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Abstract

Conducting a thorough performance evaluation of an STM is very
time consuming. Depressingly, even with all this effort, and even
with the same application, it can still be hard to predict the perfor-
mance if the number of underlying threads on which the application
needs to be deployed is different than those of the experiment. Ba-
sically, one might have to conduct an entire set of new experiments
to get some understanding of the performance of the STM with the
new number of threads.

We propose a pragmatic approach to contribute to changing this
state of affairs. Using classical engineering approximation tech-
niques, we extract from a set of STM performance measurements,
analytical performance functions to model the scalability of the
STM. We show, more specifically, that polynomial and rational
functions provide good interpolations of STM performance: even
with only a handful of measurements, the average error in most
cases is around 1-2%. Further, we show that we can perform rea-
sonably precise extrapolation using rational functions: basically,
using measurements with up to m threads, we can predict the per-
formance up to roughly 2m threads with a relatively low error
(around 10% in best cases).

We discuss two possible applications of our approach: (1) stat-
ically deciding whether to use an STM for a given workload and a
given number of threads, and (2) dynamically adjusting the number
of threads that execute in parallel to match the optimal concurrency
level of a given workload.

Keywords Software Transactional Memory, Performance, Scala-
bility.

1. Overview

As its name indicates, Software Transactional Memory (STM) is
built purely in software: part of its appeal is its independence
from any specific hardware support. In principle, an STM can
work on any hardware and for any size of transactions and data
structures [3, 10, 12, 17, 21, 24, 26]. Yet, and not surprisingly, the
performance, and actually the relevance, of the STM are highly
sensitive to the target application, the workload, the underlying
architecture, and the actual number of threads used for parallelizing
the code.

Figure 1(a) depicts the speedup of a parallel code that uses
SwissTM [12] over sequential, non-instrumented code, for two
different workloads from the STAMP benchmark suite [6]. The
figure conveys the very fact that, while STM scales very well on
the vacation low workload, outperforming sequential code by
almost 30 times with 64 threads, its scalability is not nearly as good
on intruder, where it outperforms sequential code by only 2 times
with 64 threads. In fact, even the same application that uses STM
can have highly varying performance depending on the workload
configuration. Figure 1(b) illustrates this. The lower contention
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read-dominated STMBench7 [16] workload achieves a speedup
factor of almost 12 with 64 threads, but the higher contention write-
dominated workload of the same benchmark is faster than non-
instrumented sequential code by less than 2 times.

In fact, two recent studies [8, 11] drew contradictory conclu-
sions about the scalability of an STM even on the same subset of
benchmarks. Not only the performance of different STM workloads
can differ significantly, but it is also very difficult to predict how it
will evolve should the number of available threads (cores) be in-
creased. In general, experience shows that even if the scalability of
an STM looks great for a range of thread values, performance might
actually (slightly or significantly) drop after some point: basically,
contention can simply become too high with too many threads.
But knowing at which point this happens is hard without inten-
sive experiments. For the workloads in Figure 1, the performance
peaks at 22 threads for intruder, 32 for STMBench7 write, 52
for STMBench7 read, while for vacation low it keeps improv-
ing up to 64 threads.

Clearly, this state of affairs might put potential adopters of STM
in a difficult position: should they write their application with an
STM in mind and expect the performance to speed up with a new, to
be purchased, architecture with more cores? Or should they simply
keep hacking their old lock-based techniques and forget about the
STM?

Certain rules of thumb do exist. For example, if different ap-
plication threads mostly access disjoint data, and if the majority
of accesses are reads, resulting in lower contention, the applica-
tion is probably a good candidate for parallelization with STM and
scaling it to a larger number of threads would certainly reveal ben-
eficial. Also, if only a small portion of the code is actually using
transactions, the overheads of STM will not be significant and the
application is likely to benefit from STM. However, these rules are
somehow vague and not easily applicable in all cases.

Ideally, an automated tool would analyze the atomic blocks of
the application and, based on their characteristics, would predict
the scalability of the STM on that application. The analysis could
partially be static, based on the source code, but would, most likely,
also require analysis based on the profiling executions. Generating
the code for the profiling executions is indeed feasible: (1) the
programmer needs to identify atomic code blocks even if some
other parallelization technique is used and (2) STM compilers [3,
13, 17, 28] automatically produce STM code eliminating the need
for manual instrumentation. Nevertheless, atomic blocks have a
wide variety of characteristics (e.g. duration, number and type of
transactional accesses, etc.) and it is not completely clear which
of these characteristics are relevant for predicting the performance.
Furthermore, some of the characteristics are difficult to capture in
a meaningful and concise way (e.g. transaction access sets). All of
this makes the design of a tool for predicting scalability based on
atomic block characteristics a daunting task.
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Figure 1. STM performance

This is where theory should, in principle, help. While inherently
general, and not tied to any application, workload, or thread count,
theoretical work on STM performance [5, 14, 15] however mainly
deals with the worst-case. Worst cases are useful for defining lower
bounds, but they are not very likely to occur in practice where the
focus is the common-case. For example, it was shown in [14] that,
in the worst case, the operation in a certain class of STMs that
use invisible reads takes time linear in the number of objects in
the system. Roughly speaking, this is because transactions in such
STMs need to validate their read sets on every operation, in order
to maintain consistency of the memory snapshot they observed.
This lower bound also applies to STMs that use global counters
in order to avoid some of the read-set validations. However, in
the common-case, the use of a global counter will eliminate most
read set validations anyway, significantly improving common-case
performance over the worst-case.

Several approaches for modeling STM performance have been
proposed [18-20, 25, 27]. None of these is completely general as
they are used to either model one aspect of STM performance,
such as algorithmic efficiency in [18-20] and transaction conflict
behavior in [25], or are developed to answer specific questions,
such as whether to use locking or STM for particular critical section
in [27].

In this paper, we explore a much simpler and pragmatic ap-
proach to predicting the scalability of STM-based applications. We
employ classical engineering approximation techniques [4] to pre-
dict the performance of a workload W with n threads, based on
its performance with m; (1 < ¢ < M) threads. Put differently,
we construct an analytical performance function performance =

f(n), based on M performance measurements. Function f de-
scribes the characteristics of the application workload and the
whole computing environment (STM, OS, hardware etc.). It takes
as a parameter the number of threads n, and outputs a guess f(n)
of the expected performance. Interestingly, the approach does not
require any knowledge of the workload or the system configuration
when constructing f: no access to the source code of the applica-
tion is required.

Basically, our approach to predicting performance consists of
three steps:

1. Profiling. We measure the performance of the workload on a
target STM and computer system with several thread counts.

2. Approximation. Using classical approximation techniques [4],
and based on the performance measures collected during the
profiling step, we construct a performance function perfor-
mance = f(n) supposed to capture all the characteristics of the
workload, STM and the computer system.

3. Prediction. Finally, we use f to predict the performance with a
different number of concurrent threads than we used during the
profiling step.

We study several choices for the performance function f using
ZunZun.com [2], MATLAB built-in polynomial approximations
and rational approximation method from [7]. We evaluate the pre-
cision of the approximation using the STAMP benchmark suite [6]
and a machine with UltraSPARC T2 CPU that supports 64 hard-
ware threads. Our experiments reveal that both polynomial and ra-
tional functions can be used to provide good interpolations of STM
performance. Using only 9 measurements (uniformly distributed
across thread counts) we obtain the average error of only around
1-2% in most cases. Also, we show that reasonable extrapolations
of STM performance can be performed using rational functions.
Using measurements with up to m threads, in most cases we can
predict the performance up to roughly 2m threads with a relatively
low error (in best cases around 10%).

We illustrate two practical applications of our approach:

e Statically predicting the performance gain when adding addi-
tional threads (e.g. deciding whether to buy more CPUs in a
cloud computing environment). Think of a system administra-
tor who has to decide whether to assign (or buy) additional CPU
cores to an already executing STM application. A performance
function f can be constructed and used to speculate about the
performance, should the additional CPU cores be assigned to
the application.

Dynamically adjusting the number of threads to achieve the
optimal level of parallelism for a given workload. Remember
that, on certain workloads, the performance degrades when
adding threads after a certain threshold. We basically suggest
a way to dynamically use the performance function in order to
determine the optimal number of parallel threads.

In the rest of the paper, we first evaluate the suitability of dif-
ferent functions to interpolate STM performance (Section 2). Next,
we evaluate the suitability of functions for extrapolating the perfor-
mance when increasing the number of threads (Section 3). We then
describe and evaluate an algorithm for dynamically adjusting the
number of threads (Section 4). Finally, we conclude the paper by
discussing the limitations of our approach (Section 5).

2. Interpolation

We discuss and evaluate below various possible function choices
for interpolating STM performance.



The choice of the approximation function type is very important
and can impact the error of the approximation significantly. The
ideal function is one that is relatively simple, yet general, and
can be applied to different systems and workloads. We considered
several standard choices:

e Polynomial functions f(n) = ag + ain + ... + amn™

a0+a1n+...+apnp
bo+bin+...bgnd

= In(n), f(n) = a+b-

e Rational functions f(n) =

e Logarithmic functions e.g. f(n)
In(n) +c-In(n)?® +d-In(n)?

b+cn
e Exponential functions e.g. f(n) =e€", f(n) = aed+en + f
aln—0b)°+d

e Power functions e.g. f(n) = n?, )

Polynomials can be used to approximate any continuous func-
tion on a closed interval to any degree of accuracy [23]. Rational
functions have the same nice property, but they can model more di-
verse behaviors than polynomials. The major drawback of polyno-
mials and rational functions is their not conveying much informa-
tion about the workload behavior. On the other hand, logarithmic,
exponential and power functions convey more information about
the workload performance, and they could be used to approximate
some of the workloads very well. Unfortunately, as the experiments
below reveal, they could not be used for all the workloads equally
well. Our experiments led us to use polynomial and rational func-
tions as they, maybe unsurprisingly, proved to be the most general.

To perform the actual approximations, we used Zun-
Zun.com [2], a web site for curve fitting with thousands of dif-
ferent functions. For polynomial approximations, we used polyno-
mial functions constructed using MATLAB’s polyfit function,
which applies the method of least squares to the Vandermonde ma-
trix whose elements are powers of n [1]. To construct rational ap-
proximations functions, we used the method of [7], which is easy
to use in MATLAB, more flexible than ZunZun.com, and indeed
produces good results.

All our experiments were conducted on a Sun Microsystems
UltraSPARC T2 CPU with 64 hardware threads. We used 10 work-
loads defined in STAMP [6] 0.9.10 distribution.! We decided to fo-
cus on STAMP because, while it might not be fully representative
of all STM workloads, its performance functions are diverse and, in
our experience, represent other workloads’ (e.g. STMBench7 [16]
and microbenchmarks) performance functions well. All the exper-
iments were repeated several times in order to reduce variance in
collected data.

We base our evaluation in this and the following sections on
the performance measurements presented in Figure 2. The figure
depicts the speedup of STM code over non-instrumented sequen-
tial code for varying thread counts. For all workloads we used, ex-
cept for bayes, slightly changing the number of executing threads
does not cause a significant change in the performance. Bayes im-
plements a search algorithm that, for the same input, can execute
a different number of transactions in different executions, which
makes the execution time vary significantly. For this reason it is
particularly hard to predict the performance of bayes well (as our
evaluation confirms).

We first approximated the observed performance using all five
function types, listed in Section 2, and using all measured data
points (performance for all 64 thread counts) in order to derive the
best precision of the approximation we can hope to obtain. The

' We modified the STAMP benchmarks to support an arbitrary number of
concurrent threads instead of only supporting thread counts that are a power
of two, as in default STAMP distribution. The modified files are available
from http://1pd.epfl.ch/site/research/tmeval.
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Figure 2. Speedup over sequential code

median and the first and third quartiles of relative error for each of
the STAMP benchmarks are depicted in Figure 3.

In the figure, we used the best fitting logarithmic, exponential
and power functions as calculated by ZunZun.com. Different func-
tions produced the best approximation on different benchmarks for
the same function type. For example, the best power function ap-
proximation on genome is obtained by f(n) = a(z — b)° + d,
while the best power function approximation on kmeans-1low is
f(n) = ab™* + e. This fact makes automatic approximation us-
ing logarithmic, exponential or power functions, difficult.

On the other hand, both polynomial and rational approximations
use the same type of functions. We used polynomials of degree
6 and for rational approximations both numerator and denomina-
tor are of degree 3. Furthermore, the approximation error in most
cases is the smallest with polynomial and rational functions. It is
even more important that the small error is produced consistently,
unlike with logarithmic, exponential and power functions. For ex-
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Figure 3. Approximation error with different function types

ample, logarithmic approximation has the smallest error on ssca2
workload, but it has the largest error on bayes, kmeans low and
vacation low. Itis also much worse than polynomial and rational
approximations on intruder and yada.

Clearly, polynomial and rational functions revealed to be the
best suited for approximating STM performance, both because of
the low approximation error, and uniform and simple approxima-
tion functions.

Next, we evaluated the approximation error with polynomial
and rational functions with the subset of measurements to evaluate
the quality of approximations with incomplete data. Here, we used
17 and 9 data points uniformly distributed across thread counts.
The median and the first and the third quartile of relative error
for each of the STAMP benchmarks are depicted in Figure 4. The
figure shows that the error of approximation does not increase
significantly even if only a relatively small subset of data points
is used, as long as the data points cover the whole approximation
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Figure 4. Interpolation error with different numbers of data points

range. The figure also shows that both rational and polynomial
functions achieve relatively similar errors.

Finally, we present the approximation error with different types
of polynomial and rational functions using 9 data points uniformly
distributed across threads counts. Figure 5 depicts median and the
first and the third quartile of relative error for each of the STAMP
benchmarks with approximations using polynomial functions of
degree 3, 4, 5 and 6 and rational functions with both numerator
and denominator of degree 2, 3 and 4. The figure shows that the
best polynomial approximations are achieved with the polynomials
of degree 6. For this reason we used polynomial approximation
of degree 6 in further experiments. The situation is not as clear
with rational functions as approximations of degree 3 and 4 have
similar errors. We decided to use rational approximations of degree
3 because they require less data points to construct.
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Figure 5. Interpolation error with different types of polynomial
and rational functions

3. Extrapolation

We describe and evaluate here the use of performance functions to
extrapolate performance, i.e. predict performance for more than m
threads, based on several measurement all with less than m threads.
This is, arguably, the most interesting usage of performance func-
tions.

We constructed rational and polynomial functions based on the
measurements with 1 to 8, 1 to 16 and 1 to 32 threads. Figure 6
conveys the error of extrapolations for these cases.

The figure shows that the polynomial functions are not very
useful for extrapolation (which might not be very surprising) as
the error increases rapidly after 32 threads.”

The figure also shows that the extrapolation of STM per-
formance data can be performed using rational functions for
many workloads. The only exception is bayes which has highly

2 We observed the same trends for polynomial extrapolation based on 8 and
16 data points, but omit the data to avoid further cluttering the graphs.
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Figure 6. Extrapolation error

varying performance making performance prediction very hard.
Extrapolation with rational functions achieves good results for
genome, intruder, labyrinth, ssca2, vacation-high and
vacation-low where at least one of the approximation functions
has error less than 20% with 64 threads. Approximation using
data for first m threads extrapolates data quite well for up to 2m
threads in most workloads for Rat 8 and Rar 32. For example, the
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error is about 5% in intruder and about 10% in genome. Both
kmeans-high and kmeans-1low are quite difficult to predict due to
high variance in measured performance, but the prediction error is
still relatively low (less than 20% up to 23 threads with Rat § and
up to 50 threads with Rat 32).

It is interesting to note that the prediction error significantly
changes at multiples of 16 threads for several benchmarks (e.g.
genome, ssca2, vacation-high and vacation-low). This is
because the CPU we used has 16 execution units, making the
multiples of 16 a threshold for, effectively, changing characteristics
of the hardware in some workloads. In several cases, Rat 8 performs
better than Ratr 16. We believe that the main reason for this is the
same. With Rar 8 the performance function is not as much tailored
to the characteristics of the machine in the first operating region as
with Ratr 16. With 1abyrinth and ssca2 Rat 8 is better than even
Rat 32. The main reason for this is that performance curve for these
two workloads significantly changes at 32 threads.

To better present the usability of performance extrapolation we
show the measured and Rat 8 predicted speedups of STM code over
sequential, non-safe code for genome and ssca2 benchmarks in
Figure 7. The extrapolations in both cases are rather good (except
for the dip at 11 threads for ssca2) and they could clearly be used
to correctly predict that genome scales well while ssca2 does not.

One important aspect of performance extrapolation is the abil-
ity to correctly predict the number of threads for which the per-
formance is the highest. Table 1 depicts the thread counts with
the highest performance (7,4, ) for measured and predicted perfor-

mance and the performance impact that would result from using the

: Perf (Tmeasured_maz) = Perf (Tpredicted _maz)
redicted 7, s = casured_maz predicted-maz) 1 0)0)).
b mas ( Perf (Tensured —maz) )

The table shows that increasing the number of points used for the
extrapolation significantly improves accuracy of 1},,, prediction.
Also, Rat 32 predicts 1’4, quite accurately, with the average slow-
down of 6.4%.

4. Optimal Concurrency

In this section, we describe and evaluate a simple scheme for using
performance functions to dynamically adjust thread counts in order
to achieve the best performance for a given workload.

A simple scheme for dynamically determining the optimal num-
ber of concurrently executing threads is sketched in Algorithm 1.
The basic idea is to measure the performance of the workload with
different number of threads during short time intervals (line 2)
and use these measurements to construct the performance function

Algorithm 1: Matching optimal thread count

1 upon period_expired(job) do

2 job.perf[job.thread_count] < job.perf;

3 if job.points < min_count then

4 job.thread_count < choose_tc();

5 if job.perf[job.thread_count] = 0 then
6 | job.points «— job.points + 1

7 else

8 perf_func «<— approximate(job.perf);

9 tc — maz _perf _thread _count(perf _func);
10 job.thread_count «+ tc;

11 function approzimate(perf) do
12 if size(perf) < 5 then

13 L return approz_poly(perf, size(perf) — 1);
14 else if size(perf) < 6 then

15 | return approx_rat(perf,2);

16 else

17 L return approz_rat(perf, 3);

(line 8). During each interval, the workload is executed using the
number of threads for which the predicted performance is the high-
est (line 10). If there are not enough measurements for approxima-
tion (line 3), the number of threads is chosen arbitrarily (line 4). The
choice can be made randomly or according to some heuristic. Func-
tion approximate (line 11) takes at least 3 data points and uses a
different approximation based on the number of measurements—
polynomial with maximum degree if there are not enough measure-
ments for rational and rational with maximum degree otherwise.

It is important to note that automatically scheduling the optimal
number of threads is not straightforward, and would require some
additional information from STM or other parts of the runtime.
For example, thread 77 could be running and waiting for thread
T5 to perform some task before continuing. If the thread scheduler
temporarily suspends 75 at this point it would actually degrade and
not benefit the overall performance of the application.

We implemented Algorithm 1 in MATLAB to evaluate its con-
vergence speed and precision. Table 2 contains the convergence
speed and error. The algorithm ends when the thread count to be
used in the next time interval has already been used for approxima-
tion in the current time interval. The table contains results for dif-
ferent choices of starting measurements, which are given in column
titles (e.g. 1-32-64 means that the starting measurements are per-
formed with 1, 32 and 64 threads). We fix thread counts for starting
measurements, in all but the first column, where one of the thread
counts is chosen randomly. For this case, the table depicts the av-
erages of five runs. The results are encouraging, as the algorithm
converges in 6 to 8 steps on average no matter what the choice of
starting points is. Its relative error is also quite low (6% to 8.5%
on average). Table 2 also conveys the averages without including
results for bayes, which suffers from a very high variance in col-
lected data and is extremely difficult to predict. Without it, the aver-
age convergence speed stays about the same, but the average error
is almost half of the average error with bayes included. Choosing
4 starting measurements instead of 3 (the last column), does not
actually improve the speed or the precision of the algorithm. Over-
all, we obtain the lowest error when using 1, 16 and 32 threads for
the starting measurements. It is interesting to note that the random
choice of starting points also performs well, having the fastest con-



Measured Rat 8 Rat 16 Rat 32 Poly 32
T"’L(l(t TTYL(L.Z‘ S [%] Tma:t S [%] T'Vn(l(t S [%] TWI,(II S [%]

Bayes 7 7 0 7 0 7 0 31 10

Genome 55 64 9.6 64 9.6 64 9.6 64 9.6

Intruder 22 64 16.1 64 16.1 22 0 64 16.1

Kmeans High 41 64 41.8 64 41.8 54 22 64 41.8

Kmeans Low 53 7 77.6 64 14.6 64 14.6 30 31.1

Labyrinth 48 64 7 64 7 64 7 64 7

SSCA2 30 64 10 64 10 33 7.6 29 0.2

Vacation High 61 13 63.7 64 1.7 64 1.7 34 25.5

Vacation Low 63 64 1.9 64 1.9 64 1.9 35 24.9

Yada 24 33 10.6 64 37.6 23 0 64 37.6

Avg 23.8 14 6.4 20.4

Table 1. Extrapolated maximum performance
1-Random-64 1-32-64 1-16-32 1-8-24 1-8-24-64
Steps  Error [%] | Steps Error [%] | Steps Error [%] | Steps Error [%] | Steps  Error [%]

Bayes 7.6 28 9 35.1 6 353 13 32.5 6 32.5
Genome 4.4 0.01 4 1 7 1 4 16.5 4 16.5
Intruder 32 2.1 12 0.1 6 0 6 0 6 0
Kmeans High 8 8 5 9 8 72 7 8.2 7 16.4
Kmeans Low 4.2 11.7 3 14.6 6 14 8 0 8 14.6
Labyrinth 6.8 3.7 8 1 10 29 13 3.6 8 2.9
SSCA2 13 1.8 11 2.9 11 0 9 0.2 9 0.2
Vacation High 3 2.7 5 0.7 9 0.7 6 0 4 1.7
Vacation Low 3.8 1.3 6 0.8 7 0 6 0 6 0.8
Yada 7.4 04 7 0.5 4 0 6 0 5 0
Avg 6.1 6.1 7 6.6 74 6.1 7.8 6.1 6.2 8.5
Avg no Bayes 6 3.6 6.8 34 7.6 2.9 7.2 32 6.2 5.9

Table 2. Algorithm 1 convergence speed and error
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Figure 8. Execution of Algorithm 1 (1-16-32) for intruder

vergence (both with and without including bayes results) and also
relatively low error in both cases.

From our results, it is clear that Algorithm 1 does not converge
to the optimal thread count, but it comes very close in a few steps.
A refined algorithm could continue the search in the vicinity of the
thread count the Algorithm 1 converges to.

Figure 8 depicts a concrete execution of Algorithm 1 for
intruder starting with measurements for 1, 16 and 32 threads.
Each of the graphs depicts the measured speedup over sequential
code (full line) and a single approximation (dotted line) which rep-
resents a single step in the algorithm. The cross marks the maxi-
mum value of the performance function in the current step. In this
execution after 4 approximations the algorithm converges to the
correct thread count of 22.

5. Discussion

We do not advertise our approach as the silver bullet to help make
the right choice for the use or not of an STM in a given application
and workload. The most important limitation of our work is that the
performance function f strongly depends on both the workload and
the computer system. Small changes in the workload or the system
might introduce significant errors in the predictions. For example,
even replacing two 4-core CPUs with a single 8-core CPU, or
increasing the frequency at which a certain lexical transaction is
executed might significantly change the performance function.

An ideal way of predicting the performance would use an ana-
Iytical function of the form:

(€]

In such equation, ¢; would denote the characteristics of various
components of the computer system and the executed workload it-
self, whereas n would denote the number of threads executed in
parallel. The system components and the corresponding charac-
teristics would include the STM features (conflict detection, con-
tention management, the mapping of memory locations to STM
meta-data, etc.), the hardware (the number of CPUs, cores and

performance = fq(c1,...,cn,n)



hardware thread contexts, the characteristics of the cache and the
memory hierarchy etc.), as well as the operating system and the sys-
tem libraries (the thread scheduler, the memory allocator, etc.). The
workload characteristics would include the size of the transactions,
the ratio of transactional and non-transactional memory accesses,
transaction access patterns etc.

Building such function f, is very difficult, if not impossible, be-
cause the impact of ¢; can be very different, depending on various
factors. For example, the impact of the memory allocator concur-
rency control is significant only if there are many memory alloca-
tions and deallocations. If there are only a few, then there might be
no difference between using a simple single-lock memory allocator
and a fine-tuned parallel memory allocator. Furthermore, it might
be difficult to concisely represent some of the important character-
istics. One such example are transaction memory access patterns.
It is not only relevant which memory locations are being accessed,
but also at which point in the execution are they accessed, as it
is not the same if some transaction writes to a heavily contended
memory location near its beginning or near its end. Even if detailed
information about memory access patterns of transactions is con-
structed, it needs to be represented in a simple and concise way so
it can easily be used in f,. On the other hand, it is not completely
clear whether this information is needed at all—maybe some other
characteristics capture enough information about the system and
transaction access patterns are not necessary. Hence our pragmatic
focus on the number of threads n.

We believe that our approach could also be useful for other types
of concurrency schemes, e.g. lock-based techniques. It might not
be as promising as with STM, because lock-based code is typically
more difficult to write than the code that uses STM and, thus, the
programs required for profiling runs are more difficult to obtain.
Furthermore, overheads of STM are typically much higher, making
the question of performance prediction more important. Also, we
believe that our technique can be, rather straightforwardly, applied
to upcoming Hardware [22] and Hybrid [9] Transactional Memory
and that it will, most likely, be relevant for both.

In the future, we plan to improve approximations using the
knowledge about the modeled system. For example, we know that
the performance cannot be negative, and also, that it typically
changes rather slowly. This could help us remove some local min-
imums and maximums in the predicted function. Also, using run-
time information provided by the STM and the computer system
could help us improve our approximations. In particular, it would
be very interesting to focus on predicting the performance for ma-
chines with low number of hardware threads (desktop machines).
In these cases, not many measurements can be collected and used
for function fitting and the runtime information could be used in-
stead to achieve better approximations.
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