since for the
first time large amounts of user behavior and user-perceived
performance data can be measured, collected, and analyzed.

In the case of online videos, when we built the first CDNs
in the late 1990’s and the early 2000’s, accurate performance
information could only be obtained through measurement

agents deployed around the globe. The agents incorporated
a media player that repeatedly played and measured streams
to report on streaming performance [21], [2]. Accurate per-
formance or behavioral measurements from actual users in
the wild were unachievable in any large scale. The advent of
customizable players for most major streaming formats such
as Flash, Silverlight, iOS/Quicktime and HTML5 changed all
that. It is now possible to integrate an analytics plugin that runs
inside the user’s media player [1] that measures and reports
both user actions (play, pause, rewind, browser close, etc)
and performance metrics (startup delay, rebufffering events,
bandwidth, etc). In our work in [11], we relied on large-scale
anonymized data collected from actual users playing videos
from around the world using media players that incorporate
the widely-used Akamai media analytics plug-in.

It is also worth noting that the availability of client-side data
from media players has enabled recent key studies such as [6]
that shows several correlational relationships between quality,
content type, and play time. A recent sequel to the above
work [15] also uses client-side data to suggest enhancements to
video delivery. Besides media players, several other networked
clients such as browsers and download managers running on
a multitude of devices are also producing enormous amounts
of behavioral and performance information like never before.
This opens up exciting possibilities for studying a variety of
networks from the standpoint of relating performance to user
behavior and closing the virtuous cycle.

II. EXPERIMENTAL TECHNIQUES

The availability of “big data” is a necessary but not a suf-
ficient condition for achieving our research goals. We need to
discover new experimental techniques that can quantitatively
extract cause-effect relationships that can be hidden in large
amounts of network data. We focus on those techniques next.

Discovering quantitative and causal relationships is at the
heart of every scientific endeavor. In striving to establish
such relationships in network measurement, it behooves us
to examine the techniques utilized in the physical, medical
and social sciences. A precise mathematical definition of
cause, effect, and a causal relationship has eluded philosophers
for centuries. The 19th century philosopher John Stuart Mill
describes a causal relationship using three criteria [19] that
resonates with our own modern conception of causation:

1) The cause must precede the effect.
2) The cause must be related to the effect.
3) We can find no plausible alternative to the effect other

than the cause.
In most cases, the first criterion is easily verified. For instance,
in our domain it is easy to verify that the performance degrada-
tion (say, video freezes) occurs before an user action (say, user
stops playing the video). The second criterion can typically be
established by showing that the cause and effect tend to occur
together, i.e., that they are correlated (for instance, Figure 2).
But, one cannot conclude causality without establishing the
third criterion. A plausible alternate explanation in our domain,
and verily many other scientific domains, takes the form of



confounding factors. Suppose we want to establish a causal
relationship between two variables A and B. A confounding
factor is a third variable C that could cause both A and B
giving rise to a correlation between them, but that correlation
does not necessarily imply a causation.

Confounding factors can often be subtle. In a well-known
case in recent medical literature, researchers claimed that
children who sleep with their lights on have a greater tendency
to develop myopia in later life [17]. It was later discovered that
the researchers had not identified a critical confounding factor:
the presence or absence of myopia in the parents of the studied
children. As it turns out, myopic parents had a greater tendency
to leave the light on in their children’s bedroom, since it was
harder for them to see without those lights. In addition, myopic
parents have a genetic disposition to myopia that make their
children more likely to be myopic later in life. Subsequently,
accounting for the additional confounding factor, altered the
prior conclusion of the causal effect of bedroom lights on
myopia.

The critical task of designing experiments in our domain is
a careful elimination of alternate explanations to satisfy Mill’s
third criterion for causality. An intuitively satisfying way for
satisfying the third criteria is by establishing a counterfactual.
That is, besides showing that if the cause happens the effect
happens, you also establish the counterfactual that if the cause
does not happen the effect does not happen. Unfortunately, a
exact counterfactual can seldom be established. For instance,
in our prior example, a child either sleeps with the lights on or
does not, i.e., it can’t simultaneously do both. One can view
the different experimental techniques that we will discuss next
as trying to approximate the counterfactual, since an exact
counterfactual is impossible.

A. Randomized Experiments
The classical technique for establishing causal, quantitative

results in the medical and social sciences is the randomized
experiment popularized by the great statistician Sir Ronald
Fisher in the 1920’s [9]. To establish that A causes B, the
experimental units2 are randomly divided into groups. One
group is “treated3” with A and the other control group is
left “untreated”. By observing the relative presence of the
effect B in the two groups yields positive or negative evidence
for the causal link between A and B. The key element
of a randomized experiment is the randomized assignment
of the treatment to the experimental units. The randomized
assignment is independent of any other factors and so the
presence of confounding factors are statistically identical in
both the treated and control groups. Thus, the effect of the
confounding factors are nullified in a statistical sense.

While randomized experiments have their appeal, they are
hard to implement in our network performance measurement

2An experimental unit is one member of the set of entities being ex-
perimented with. In our case, an experimental unit could be a user, or a
combination of a user watching a video.

3It is customary to use medical parlance by referring to the cause as
“treatment”, since in the medical sciences experimentation often involves
discovering if a treatment can causally effect a cured outcome.

context. In our study of the impact of network performance
on users, the “treatment” is performance characteristics such
as startup delay or freezes experienced by a user. A random-
ized experiment must therefore induce poor performance for
viewers in the treated group and provide good performance for
users in the control group. It is technically and operationally
hard to introduce performance degradation in a controlled
manner for a large groups of actual users in the wild on the
Internet. Further, even if possible, it would require changes
to the existing software of a network service for the purpose
of an experiment and is likely expensive. Finally, it may not
even be ethical or legal to introduce performance degradation
for users without their consent. All of this makes it well-near
impossible to conduct a truly randomized experiment involving
a large audience of users for the purposes of understanding the
impact of performance on behavior.

It is worth noting however that there are other contexts in
network services where randomized experiments, or approx-
imations thereof, are used successfully. A common form is
A/B testing or multivariate testing [10] that is used for online
marketing campaigns where two randomly chosen groups
are given two different marketing offers and the response
rate of these groups is measured to determine the better
marketing strategy. A/B testing is also routinely used by large
e-commerce providers like Amazon to design their websites,
to determine shopping cart features, to decide on product
placement on the page, and even to determine what wordings
to use on the buttons, all with the goal of increasing the
conversion rate funnel [8].

B. Quasi-Experiments
Given the difficulty of doing large-scale randomized exper-

iments in our network performance context, we turn to the
notion of a quasi-experiment. The key manner in which a
quasi-experiment is different from a randomized one is that
the former does not require the experimenter to implement
randomized assignment. In domains such as ours where it
is not possible to control who gets treatment (i.e., poor
performance), we find quasi-experiments especially suitable.
Intuitively, a quasi-experiment tries to satisfy Mill’s third
criterion for causality by doing the following two steps.

1) Explicitly considering possible threats to a causal con-
clusion. This typically includes enumerating possible
confounding factors that could explain a correlation
between the cause and the effect.

2) Designing the experiment so as to eliminate those
threats. Once the confounding factors are identified,
they are neutralized by explicitly designing a suitable
experiment. For instance, the experiment can construct
a treatment group and control group that are impacted
similarly by the confounding factors, thereby eliminating
their influence on the outcome.

By considering and eliminating threats to causality, you pro-
vide greater evidence for a causal conclusion. There is always
the possibility that there exist undiscovered or unmeasurable
confounding factors that remain as potential threats. This is



possibility inherent in much of scientific inference and remains
a possibility in our studies.

A key contribution of our work in [11] is adapting the notion
of a quasi-experiment for studying network performance.
However, even though quasi-experiments have a been seldom
used to study computer systems prior to our work, it has a long
and distinguished history in the social and medical sciences. A
situation analogous to ours where randomized experiments are
hard or impossible and quasi-experiments are desirable occurs
frequently in the social and medical sciences. For instance,
there is often little control on who receives the treatment and
who does not. For this reason, quasi-experiments are among
the most widely used techniques for experimentation in these
disciplines.

Take for example the question of whether a child exposed to
bedroom lights is more likely to become myopic in later life. If
a randomized experiment were possible, we would randomly
decide which children have their lights turned on at night
and which children do not. A sufficient large experimental
sample will then average out any confounding factors such as
the parent’s myopia. However, such control is impossible to
achieve. Indeed, the experimenter has no control over which
children get exposed to bedroom lights and which do not,
ruling out the possibility of a randomized experiment. In such
a case, a quasi-experiment where treated and control groups
are judiciously chosen from among the observed population so
as to account for confounding factors is the primary option.

The early history of quasi-experiments date back to the
18th century Scottish physician James Lind who performed
one of the first clinical experiments in the history of modern
medicine to study the effects of citrus fruit on scurvy [7]. More
recently, the notion of a quasi-experiment was formalized
and popularized by Campbell and Stanley in their classic
book [3]. While a number of different quasi-experimental
designs (abbreviated as QED) exist, we now examine a design
technique that is particularly suited for our problem domain
of analyzing video quality’s impact on users.

C. The Matching Technique for Quasi-Experimental Design

Suppose that we wanted to show that cause A produces
an effect B. Suppose further that we are aware of significant
confounding factors C that could cause both A and B.
We design a matched quasi-experiment by choosing a large
number of pairs of experimental units ht, ui where unit t
has cause A and is part of the treated group. The other unit
u is untreated without A and is part of the control group.
Further, the matched units t and u have are as identical as
possible on the confounding factors C. With each pair, we
associate an outcome(t, u) which is positive (say) if the pair
provides positive evidence for the hypothesis that A causes
B, negative if the pair provides negative evidence for the
hypothesis, and zero otherwise. Aggregating the outcomes for
a large of number of matched pairs M , we compute

Net Outcome =

P
ht,ui2M

outcome(t, u)

|M | .

With a proper choice of the outcome function, the net outcome
of the experiment provides an assessment of whether or not a
purported cause A produces an effect B. Further, the magni-
tude of the net outcome can provide a quantitative assessment
of that impact. Since the matched pairs have similar values for
the confounding factors, the effect of these factors on the final
outcome is diminished. In other words, the untreated control
group is “similar” to the treated group on the confounding
factors and hence provides counterfactual evidence of what
might happen if the cause A had not occurred, all else being
the same. Such counterfactual evidence is essential for a causal
inference.

The matching technique has intuitive appeal and hence
has been used widely. The classic studies of twins in the
medical and social sciences are powerful examples of QEDs
that use matching. For instance, a ground-breaking study
of the impact of schooling on future wages [12] paired up
298 genetically-identical twins who differed in their level of
schooling. The study concluded that each additional year of
schooling increases the wages by 12-16%. The use of twins
helps eliminate a host of confounding factors that have basis
in either genetics or family background, helping isolate the
differing schooling (cause) as a prime determinant of the
wages (effect). However, in most QEDs that use matching, the
experimental units cannot be matched as exactly as in the case
of identical twins. But, rather the matched pairs are similar
rather than identical.

III. QEDS FOR VIDEO PERFORMANCE IMPACT ANALYSIS

We show how quasi-experiments that use matching can
be designed for determining the impact of video streaming
performance on viewers. The key idea is creating pairs of
viewers who are identical with respect to confounding factors
such as geography, connection type and the watched content,
but differ in whether or not they received poor performance
(i.e., the treatment). The designs and results in this section are
from our work in [11].

A. The Data
The data sets that we use for our analysis are collected from

a large cross section of actual users around the world who
play videos using media players that incorporate the widely-
deployed Akamai’s client-side media analytics plug in4. When
content providers build their media player, they can choose to
incorporate the plugin that provides an accurate means for
measuring a variety of stream performance and viewer behav-
ioral metrics. When the viewer uses the media player to play
a video, the plugin is loaded at the client-side and it “listens”
and records a variety of events that can then be used to stitch
together an accurate picture of the playback. For instance,
player transitions between the startup, rebuffering, seek, pause,
and play states are recorded so that one may compute the
relevant metrics. Properties of the playback, such as the current

4While all our data is from media players that are instrumented with
Akamai’s client-side media analytics plugin, the actual delivery of the streams
could have used any platform and not necessarily just Akamai’s CDN.



bitrate, bitrate switching, and state of the player’s data buffer
are also recorded. Further, viewer-initiated actions that lead
to abandonment such as closing the browser or browser tab,
clicking on a different link, etc can also be accurately captured.
Once the metrics are captured by the plugin, the information
is “beaconed” to an analytics backend that can process huge
volumes of data. From every media player at the beginning
and end of every view, the relevant measurements are sent to
the analytics backend. Further, incremental updates are sent at
a configurable periodicity even as the video is playing. Our
data set is extensive and captures 23 million video plays by 6.7
million unique viewers who watched for a total of 216 million
minutes over 10 days. The videos belong to a representative
slice of 12 content providers belonging to a variety of verticals
including news, entertainment, and movies.The users too came
from a wide cross-section of geographies including North
America, Europe, and Asia. More details on the properties
of this data set is found in [11].

B. The Quasi-Experiment for Viewer Engagement
We revisit our earlier question on whether video freezes due

to rebuffering can decrease a viewer’s engagement with the
content. A good measure of viewer engagement is the amount
time a viewer plays a video. So, we would like to establish
that the following assertion holds in a causal and quantitative
fashion.

Assertion 1 ([11]). An increase in (normalized) rebuffer delay
can cause a decrease in play time.

The observed negative correlation between play time and
normalized rebuffer delay in Figure 2 is indicative but not
sufficient to imply causality as there are threats such as the
one outlined earlier that involve potential confounding factors
such as the content itself, the geography of the user, and the
connection type of the user. We examine each of the potential
confounds in turn.

• Content. Play time is clearly impacted by interest level
of the viewer in the video content. Interest level could
also vary at different parts of the video. Some parts
could be interesting, such as when a plot is revealed,
and other parts could be boring, such as when the story
line drags on. A viewer who had good a quality stream
may quit during a boring part, or might hold on during
an interesting part despite poor quality. Thus, the effect
of the content itself needs to be neutralized by comparing
viewers who are watching the same content and in fact
the same portion of that content.

• Geography. Where the user lives is also a potential
confounding factor. Geography does of course influence
the interest level of the user in the video. For instance,
Brazilian viewers might be more interested in soccer
world cup videos than Indian viewers, even more so if the
video is of a game where Brazil is playing. Studies have
shown that different countries have different tolerance
levels in social situations in the physical world, such as
the levels of patience for waiting in queues for services.

Treated 
 (video froze for ≥ 1% 

of duration) 
 

Control or Untreated 
 (No Freezes) 

 
Same geography, 
connection type, 

 same point in time 
within same video 

Outcome 
For each pair, outcome = 
(playtime(untreated) – 
playtime(treated))/ video 
duration 

 

Fig. 3: Matched Quasi-Experimental Design for Viewer En-
gagement with treatment level � = 1%. The paired viewers
are from the same geography, have the same connection type,
and are watching the same portion of the same video, but differ
on the rebuffering that they experienced.

For the same reasons, it is conceivable that geography
also influences a viewer’s tolerance to video performance
degradation in the virtual world.

• Connection Type. The connection type of the user pro-
vides information on whether the user is on a mobile
wireless connection or a wired connection, the latter can
be further subdivided into dialup, DSL, cable, or fiber
(such as Verizon’s XFINITY or AT&T’s FIOS). The con-
nection type primarily captures network characteristics
such as available bandwidth, e.g., fiber connections have
significantly more bandwidth than mobile.

Matching Algorithm. We now present the matching algorithm
from [11] for creating a large number of pairs of viewers who
are similar on all three (potential) confounding factors, but dif-
fer in the performance that they experienced (c.f Figure 3).The
treatment set T consists of all video views that suffered
normalized rebuffer delay more than a certain threshold �%.
Given a value of � as input, the treated views are matched
with untreated views that did not experience rebuffering as
follows.

1) Match step. We form a set of matched pairs M as follows.
Let T be the set of all video views with a normalized rebuffer
delay of at least �%. For each view u in T , suppose that
u reaches the normalized rebuffer delay threshold �% when
viewing the tth second of the video, i.e., view u receives
treatment after watching the first t seconds of the video, though
more of the video could have been played after that point. We
pick a view v uniformly and randomly from the set of all
possible views such that

a) the viewer of v has the same geography, connection
type, and is watching the same video as the viewer
of u.

b) View v has played till t seconds of the video without
rebuffering. This step ensures that both u and v have
both watched to the same point in the video, the
only difference being that u received treatment at
that point due to poor performance and v has had



Normalized Rebuffer Delay � Net Outcome P-Value
(percent) (percent)

1 5.02 < 10�143

2 5.54 < 10�123

3 5.7 < 10�87

4 6.66 < 10�86

5 6.27 < 10�57

6 7.38 < 10�47

7 7.48 < 10�36

TABLE I: On average, a viewer who experienced more re-
buffering watched less minutes of the video than an identical
viewer watching the same video with no rebuffering. Further,
the p-values indicate that the results are statistically significant.

good performance at the same point. That is, both
u and v have viewed the same content and the only
difference between them is one had rebuffering and
the other did not.

2) Score step. For each pair (u, v) 2 M , we compute

outcome(u, v) =
play time of v � play time of u

video duration
.

Net Outcome =

 P
(u,v)2M

outcome(u, v)

|M |

!
⇥ 100.

The net outcome of the matching algorithm can be viewed
as the difference in the play time of u and v expressed
as a percent of the video duration. That is, net outcome
measures the additional amount of the video the viewer with
good performance watched over a similar viewer with bad
performance. Table I shows that an average viewer who
experienced normalized rebuffer delay of at least 1% played
5.02% fewer minutes of the video, compared to a viewer who
experienced no rebuffering at all. There is a general upward
trend in the net outcome when the treatment gets harsher with
increasing values of �. Note that QEDs that use matching give
exactly the kind of quantitative and causal answers that we
argued in Section I-B are of great value to a content provider.

C. Some Finer Points in our Matched QED Analysis
We discuss some finer points in our approach described

above to using QEDs to determine the impact of performance
on users.

1) Are the results statistically significant?: As with any
statistical result, it is important to understand whether it is
statistically significant. Assessment of statistical significance
often involves asking how possible it is that the treatment
had no effect but the net outcome happened just by random
chance. In the standard terminology of hypothesis testing [14],
we state a null hypothesis H

o

that the cause (i.e., treatment)
has no impact on the outcome. We then compute the “p-value”
defined to be the probability of the observed net outcome given
that the null hypothesis H

o

holds. Thus, intuitively, the p-value
represents the odds of the net outcome happening by chance.
A “low” p-value lets us reject the null hypothesis, bolstering
our conclusions from the QED analysis as being statistically
significant. However, a “high” p-value would not allow us to

reject the null hypothesis. That is, the QED results could have
happened through random chance with a “sufficiently” high
probability that we cannot reject H

o

. In this case, we conclude
that the results from the QED analysis are not statistically
significant.

The definition of what constitutes a “low” p-value for a
result to be considered statistically significant is somewhat
arbitrary. It is customary in the medical sciences to conclude
that a treatment is effective if the p-value is at most 0.05. The
choice of 0.05 as the significance level is largely cultural and
can be traced back to the classical book of R.A. Fisher in
1925 that also popularized randomized experiments [9]. Some
have recently argued that the significance level must be much
smaller. We concur and we suggest a more stringent 0.001
as our significance level, a level achievable in our field given
the large amount of experimental subjects (tens of thousands
treated-untreated pairs) but is rarely achievable in medicine
with human subjects (usually in the order of hundreds of
treated-untreated pairs).

The primary technique that we employ in our QEDs for
evaluating the p-value, and hence statistical significance, is
the sign test that is a non-parametric test that makes no
distributional assumptions [22] and is well-suited for evalu-
ating matched pairs in our QED setting. For each randomly
matched pair (u, v), where u received treatment and v did not
receive treatment, we observe that outcome(u, v) is positive
if the pair provides positive evidence for the Assertion 1 and
the untreated v plays longer than the treated u. Likewise,
outcome(u, v) is negative if the pair provides negative evi-
dence for the assertion. If the null hypothesis H

o

holds, then
the treatment or lack thereof has no effect on the outcome and
the non-zero values of outcome(u, v) are equally likely to be
a positive or negative.

We now compute � that equals the difference between the
number of pairs (u, v) with positive outcome(u, v) and the
number of pairs with a negative outcome(u.v). Let n be the
number of pairs with non-zero outcome values. The probability
distribution of � can be approximated by Bin(n, 1/2)� n/2
where Bin(n, 1/2) is the binomial distribution with n trials
and success probability of 1/2 for each trial. For an observed
value �, the probability that the observed value occurs given
that the null hypothesis H

o

holds is

Prob(� = �)  Prob (|X � n/2| � |�|) ,

where the random variable X has a probability distribution
Bin(n, 1/2). Evaluating the above tail probability bound for
the binomial distribution provides us the required bound on
the p-value.

As a concrete example, our quasi-experiment with � =
1% shown in Table I yielded 52,028 pairs with non-zero
outcomes of which 28,810 had positive values and 23, 218
had negative values. The probability that the observed skew
between positive and negative outcomes � = 28, 810 �
23, 218 = 5592 occurs, given that the null hypothesis H

o

holds, is obtained by bounding the tails of the distribution
Bin(52, 028, 1/2) � 26, 014), where 26,014 is the expected



number positive (or negative) outcomes. The p-value bounded
in this fashion amounts to a very small number of about
1.5 ⇥ 10�144, which is much less that the required 0.001.
Hence, we conclude that our results are statistically significant.

While the sign test is commonly used with matching QEDs,
a different but distribution-specific significance test called the
paired T-test may be applicable in other QED situations. A
paired T-test uses the Student’s T distribution but requires that
outcome(u, v) has a normal distribution. Since our differential
outcome does not have a normal distribution, we rely on the
distribution-free non-parametric sign test that is more generally
applicable.

2) How close should the matching be?: The closer we can
match the chosen variables for the paired experimental units,
the more accurate our QED results. In our QED example in
Section III-B, we have used exact matches on the portion of the
content watched (within 1 second), geography (by country),
and connection type (mobile, dsl, cable, or fiber). Since we
have very large data sets, we were able to obtain several
tens of thousands of matching pairs, yielding statistically
significant results. However, when data sets are smaller or
when the number of matching variables are large, it is unlikely
to find sufficient pairs with exact matches in the data set.
In this case, one can perform caliper matching where it
is sufficient that the matched factors have values within a
specified distance [4]. Different metrics of distance have been
used in the social sciences including Mahalanobis distance or
nearest neighborhood distance. A common alternative to using
distance is to create a composite value from the values of
the multiple variables that are to be matched. The composite
value is called the propensity score and experimental units
with similar scores are matched [18].

3) What about hidden threats and confounds?: With QEDs,
and in fact with many other techniques for causal inference,
there is always the possibility of factors that could impact the
analysis that were not considered. It could be that there are
factors that are potentially measurable but were not part of the
experimental design, as in the case of the parent’s myopia in
our earlier example. Or, perhaps there are factors that are sim-
ply hard or impossible to measure. In our video study example,
it was hard to measure the geography of a user at a granularity
finer than country in many parts of the world. Though one
could get argue that a finer measurement (say at the zip code
or equivalent level) could provide a better picture of the socio-
economic status of the person. And, personal characteristics
such as age and sex of a person could not be measured,
though any influence of these variables on what videos were
watched is already accounted for in our experimental designs.
An excluded factor influences the outcome of a QED only
if that factor is differentially distributed in the treated and
control sets and if that differential distribution actually causes
a significant change in the outcome.

As with any other scientific technique, there is no substitute
for good experimental design that carefully considers the
significant threats and confounds. It is best to view our work
on matched QEDs as a framework for eliminating plausible

Fig. 4: Viewers abandon at a higher rate for short videos than
for long videos [11].

threats when identified and to provide greater confidence that a
causal conclusion holds. In fact, in general terms, causality can
seldom be proved in black-and-white, but only with increasing
confidence in shades of grey.

D. Quasi-Experiments for Abandonment and Repeat Viewers

For completeness, we summarize results from other quasi-
experiments devised in [11]. In the physical world, it is known
that people are more patient if there is a perception of a higher
value service at the end of the wait [13]. And, often times the
perceived value of a service is also a function of the duration of
the service. A 30-minute wait for a 5-minute cab ride frustrates
people more than a 30-minute wait for a long plane ride. We
wanted to test if the same behavior applies for users waiting
for a video to start, i.e., would people be willing to wait longer
without abandoning for a long video (say, a movie) than for a
short video (say, a news clip). We showed that this was indeed
the case (c.f Figure 4). But, we also went one step further
and designed a quasi-experiment where each pair of viewers
have the same geography and connection type, but differ on
the whether they watch a short video (example, news) or a
long video (example, movie). With this QED, we showed the
following assertion.

Assertion 2 ([11]). Viewers are less tolerant of startup delay
for short videos in comparison to longer videos. A viewer
watching a short video is 11.5% more likely to abandon sooner
during startup than its matching pair watching a long video.

In the physical world, the patience level of users is depen-
dent on their expectations. While the transcontinental express
train opened in 1876 that traveled from New York City to San
Francisco in 83 hours, it was widely heralded as the “lightning



Fig. 5: Viewers who are better connected abandon sooner.

express”. No doubt that the transcontinental railroad was a
major advance, as it shortened travel time from over a month
to only a few days. However, none of us today would have the
patience to travel for 83 hours and would find that a frustrating
experience What has changed is our expectations of what is
an appropriate delay for travel. We wanted to study if the
same cultural effect holds in the world of online videos and if
people would wait less if they expected their videos to startup
more quickly. Therefore, we studied the abandonment rate for
users on different types of connections ranging from mobile,
DSL, cable and fiber. Our basic analysis (c.f. Figure 5) showed
that better connected users did in fact have less patience and
abandoned more. We then designed a QED where pairs of
users are identical with respect to their geography and the
watched content but differ on the type of connection used to
access the Internet. The outcome of our QED showed a clear
distinction between mobile users and the rest. Though some
finer distinctions such as between users on DSL and cable had
a larger p-value and hence deemed statistically inconclusive.
Based on the QED results, we showed the following.

Assertion 3 ([11]). Viewers watching videos on a better
connected computer or device have less patience for startup
delay and so abandon sooner. For instance, a viewer with
fiber broadband connectivity is 38.25% more likely to abandon
sooner during startup than a similar viewer with mobile
connectivity.

Finally, we looked at the effect of a failed visit on repeat
viewership. A failed visit is one where a user tries to watch a
video but the video fails to play, and the user leaves the content
provider’s web site, presumably with some level of frustration.
Using QED techniques, we evaluated the impact of a failed
visit on the probability that the user comes back to the same

website within a week to play more videos. We randomly
created pairs of users where the “treated” user experienced
a failed visit and the untreated user did not. The users in
each pair need to be made as similar as possible in other
regards They were matched on geography, connection type,
and content provider that they are visiting. In addition, one
needs to be careful not to match an “occasional” visitor to
the site, say one who watches on weekends, to a “frequent”
visitor, say who watches every day. To capture this additional
characteristic we compute that total visits and viewing time
prior to treatment and ensured that these characteristics were
similar between the matched pairs. Using this QED, we
showed the following assertion.

Assertion 4 ([11]). A viewer who experienced a failed visit is
2.3% less likely to return to the content provider’s site to view
more videos within a week than a similar viewer who did not
experience a failed visit.

Our goal in this section was to provide examples of how
network performance can be quantitatively and causally linked
to user behavior for online videos. The reader is referred to
[11] for a more in-depth treatment of these results.

IV. CONCLUSIONS

Understanding the impact of performance on the user is
one of the most important but also one of the least understood
problems in network performance research. The link between
performance and users is key to sustaining the “virtuous cycle”
that sustains the economics of a network service. A scientific
understanding of the impact needs to be both quantitative
and causal. It is now possible to collect, store, and analyze
large amounts of performance and user behavior data from
network services to the extent not possible even a few years
ago. However, sophisticated techniques for experimentation
and analysis need to be developed to extract meaningful cause-
effect relationships from the measured data.

The causal impact of performance on users is key from two
different perspectives. First, network services often need to
be engineered to optimize some aspects of performance at the
potential cost of others. Understanding the causal impact of the
different performance metrics on users is the only quantitative
way of making such tradeoffs. Second, the causal impact of
performance on users is at the very heart of monetizing a
network service. For example, in the case of online videos, the
quantitative assessment of the impact provided in [11] helps
determine the business value of video performance and shows
how modifying aspects of performance can impact the content
provider’s business. Further, the study of viewer patience in
[11] provides a basis for understanding ad-supported models
for online videos that fundamentally rely on viewers waiting
patiently through advertisements.

Our initial step towards understanding the impact of perfor-
mance on users in [11] represents the first large-scale study of
its kind. This work also represents the first use of sophisticated
quasi-experimental techniques from the social and medical
sciences in the study of network performance. However, it is



clear that what we know today is only the tip of the iceberg.
Much remains to be studied in the context of a variety of other
network services that are in use today. We hypothesize that the
availability of large amounts of performance and behavioral
data and the development of better analytical tools will finally
put the users back at the center of network performance
research, revolutionizing both how networks are architected
for performance and how business models are evolved for real-
world networks.
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