Implementing AMD’s Advanced Synchronization
Facility in an out-of-order x86 core

Stephan Diestelhorst Martin Pohlack Michael Hohmuth Dave Christie Jae-Woong Chung Luke Yen

Advanced Micro Devices, Inc.
ASF _Feedback@amd.com

Abstract

AMD’s Advanced Synchronization Facility (ASF) is an experimen-
tal architecture extension proposal aiming at making lock-free pro-
gramming easier and at accelerating transactional memory systems.

We report our experiences implementing ASF in an out-of-order
(000) CPU core simulator and our lessons learned for a future
a real (silicon) implementation of ASF. Specifically, we describe
how we integrated ASF into the pipeline of the simulated OoO
core and how we handle the intricacies caused by the the inherently
asynchronous multiprocessor memory-coherence protocol that can
cause transaction aborts in any CPU state.

We present our ASF implementation’s answers for four of
ASF’s key requirements: providing an architectural interface, rather
than exposing microarchitecture directly; providing sequential
memory access semantics; early abort semantics; and, capacity
guarantees. We find relatively lightweight solutions for all of these
requirements, but the OoO nature of the core necessitates many
small changes to several CPU data structures to provide complete
tracking of protected memory locations and timely reactions to
conflicting memory access.

1. Introduction

Transactional programming is a promising paradigm for parallel
programming that is based on a simplified programming model,
but requires runtime support in the form of a software or hardware
transactional memory (TM) system. Because software-only solu-
tions come with a high overhead, hardware support for TM has
been the subject of intense research in the past few years [S[11].

Most hardware extensions (including the two implemented in
real silicon [7, [10]) have been evaluated for (more or less) simple
in-order processors. However, many modern commercial micropro-
cessors employ out-of-order (OoO) cores. It is unclear whether re-
sults presented for in-order cores translate to OoO cores, for the
following two reasons:

e First, Oo0O cores are significantly more complex than in-order
cores, which also complicates the implementation of any hard-
ware support for TM. For example, an OoO core could have
multiple transactions in flight, competing for hardware re-
sources and interfering with each other, or memory references
could be reordered across the boundary of a transaction. There-
fore, to assess the feasibility of TM support for an OoO core, it
is important to evaluate it for an OoO model.

Second, OoO cores exhibit a different performance profile than
in-order cores. To accurately predict TM performance for mod-

(© 2010 Advanced Micro Devices, Inc. All rights reserved.

ern microprocessors, it is crucial to use a simulator that closely
tracks native performance for conventional workloads.

In this work we set out to implement a recent hardware-
extension proposal, AMD’s Advanced Synchronization Facility
(ASF), in PTLsim, an instruction-driven near-cycle-accurate full-
system OoO-core AMD64 simulator [24]]. ASF is an experimental
AMD64 architecture extension proposal developed by AMD [1].
It aims at making lock-free programming significantly easier and
faster as well as accelerating TM systems [6].

We report our experiences integrating ASF with an existing
000 core simulator and our lessons learned for a future real (sili-
con) implementation of ASF. Specifically, we describe how we in-
tegrated ASF into the pipeline of the simulated OoO core and how
we handle the intricacies caused by the the inherently asynchronous
multiprocessor memory-coherence protocol that can cause transac-
tion aborts in any CPU state.

We present our ASF implementation’s answers for four of
ASF’s key requirements:

e Providing an architectural interface, rather than exposing mi-
croarchitecture directly

¢ Providing sequential memory access semantics
e Early abort semantics
e Capacity guarantees

We find that there are relatively lightweight solutions for all of these
requirements, but that the OoO nature of the core necessitates many
small changes to several CPU data structures to provide complete
tracking of protected memory locations and timely reactions to
conflicting memory access.

In this paper, we do not digress into the rationale that led to
ASF’s design, or any workloads we have used to validate our
simulator or to evaluate ASF’s performance. We refer interested
readers to [60]].

In the rest of this paper, Section 2] revisits the fundamentals of
our work: it introduces ASF’s programming interface and basic
implementation options, provides background on OoO cores, and
contrasts OoO speculation with ASF speculation. In Section [3| we
present the implementation of ASF in the OoO core simulated by
PTLsim. We discuss related work in Section] Section 3] summa-
rizes our lessons learned and concludes the paper.

2. Fundamentals
2.1 ASF specification

ASF is purely experimental and has not been announced for any
future product. However, it has been developed in the framework
of constraints that apply to the development of a high-volume
Microprocessor.

; DCAS Operation:
; IF ((meml = RAX) && (mem2 = RBX)) {

; meml = RDI; mem2 = RSI; RCX = 0;
; } ELSE {
; RAX = meml; RBX = mem2; RCX = 1;
; } // (R8, R9, R10 modified)
DCAS:
MoV R8, RAX
MoV R9, RBX
retry:
SPECULATE ; Speculative region begins
JINZ retry ; Page fault, interrupt, or contention
MOV RCX, 1 ; Default result, overwritten on success

LOCK MOV R10, [meml]
LOCK MOV RBX, [mem2]

; Specification begins

cMp R8, R10 ; DCAS semantics
JINZ out

CcMP R9, RBX

JINZ out

LOCK MOV [meml], RDI
LOCK MOV [mem2], RSI

; Update protected memory

XOR RCX, RCX ; Success indication
out:

COMMIT

MoV RAX, R10

Figure 1: A DCAS primitive using ASF.

ASF provides seven new instructions for entering and leaving
speculative code regions (or speculative regions, for short), and for
accessing protected memory locations (i.e., memory locations that
can be read and written speculatively and which abort the specu-
lative region if accessed by another thread): SPECULATE, COMMIT,
ABORT, LOCK MOV, WATCHR, WATCHW, and RELEASE (the last three are
not further discussed in this paper). Figure [T shows an example of
a double compare-and-swap (DCAS) primitive implemented using
ASF.

Speculative-region structure. Speculative regions have the fol-
lowing structure. The SPECULATE instruction signifies the start of
such a region. It also defines the point to which control is passed
if the speculative region aborts: in this case, execution continues at
the instruction following the SPECULATE instruction (with an error
code in the rAX register and the zero flag cleared, allowing subse-
quent code to branch to an abort handler).

The code in the speculative region indicates protected memory
locations using the LOCK MOV instruction, which is also used to load
and store protected data.

COMMIT and ABORT signify the end of a speculative region.
COMMIT makes all speculative modifications instantly visible to all
other CPUs, whereas ABORT discards these modifications.

ASF supports a limited form of nesting that allows simple com-
position of multiple speculative regions into an overarching specu-
lative region. Nesting is implemented by flattening the hierarchy of
speculative regions: memory locations protected by a nested spec-
ulative region remain protected until the outermost speculative re-
gion ends.

Aborts. Besides the ABORT instruction, there are several condi-
tions that can lead to the abort of a speculative region: contention
for protected memory; system calls, exceptions, and interrupts; the
use of certain disallowed instructions; and, implementation-specific
transient conditions. Unlike in Sun’s hardware TM (HTM) design
[10], TLB misses do not cause an abort.

In case of an abort, all modifications to protected memory lo-
cations are undone, and execution flow is rolled back to the begin-
ning of the speculative region in a setjmp/longjmp-like fashion by
resetting the instruction and stack pointers to the values they had
directly after the SPECULATE instruction. No other register is rolled

back; software is responsible for saving and restoring any context
that is needed in the abort handler. Additionally, the reason for the
abort is passed in the rAX register.

Page faults (as well as other exceptions and interrupts) abort the
speculative region before they are reported to the OS. This allows
the OS to resolve any faults before the speculative region is retried.

Strong isolation guarantees. ASF provides strong isolation: it
protects speculative regions against conflicting memory accesses
to protected memory locations from other speculative regions and
regular code concurrently running on other CPUs.

In addition, all aborts caused by contention appear to be instan-
taneous: ASF never allows any spurious side effects caused by ASF
misspeculation in a speculative region to become visible. These
side effects include nonspeculative memory modifications and page
faults caused by dependencies on stale data.

Eventual forward progress. ASF architecturally guarantees even-
tual forward progress in the absence of contention and exceptions
when_a speculative region protects not more than four memory
linesﬂ This guarantee enables easy lock-free programming with-
out requiring software to provide a second code path that does not
use ASF. Because the guarantee only holds in the absence of con-
tention, software still has to control contention to avoid livelock,
but that can be accomplished easily (for example, by employing an
exponential-backoff scheme).

2.2 Basic ASF implementation variants

We designed ASF such that a CPU design can implement ASF in
various ways. The minimal capacity requirements for an ASF im-
plementation (four transactional cache lines) are deliberately low so
existing CPU designs can support simple ASF applications, such as
lock-free algorithms or small transactions, with very low additional
cost. On the other side of the implementation spectrum, an ASF im-
plementation can support even large transactions efficiently.

In this section, we present two basic implementation variants.
We implemented these two variants in the simulator described in
later sections of this paper.

Cache-based implementation. A first variant is to keep the trans-
actional data in each CPU core’s L1 cache and use the regular
cache-coherence protocol for monitoring the transactional data set.

Each cache line needs two additional bits, a speculative-read
and a speculative-write bit, which are used to mark protected cache
lines that have been read or written by a speculative region, respec-
tively. These bits are cleared when the speculative region ends. In
case the speculative region is aborted, the cache also invalidates all
cache lines that have the speculative-write bit set.

This implementation has the advantage that potentially the com-
plete L1 cache capacity is at disposal for transactional data. How-
ever, the capacity is limited by the cache’s associativity. Addition-
ally, an implementation that wants to provide the (associativity-
independent) minimum capacity guarantee of four memory lines
using the L1 needs to ensure that each cache index can hold at least
four cache transactional lines that cannot be evicted by nontransac-
tional data refills.

LLB-based implementation. An alternative ASF implementation
variant is to introduce a new CPU data structure called the locked
line buffer (LLB). The LLB holds the addresses of protected mem-
ory locations as well as backup copies of speculatively modified

! Eventual means there may be transient conditions that lead to spurious
aborts, but eventually the speculative region will succeed when retried con-
tinuously. The expectation is that spurious aborts rarely occur and specula-
tive regions succeed the first time in common cases.

memory lines. It snoops remote memory requests, and if an incom-
patible probe request is received, it aborts the speculative region
and writes back the backup copies before the probe is answered.

The advantage of an LLB-based implementation is that the
cache hierarchy does not have to be modified. Speculatively mod-
ified cache lines can even be evicted to another cache level or to
main memory. (We assume the LLB can snoop probes indepen-
dently from the caches and is not affected by cache-line evictions.)

Because the LLB is a fully associative structure, it is not bound
by the L1 cache’s associativity and can guarantee a larger number
of protected memory locations. However, since fully associative
structures are more costly, the total capacity typically would be
much smaller than the L1 size.

2.3 Out-of-order core fundamentals

This section will briefly introduce some of the key concepts em-
ployed in current OoO microprocessors. A large number of pub-
lications exist on the matter; Hennessy and Patterson provide an
extensive overview [14].

Many high-performance microprocessor cores do not process
instructions in order (that is, not in the order demanded by the pro-
gram executed), but rather reorder instructions to interleave long la-
tency operations (such as complex computations and cache misses)
with independent instructions, and to exploit instruction-level par-
allelism (ILP). With such OoO execution, book-keeping mecha-
nisms need to be employed to maintain the sequential program se-
mantics.

A central data structure called the reorder buffer (ROB) keeps
track of in-flight instructions, their states, and required input op-
erands. Dependencies among instructions are formed through
producer—consumer relationships between instructions—operands
required by one instruction are produced as results by an earlier one
and are usually conveyed through registers. Because architecturally
visible registers may be used by multiple independent in-flight in-
struction pairs, register renaming is used to separate these aliases.

Once an instruction has all input dependencies fulfilled, it is
considered for execution and is eventually issued on one of the
functional units of the core. Executing these instructions is not
dependent on program order at this point anymore, but can proceed
out of order: later instructions with fulfilled dependencies may
execute before earlier instructions with unmet dependencies. Once
the instructions complete execution, they forward the results to
dependent in-flight instructions. The final pipeline step retires the
instruction from the core. However, it processes completed in-
flight instructions strictly in program order and thus maintains the
sequential semantics of the code.

One source for long-latency operations is load instructions that
miss in the cache. OoO execution helps here because the core
can issue multiple cache-missing loads at once, thereby effectively
overlapping the latencies for them. Several data structures keep
track of in-flight memory operations: The load and store queue(s)
of the core handle single load and store instructions, while a miss
buffer keeps track of the pending cache-lines, which may be refer-
enced by multiple in-flight memory operations.

Executing memory instructions out of order interferes with the
global order of memory accesses in multiprocessor systems, im-
pacting memory consistency guarantees [2} 121]. To free the appli-
cation programmer from reasoning over the actual complex interac-
tions, the core maintains stronger (simpler to reason about) guaran-
tees by locally checking for consistency violations and selectively
replaying memory instructions [13]].

The core fetches instructions in the native AMD64 instruction-
set architecture (ISA) from memory (the instruction cache) and
decodes the instructions and operand information. A number of the
instructions are not executed directly in the core, but are split up

into multiple smaller instructions, so called microoperations (nops),
instead. These flow through the pipeline independently and also
retire in sequence.

2.4 Levels of speculation

Conditional branches make the code sequence dependent on data,
which usually is produced only near the branch instruction and may
be subject to long-latency operations, such as complex arithmetic
and cache misses. To maintain a sufficiently large look-ahead in-
struction window, modern microprocessors employ branch predic-
tion to forecast the instruction stream. If a conditional branch is
predicted the wrong way (predicted taken vs. resolved not taken,
and vice versa), instructions on the wrong branch have been exe-
cuted. The instructions have to be removed from the core and their
effects have to be undone, or annulled, and architectural state needs
to be restored to a previous, known-good configuration.

Other predictions, such as predicting intrathread data depen-
dencies (or their absence) for pairs of stores and loads with unre-
solved addresses (store-load aliases), or optimistic assumptions for
scheduling conflicts and late resource shortages, may also cause
re-execution of instructions.

In this paper, we will refer to this collection of speculation as
employed by current OoO microprocessors as Qo0 speculation
(0O00-spec). In contrast, we will refer to speculation caused by
entering an ASF speculative region as ASF speculation (ASF-spec).

3. Pipeline and core integration

In this section we present how we integrated ASF with an OoO core
simulated in an instruction-driven near-cycle-accurate AMD64
simulator, PTLsim [24]. We discuss the integration of both basic
ASF implementation variants (introduced in Section [2.2) through-
out this section, which we organize by high-level goals:

e In Section[3.1] we discuss the danger of using implementation
artifacts as architecture, which motivates our choice of not
reusing the existing OoO speculation mechanisms of the core
for ASF speculation.

e Section[3.2]explains how we provide sequential ASF semantics
on an OoO core.

e Section [3.3] describes our implementation of ASF’s early-abort
semantics.

e Section [3.4]discusses ASF’s minimum capacity guarantee.

3.1 Avoiding implementation as architecture

Given that many cores already have mechanisms for keeping pro-
gram state private, such as the store queue and an OoO-speculation
mechanism, it is tempting to reuse these mechanisms for ASF spec-
ulation.

To illustrate, we consider the Rock processor [10], which re-
lies on existing microarchitectural features to implement transac-
tions: Rock uses the hardware’s register checkpointing mechanism
for keeping and restoring the register-file contents before starting
speculation, and it keeps speculative memory updates in the core’s
store queue. Consequently, Rock needs to abort transactions when
the capacity of either hardware resource is exhausted. Furthermore,
Rock employs only a single level of speculation; the resolution of
branch mispredictions, TLB misses, and other exceptional condi-
tions abort an ongoing transaction. For these and other reasons,
Rock does not give any guarantees on transaction success even in
the absence of contention and interrupts.

In contrast, ASF does give an architectural forward-progress
guarantee (in the absence of contention) and a minimum-capacity
guarantee for speculative regions. Microarchitectural conditions
such as a TLB miss or a store-queue overflow must not prevent a

retryl: retryl:
SPECULATE asf.spec
; First speculative region asf.mfence|
JINZ retryl br.nz retryl

LOCK MOV [meml], RBX asf.1ld; [meml], RBX

COMMIT asf.commit

retry2: retry2:
SPECULATE asf.spec;
; Second speculative region asf.mfence)

JINZ retry2 br.nz retry2
LOCK MOV [mem2], RDX asf.1ld, [mem2], RDX

COMMIT asf.commit,

Figure 2: Two speculative regions close to each other, with original
assembly (left) and decoded pops with added fences (right).

speculative region from ever succeeding. Because it would be im-
possible to provide these guarantees (including the weaker guaran-
tee of eventual forward progress) based on the OoO microarchitec-
ture, we chose to implement the ASF mechanisms separately from
(and complementary to) the OoO mechanisms.

3.2 Sequential ASF semantics

ASF has sequential programming semantics, which a core must
preserve whether it employs OoO-speculative execution or not. For
example, a protected memory access occurring inside a speculative
region must not be reordered to occur before the beginning of
a speculative region. In this section, we discuss two aspects of
executing ASF-speculative memory accesses on an OoO core. We
begin with issues raised by executing protected memory accesses
out of order in Section 3.2.1] Section [3.2.2] discusses how ASF
resources reserved for ASF-speculative data can be managed when
the instructions referencing this data are OoO-speculative and later
annulled.

3.2.1 Speculative-region flow

The execution order of instructions in an OoO core is only deter-
mined through data dependencies. Instructions without dependen-
cies can execute in arbitrary order.

For ASF speculative regions, we need to decide whether partic-
ular memory accesses (LOCK MOVs) are executed inside or outside
a speculative region. Hence, these instructions have to be ordered
with respect to the marker instructions that begin / end such a con-
taining region (SPECULATE and COMMIT).

We add special ASF memory-fence pops during decode of the
SPECULATE instruction to attain this goal, as shown in Figure
These fences operate mostly like normal fences in that they cre-
ate an artificial dependency on any later memory instruction that is
only resolved once the fence has retired from the core. Later mem-
ory instructions can therefore only issue after the fence has retired.

The fences are ASF-specific in that they only affect ASF-spec
memory instructions and not regular memory references.

Memory instructions are then ordered by the following ordering
rules (with — being similar to Lamport’s happened-before relation
[16] and S(X) denoting the event of instruction X being in pipeline
stage S):

issue(asf.spec) — retire(asf.spec) 0
retire(asf.spec) — retire(asf.mfence;))
retire(asf.mfence;) — issue(asf.memop) 3)
issue(asf.memop) — retire(asf.memop) “)
retire(asf.memop) — retire(asf.commit) 5)

Ensuring that

issue(asf.spec) — issue(asf.memop) —
retire(asf.memop) — retire(asf.commit)

Rules 1 and 4 trivially follow from the regular pipeline flow;
Rule 5 is ensured by retiring all instructions in order. We imple-
mented the other rules by introducing artificial dependencies in the
instructions’ ROB entries.

Speculative-region overlap. Short speculative regions that exe-
cute neck-to-neck, such as in Figure 2] can be in flight in the core
simultaneously because of the reorder window.

Keeping track of the state of multiple simultaneous speculative
regions is complicated. Whereas conventional state containers—
registers—are renamed to track simultaneous usage of shared re-
sources, making all of ASF’s state renameable is complex, because
it contains not only the information of the speculative region state,
the abort instruction and stack pointer, but also the entirety of the
bits used to track the read/write sets.

While there may be safe approximations to full renaming (such
as merging read/write sets), we have chosen a more straightforward
approach by serializing the execution of consecutive speculative
regions in the core. The heavy pipeline-serialization mechanisms,
such as flushes and stalls, have a large performance impact because
of the time needed to drain and fill the pipeline, decreasing perfor-
mance especially for frequent, small speculative regions that would
execute in few cycles.

To avoid this performance decrease, we chose to implement the
serialization through the existing dependency rules, ASF memory
barriers, and by not changing the state of the speculative region
until SPECULATE and COMMIT hit the pipeline’s retire stage. The
serialization of two consecutive speculative regions then is ensured
through the following dependency chain:

issue(asf.memopy) — retire(asf.memopy) — retire(asf.commity) —
retire(asf.specy) — retire(asf.mfence;) — issue(asf.memop;)

3.2.2 Misspeculation

Section [2.3] introduced multiple instances for speculation in the
000 core and how they could fail. ASF-speculative load and store
instructions are also subject to these mechanisms and this has
caused several challenges for our implementation, because of the
complex interactions imposed by release and redistribution of re-
sources due to misspeculation.

Precise ASF working-set tracking. Because of OoO speculation,
the core may overestimate ASF’s working set: misspeculated mem-
ory instructions can add spurious ASF-spec entries to the LLB or
cache before the misspeculation is detected and the corresponding
memory instructions are annulled.

The overestimation does not impact correctness of the execu-
tion conceptually (all lines that need protection are protected), but
has performance implications, since the additional lines artificially
increase contention and also put additional pressure on the limited
capacity.

It is thus desirable to detect and remove spurious entries in
ASF’s working sets. However, recomputing the actual ASF-spec
state of a cache line when annulling an ASF-spec memory access
is challenging. It depends not only on in-flight memory instruc-
tions, but also has to take into account retired ASF-spec memory
instructions of the current speculative region that have referenced
the cache line.

Our LLB-based ASF design supports reference counting for
that particular purpose and thus can track read/write sets precisely.
Adding reference-counting mechanisms to the existing L1 cache
would be expensive; thus, the L1-based ASF implementation cur-
rently may overestimate the read set.

Orphan cache entries. Although not precisely tracking ASF’s
working set in an L1-based ASF implementation is safe in prin-
ciple, under specific timing constraints it can lead to orphan ASF-
spec entries in the cache even though the originating speculative
region has already successfully committed or aborted.

To illustrate, consider the following sequence of events: an
ASF-spec load misses in the cache and sets up an ASF-spec miss-
buffer entry to track the cache miss. The load eventually is annulled
because it is on a wrongly predicted branch. The cache-miss han-
dling cannot be aborted at this time. Eventually, the speculative re-
gion commits by successfully retiring the COMMIT instruction (the
original dependency on the cache-missing load is not present any-
more, since that load has been annulled). The cache line is eventu-
ally filled into the cache and gets its spec-read bit enabled because
the corresponding miss-buffer entry was tagged as ASF-spec, lead-
ing to an orphan spec-read cache line.

Note that simply resetting the cache line’s spec-read bit on an-
nulment of referencing ASF-spec loads would be incorrect, because
multiple in-flight loads (ASF-spec and non-ASF-spec) may still
reference the miss-buffer entry. Similarly, the miss-buffer entry’s
ASF-spec state cannot be simply reset because it may still be refer-
enced by other in-flight ASF-spec loads.

A simplified version of the recomputation introduced previously
solves this issue: we reuse the existing reference from a miss-buffer
entry to its associated in-flight loads and count the ASF-spec-load
references. We observe that no retired load can contribute to the
ASF-spec state of the miss-buffer entry because loads can only
retire once their cache misses have been resolved. Therefore, the
number of ASF-spec loads referencing the miss-buffer entry can
always be computed online by counting all nonretired (in-flight)
loads with such a reference, allowing miss-buffer entries to pre-
cisely track their ASF-spec state and eliminating the need for ded-
icated reference counting in the L1 cache. In result, no modifica-
tion to the L1 cache is necessary, and we readily implemented this
mechanism to prevent orphan spec-read cache entries in our ASF
prototype.

Flash clearing all ASF-spec bits (of miss-buffer and cache en-
tries) at the end of a speculative region (retirement of the COMMIT
instruction) would also work around the orphan-cache-entries is-
sue. However, our recomputation approach tracks ASF’s working
set more closely and thus reduces the likelihood of contention.

3.3 Abort semantics

ASF has eager conflict detection and provides early-abort seman-
tics: it defines that no side effects (e. g., memory modifications or
page faults) ever become visible caused by ASF misspeculation
(i.e., further execution of a speculative region after is has been
aborted). The rationale is that no ASF-speculative state should be
able to leak unintentionally from an aborted speculative region.

This section discusses how our ASF implementation realizes
early abort semantics. Section explains that, to receive timely
abort information, cores need to track access conflicts with pro-
tected data in more CPU data structures than just the cache or LLB
because of the asynchronous nature of memory accesses in OoO
processors. In Section[3.3.2] we describe how a core recovers when
it has received an abort signal.

3.3.1 Conflict detection handshake

The global linearizability of ASF speculative regions and consis-
tency of the read and write sets is ensured through eager conflict
detection. Conflict detection has to start when or before the value
of the load is bound [12] or the load is performed [22]. Usually,
some limited form of conflict detection and additional ordering
is already employed in current multiprocessor systems to provide
suitable memory-consistency semantics to the application. To keep

changes to this very sensitive area of microarchitecture small, it is
advisable to reuse the existing mechanisms and extend coverage of
the conflict observation until the speculative region commits. How-
ever, extending the monitoring period of the legacy mechanisms is
difficult, because it again involves touching sensitive hardware and
furthermore may not be possible due to design decisions, such as
reliance on bounded delay for certain operations, or serialization of
monitoring requests.

Therefore, the responsibility for monitoring ASF-spec data
eventually has to transition from the legacy mechanisms (such as
the miss buffer) to ASF’s monitoring facility (such as the LLB
or the augmented L1 cache). During the transition, it has to be
ensured that the data element is never without conflict observance,
necessitating atomic transitions or overlapping intervals of conflict-
detection responsibility.

For our prototype, we reuse the existing miss buffers and flag
cache lines as soon as they are initially probed (for cache hits) or
when they are delivered to L1 (for cache misses) with the according
ASF-spec bits. Our LLB-based implementation similarly allocates
entries as soon as possible, too. This design saves an additional
cache lookup at a later point in time (to set the respective ASF-spec
bits) and ensures overlapping contention monitoring.

The timing between the hand-over from one conflict detection
mechanism to another (in particular to the enhanced L1 cache) has
been a source of a lot of complexity. For example, one issue we en-
countered was caused by store-to-load forwarding, in which a load
receives the data directly from an earlier store to the same address
in the same thread. These loads effectively bypass the caches, cir-
cumventing any conflict-detection mechanism implemented in the
cache. This issue was solved by creating additional entries in the
L1 cache to ensure proper conflict monitoring.

3.3.2 Abort implications

Speculative regions abort whenever a conflicting concurrent data
access is detected (requester-wins conflict resolution policy), which
may happen asynchronously to other core timing. As outlined
previously, we use the existing cache-coherence mechanisms to
detect these conflicting memory accesses. Whenever an ASF-
speculatively modified line is read by another core, it must be
ensured that the requesting core receives the backup copy with
the probe answer, and not the updated data.

Therefore, the timing between probes, replies, and the rollback
operation is crucial for correct operation. To reduce the delay be-
tween the arrival of the conflicting probe and the final probe answer,
we introduce partial rollbacks. These rollbacks undo modifications
only for the requested line, deliver the probe answer, and then sig-
nal the core for further abort handling.

Aborting the core can then proceed independently of probe han-
dling, at the core’s discretion. The core checks for detected conflicts
every cycle. If one is found, the core triggers the full rollback, en-
codes the abort reason into the rAX register, sets the flags register
accordingly, and resets the instruction and stack pointer to the val-
ues right after SPECULATE. Finally, a pipeline flush and reset of the
instruction fetcher (similar to the resolution of a mispredicted con-
ditional branch) completes the abort.

Although checking for abort conditions every cycle seems suf-
ficient on the surface, we had to address two subtleties of modern
cores, which we describe in the remainder of this section.

Intra-cycle parallelism. 1t is possible for a specifically timed
store operation to the line already rolled back to retire in the same
cycle in which the abort condition was detected, but before the
pipeline flush, essentially proceeding in parallel to the ongoing
abort. Therefore, it is important to avoid disabling write-set track-
ing too early. Otherwise, the store would be able to make ASF-

SPECULATE

INZ abort_handler
traverse:

LOCK MOV RDX, [RSI + val] ; Load val

CcMP RDX, RDI ; Element found?

JE found

LOCK MOV RSI, [RSI + next] ; Load next pointer

TEST RSI, RSI ; End of list?

JINZ traverse

COMMIT ; Element not found
found:

COMMIT ; Element found

Figure 3: A small linked-list traversal loop searching for a partic-
ular element, illustrating potential inflation of speculative working
set because of mispredicted branches: The “Load next pointer” in-
struction may be mispredicted and use up ASF resources needed
for maintaining ASF’s capacity guarantee.

speculative modifications permanent (despite the abort of the en-
closing speculative region).

pop splitting. As described in Section native-ISA (AMD64)
instructions do not have to proceed atomically through the core.
Instead, they may be split up into smaller pops. These pops flow
through the pipeline independently and also retire in sequence,
which creates another subtlety with respect to the asynchronous na-
ture of aborts: an abort may trigger when only a subset of the pops
comprising an instruction have retired and updated the architectural
state.

The most critical instructions regarding this behavior are CALL
and RET, because they both access the stack pointer, the instruc-
tion pointer, and memory. Their partial retirement is, however, con-
tained by ASF, because the abort resets both registers to a consistent
value (and no guarantees for stack values below the stack pointer
are given).

3.4 Capacity guarantees

The ASF specification mandates that implementations support a
minimal number of read/write set entries (four cache lines), re-
gardless of address layout and other aspects (such as TLB misses,
branch misprediction, etc.).

Supporting such a guarantee under the OoO execution regime is
complicated by several interactions. As described previously, ASF-
speculative memory instructions may flag cache lines as speculative
optimistically, artificially increasing the speculative region’s work-
ing set and reducing the number of available entries that an appli-
cation can really use. In particular, ASF loads behind unresolved
and mispredicted branches, such as mispredicted pointer traversal
loops (Figure[3), can cause this behavior.

Furthermore, loads may be issued out of order and may also fill
missing cache lines in arbitrary order, depending on their residence
in the underlying memory hierarchy (e. g., line present in L2 cache
vs. line fetched from remote main memory). Determining precisely
if and when the capacity limit is reached is therefore not clear-cut.

Non-ASF-spec memory instructions may also compete for
space in the employed conflict detection device, in particular if an
existing structure, such as the L1 cache, is reused for that purpose.
It may be possible that non-ASF-spec entries displace ASF-spec
entries, thwarting any possible capacity guarantee.

Finally, the organization of the speculative storage and track-
ing device heavily impacts the feasible minimal guarantee. Set-
associative caches have a small worst-case minimal capacity—their
associativity—because all requested addresses may alias into the
same cache index. Other devices such as Bloom filters [4] may al-

low tracking of an arbitrary number of elements (with decreasing
precision), but do not provide space for backup copies to support
ASF-spec stores.

In summary, a naive implementation does not even guarantee
the worst-case capacity of the storage container (i. e., the associa-
tivity of the L1 cache for a cache-based implementation). Addi-
tional ordering and priority mechanisms are necessary to give such
a guarantee, for example by carefully ordering accesses to capacity-
critical parts of the storage device. However, strictly serializing all
memory accesses would reduce overall performance and compli-
cate core design.

For our LLB-based implementation, we have therefore crafted
a staged buffer that has a (small) first stage where cache lines are
held as long as they are only referenced by OoO-speculative in-
flight memory instructions. Whenever one of these instructions re-
tires, the line in the LLB transitions to the non-OoO-spec second
buffer stage. The minimal guarantee is then enforced by the non-
000-spec second buffer stage, while the first OoO-spec stage basi-
cally controls how much (OoO-)speculation can go on. This design
allows us to carefully trade performance (through higher ILP) for
additional buffer space (for the additional first stage buffer).

Memory instructions have to wait until a free entry in the first
stage is available before they can issue. To avoid deadlocks through
000 fill-up of the speculative buffer stage, we carefully replay later
memory instructions (further down in the program flow) that have
already been granted an entry to make room for the earlier ones
waiting for a free entry.

Our cache-based implementation currently lacks these features,
because it aims at reusing most of the existing cache implementa-
tion. Hence, it does not yet meet ASF’s required minimal capacity
guarantee under certain circumstances.

4. Related work

Using simulation is the most common approach for evaluating
hardware-extension proposals for accelerating TMs because sim-
ulation can be realized with much less effort and lower costs than
a hardware prototype. In related work, simplified simulation ap-
proaches are employed often. For example, trace generation and
timing simulation are separated or simple in-order core models are
applied.

This trading of simulation accuracy and speed for effort is, of
course, a valid approach for research proposals in which creating a
new simulation infrastructure or vastly extending existing simula-
tors is not possible. In this paper, we present a prototype proposal
targeted at implementation in current high-volume OoO micropro-
cessors and want to achieve a very high simulation accuracy to ac-
curately predict behavior and potential pitfalls for a silicon imple-
mentation.

Herlihy and Moss [15] employ the Proteus simulator for eval-
uating their TM proposal. The target programs to be simulated
have to be written a superset of C, and calls into the simulator are
created, for example, for calls to shared memory. Memory timing
is only simulated for shared memory areas. Proteus is execution-
driven, and cycle counting is embedded by a preprocessor into the
simulation target programs.

Ananian et al. [3] use cycle-accurate simulation of a simpli-
fied architecture to evaluate their unbounded TM (UTM) proposal.
The authors utilize UVSIM and simulate OoO MIPS 10K proces-
sors. The simulator supports cycle-accurate simulation and was ex-
tended to support a simplified HTM model (named LTM). Also,
a trace-driven simulator is used that evaluates memory references
and transactional operations. No detailed discussion regarding the
implementability of UTM or LTM in an OoO architecture is pro-
vided.

Moore et al. [20] present log-based TM (LogTM) and employ
Simics [17] for the processor model (single-issue, in-order). They
use a multilevel memory model and integrated LogTM with Wis-
consin GEMS [18]. The authors report that HTM instructions are
implemented via Simics “magic,” which leads us to believe that it
would be hard to draw any conclusions for an implementation of
LogTM in a real microarchitecture.

Damron et al. [§] introduce hybrid TM. Wisconsin GEMS with
LogTM is used for simulation. Instead of letting hardware (LogTM
here) do retries for transactions, the authors modified GEMS to
hand over control for retry to software after the first failure.

Yen et al.’s LogTM-SE [23]] was implemented using OoO pro-
cessor cores supporting two-way SMT. Their implementation was
done using a modified version of Wisconsin GEMS 2.0 for the
SPARC ISA. LogTM-SE needs cache-coherence protocol changes
(and NACKSs probe requests on conflicts), benefits from OS adapta-
tions, and does not provide minimal guarantees (e.g., conflict detec-
tion may produce false positives due to signature implementations).
In contrast, our PTLsim implementation prevents changes to cache
coherence protocols and HyperTransport, does not usually require
OS interactions, and provides minimal guarantees. In this paper,
we focus on the integration of HTM with OoO cores, and we be-
lieve our discussions are applicable to previously proposed HTM
systems.

Moir et al. [19] discuss an adaptive TM test platform (ATMTP)
and demonstrate its use in [9]]. They provide a simulation environ-
ment targeted at Sun’s Rock processor, especially its HTM aspects.
The authors explicitly state that the model is not aimed at accuracy
but for gaining early experience. ATMTP is based on Wisconsin
GEMS 2.0. The detailed memory model Ruby is used, but not the
000 processor model (Opal). Instead, Simics with a simple model
with one instruction per cycle covers the processor. LogTM (now
integrated in Ruby) provides similar semantics to Rock’s specula-
tive cache bits. Rock’s limitations (e. g., overflow of limited register
window) are approximated in ATMTP. Up to now, only single-chip
systems are supported. In [[10], early Rock prototypes are compared
to ATMTP.

Sun [10] and Azul Systems [7] have developed actual multi-
core processors with HTM mechanisms. Their implementations are
based on in-order architectures. Both HTMs have a few notable dif-
ferences to ASF. We have introduced Sun’s Rock processor in Sec-
tion[3.1] Azul Systems” HTM does not abort transactions in case of
interrupts and exceptions and does not support selective annotation.

In contrast to the often-employed combination of GEMS and
Simics with its single-issue in-order processor model, we have
implemented and simulated ASF using PTLsim’s OoO processor
model to obtain detailed predictions and experience with imple-
menting ASF in a modern OoO processor.

5. Lessons learned and conclusion

In this paper we outlined an implementation of ASF for the OoO
core simulated by PTLsim. We reviewed four requirements im-
posed by ASF and how we addressed them in our ASF implemen-
tation for the OoO core:

e An architectural interface, rather than exposing microarchitec-
ture directly

¢ Providing sequential memory access semantics in an OoO core
e Early abort semantics despite asynchronous memory requests

e Handling capacity guarantees in light of cache contents arriving
out of order

We found relatively lightweight solutions for all of these require-
ments, but the OoO nature of the core necessitates many small
changes to several CPU data structures to provide complete track-

ing of protected memory locations and timely reactions to conflict-
ing memory access.

We found that, somewhat counterintuitively, the existing mi-
croarchitecture mechanisms for OoO speculation do not ease the
implementation of ASF speculation. The reason is that ASF guar-
antees eventual forward progress (in the absence of contention),
and an OoO core can annul speculative instructions for many more
reasons than allowed for ASF aborts.

We stress that implementability is of major importance for any
hardware-extension proposal, and argue based on our findings that
ASF has passed this test. We believe that most of our findings
directly relate to a real OoO core implementation. However, we
did identify functional areas of ASF—in particular, the minimum-
capacity guarantee—in which the benefits may not outweigh the
additional implementation complexity. Further research is required
to motivate inclusion or exclusion of the feature.

Acknowledgments

The research leading to these results has received funding from
the European Community’s Seventh Framework Programme (FP7/
2007-2013) under grant agreement N° 216852.

References

[1] Advanced Synchronization Facility - Proposed Architectural Specifi-
cation. Advanced Micro Devices, Inc., 2.1 edition, Mar. 2009.

[2] S. V. Adve and K. Gharachorloo. Shared Memory Consistency Mod-
els: A Tutorial. Computer, 29(12):66—76, 1996. ISSN 0018-9162. doi:
http://dx.doi.org/10.1109/2.546611.

[3] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and
S. Lie. Unbounded Transactional Memory. In HPCA '05: Proceedings
of the 11th International Symposium on High-Performance Computer
Architecture, pages 316-327, Washington, D.C., USA, 2005. IEEE
Computer Society. ISBN 0-7695-2275-0. doi: http://dx.doi.org/10.
1109/HPCA.2005.41.

[4] B. H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM, 13(7):422-426, 1970. ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/362686.362692.

[5] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chiras,
and S. Chatterjee. Software transactional memory: why is it only a
research toy? Commun. ACM, 51(11):40-46, 2008.

[6] D. Christie, J.-W. Chung, S. Diestelhorst, M. Hohmuth, M. Pohlack,
C. Fetzer, M. Nowack, T. Riegel, P. Felber, P. Marlier, and E. Riviere.
Evaluation of AMD’s Advanced Synchronization Facility within a
complete transactional memory stack. In EuroSys '10: Proceedings
of the 5th ACM European conference on Computer systems. ACM,
Apr. 2010.

[7] C. Click. Azul’s experiences with hardware transactional memory. In
HP Labs - Bay Area Workshop on Transactional Memory, 2009.

[8] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nuss-
baum. Hybrid transactional memory. In ASPLOS, 2006.

[9] D. Dice, M. Herlihy, D. Lea, Y. Lev, V. Luchangco, W. Mesard,
M. Moir, K. Moore, and D. Nussbaum. Applications of the Adap-
tive Transactional Memory Test Platform. In TRANSACT ’'08: 3rd
Workshop on Transactional Computing, Feb. 2008.

[10] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early experience with
a commercial hardware transactional memory implementation. In
ASPLOS, 2009.

[11] U. Drepper. Parallel programming with transactional memory. Com-
munications of the ACM, 52(2):38-43, Feb. 2009.

[12] K. Gharachorloo, A. Gupta, and J. Hennessy. Performance evaluation
of memory consistency models for shared-memory multiprocessors.
In ASPLOS-1V: Proceedings of the Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems, pages 245-257, New York, N.Y., USA, 1991. ACM. ISBN
0-89791-380-9. doi: http://doi.acm.org/10.1145/106972.106997.

[13] K. Gharachorloo, A. Gupta, and J. Hennessy. Two techniques to en-
hance the performance of memory consistency models. In In Pro-
ceedings of the 1991 International Conference on Parallel Processing,
pages 355-364, 1991.

[14] J. L. Hennessy and D. A. Patterson. Computer architecture: a quan-
titative approach. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2007. ISBN 0-12-370490-1.

[15] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural
support for lock-free data structures. In ISCA, 1993.

[16] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558-565, 1978. ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/359545.359563.

[17] P. S. Magnusson, F. Dahlgren, H. Grahn, M. Karlsson, F. Larsson,
F. Lundholm, A. Moestedt, J. Nilsson, P. Stenstrom, and B. Werner.
SimICS/sun4m: a virtual workstation. In ATEC ’98: Proceedings
of the annual conference on USENIX Annual Technical Conference,
pages 10-10, Berkeley, Calif., USA, 1998. USENIX Association.

[18] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood. Mul-
tifacet’s general execution-driven multiprocessor simulator (GEMS)
toolset. SIGARCH Comput. Archit. News, 33(4):92-99, 2005. ISSN
0163-5964. doi: http://doi.acm.org/10.1145/1105734.1105747.

[19] M. Moir, K. Moore, and D. Nussbaum. The Adaptive Transactional
Memory Test Platform: A Tool for Experimenting with Transactional
Code for Rock. In TRANSACT ’08: 3rd Workshop on Transactional
Computing, Feb. 2008.

[20] K. Moore, J. Bobba, M. Moravan, M. Hill, and D. Wood. LogTM:
Log-based transactional memory. In High-Performance Computer
Architecture, 2006.

[21] S. Owens, S. Sarkar, and P. Sewell. A Better x86 Memory Model:
x86-TSO. In TPHOLs '09: Proceedings of the 22nd International
Conference on Theorem Proving in Higher Order Logics, pages 391—
407, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-3-642-
03358-2. doi: http://dx.doi.org/10.1007/978-3-642-03359-9_27.

[22] C. Scheurich and M. Dubois. Correct memory operation of cache-
based multiprocessors. In ISCA '87: Proceedings of the 14th annual
international symposium on Computer architecture, pages 234-243,
New York, N.Y., USA, 1987. ACM. ISBN 0-8186-0776-9. doi:
http://doi.acm.org/10.1145/30350.30377.

[23] L. Yen, J. Bobba, M. M. Marty, K. E. Moore, H. Volos, M. D. Hill,
M. M. Swift, and D. A. Wood. LLogTM-SE: Decoupling hardware
transactional memory from caches. In HPCA, 2007.

[24] M. T. Yourst. PTLsim: A cycle accurate full system x86-64 microar-
chitectural simulator. In ISPASS, 2007.

	1 Introduction
	2 Fundamentals
	2.1 ASF specification
	2.2 Basic ASF implementation variants
	2.3 Out-of-order core fundamentals
	2.4 Levels of speculation

	3 Pipeline and core integration
	3.1 Avoiding implementation as architecture
	3.2 Sequential ASF semantics
	3.2.1 Speculative-region flow
	3.2.2 Misspeculation

	3.3 Abort semantics
	3.3.1 Conflict detection handshake
	3.3.2 Abort implications

	3.4 Capacity guarantees

	4 Related work
	5 Lessons learned and conclusion

