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ABSTRACT
We present the design and implementation of a new garbage collec-
tion framework that significantly generalizes existing copying col-
lectors. The Beltway framework exploits and separates object age
and incrementality. It groups objects in one or more increments on
queues called belts, collects belts independently, and collects in-
crements on a belt in first-in-first-out order. We show that Beltway
configurations, selected by command line options, act and perform
the same as semi-space, generational, and older-first collectors, and
encompass all previous copying collectors of which we are aware.

The increasing reliance on garbage collected languages such as
Java requires that the collector perform well. We show that the
generality of Beltway enables us to design and implement new col-
lectors that are robust to variations in heap size and improve to-
tal execution time over the best generational copying collectors of
which we are aware by up to 40%, and on average by 5 to 10%, for
small to moderate heap sizes. New garbage collection algorithms
are rare, and yet we define not just one, but a new family of col-
lectors that subsumes previous work. This generality enables us to
explore a larger design space and build better collectors.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Memory manage-
ment (garbage collection)

General Terms
Design, Performance, Algorithms

Keywords
Beltway, copying collection, generational collection, Java

1. Introduction
Garbage collection (GC) automates the reclamation of memory that
the program can no longer access. In object-oriented languages,
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GC improves programming productivity by reducing errors that re-
sult from explicit memory deallocation, and underpins sound soft-
ware engineering principles of abstraction and modularity. Current
GC algorithms, however, still have a performance overhead. Fig-
ure 1(a) plots the fraction of time that six SPEC Java programs
spend in GC as a function of heap size, using a high performance
generational copying collector [3] in the Jikes RVM [1, 2]. When
heap space is tight, GC can comprise 35% of execution time. Ap-
plications may reduce this cost simply by using a larger heap which
decreases the load on the collector. However, as shown by Fig-
ure 1(b) and by other research [10], the best total execution time
is not always achieved when GC time is minimized by large heap
sizes. Application cache, memory, and TLB locality may degrade
with large heaps. For example, paging degrades pseudojbb’s per-
formance at the large heap sizes in Figure 1(b). Thus, achieving
high performance remains a challenge, especially for programs and
workloads with large memory requirements.

In more than forty years of research, a few key insights have
shaped copying garbage collection. (1) The weak generational
hypothesis that ‘most objects die young’ underpins generational
garbage collectors, which preferentially collect the youngest ob-
jects [34]. (2) As a corollary to this observation, generational col-
lectors avoid collecting old objects. (3) Using incrementality to
improve response time has led to the use of small nursery genera-
tions and to incremental algorithms [13, 24]. (4) Researchers also
use small nurseries and copying collectors to improve data local-
ity [25, 38]. (5) More recently, Stefanović et al. demonstrate that
giving the very youngest objects time to die can improve collector
performance [32].

The Beltway collection framework is the first to combine and ex-
ploit all five insights flexibly and efficiently. In addition, Beltway
generalizes over previous work: we can configure Beltway to be-
have as every other region-based copying collectors of which we
are aware. A Beltway collector uses increments and belts as shown
in Figure 2. An increment is the unit of collection. A belt groups
one or more increments into a first-in-first-out (FIFO) queue. Belt-
way collects each increment on a belt independently in FIFO order,
and also collects each belt independently. The promotion policy
determines where to copy surviving objects, whether to the same
or to another belt. Increments make belts more general than gen-
erations since all objects within a generation must be collected en
masse, but we collect increments independently and there may be
multiple increments on a belt. We demonstrate Beltway configu-
rations (from command line parameters) that behave as semi-space
collectors, traditional generational copying collectors [34, 3], and
older-first collectors [32]. To our knowledge, Beltway configura-
tions match all previous copying collector organizations.

We further show that this generality enables us to combine all
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(b) Total application performance.
Figure 1: The impact of heap size on the performance of six SPEC
benchmarks using the Appel-style generational collector. Optimal
performance is not always attained at the largest heap size.

the above ideas within a single collector. We present the design
and implementation of a range of copying collectors that exploit
the high mortality of young objects, can avoid collecting the very
youngest objects, avoid collecting previously copied objects, and
perform collection incrementally. Our generality increases pointer
tracking costs but we develop several novel mechanisms to bound
these costs. For instance, we maintain the fewest possible cross-
increment pointers, and we can trigger collections when the number
of cross-increment pointers exceeds a threshold.

We show several configurations that reduce garbage collection
costs via reduced copying and better heap utilization compared to
the best generational copying collector of which we are aware [3].
These reductions improve total execution time over generational
collectors by an average of 5 to 10%, and up to 35% on tight heaps,
for 6 Java SPEC programs. Our new collectors thus use resources
more effectively than generational collectors. We also present ev-
idence that our framework enables us to explore the tradeoff be-
tween responsiveness and throughput, but we leave a more thor-
ough investigation of responsiveness to future work.

The remainder of the paper is organized as follows. We first
present the Beltway framework for exploring copying collection
and the program characteristics that it exploits. Section 3.1 shows
how to configure Beltway to implement a variety of copying collec-
tors. We then present two new collectors designed to reduce total
execution time. Section 3.3 introduces several novel mechanisms
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Figure 2: A Beltway configuration with three belts, showing three
successive collections (top to bottom). The light arrows show allo-
cations going into the nursery, and darker arrows represent copying
surviving objects from the target to the source increments. Darker
objects are younger.

that make our collectors efficient. Section 4 compares these col-
lectors to generational collectors and demonstrates that they reduce
GC time and total execution time on 6 Java programs. Section 4.3
offers some sample responsiveness results. We find that reduced
total execution time can also be combined with improved respon-
siveness, but this area needs further exploration. We then present
related work and conclude.

2. Generalizing Copying Garbage Collection
The novelty of the Beltway framework is that it generalizes over
copying collection by combining all the key ideas of copying GC
in a single collector. This section first outlines these ideas. We then
describe the Beltway framework and how it exploits the ideas.

2.1 Key Ideas in Copying GC
Most objects die young. The weak generational hypothesis is
the basis for generational garbage collection [34]. A generational
collector divides the heap into regions called generations that con-
tain progressively more mature objects. The youngest generation,
called the nursery, is likely to contain a large fraction of dead ob-
jects and so is most frequently targeted for collections. The col-
lector promotes objects that survive by copying them into the next
generation.

Avoid collecting old objects. A corollary is that those objects
that do not die young tend to be long lived, suggesting that older
generations should be collected less frequently.

Give objects time to die. A further observation is that while
most objects die young, all objects require some time to die. The
older-first collector [32] exploits this observation by avoiding col-
lecting the very youngest objects.
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Incrementality improves responsiveness. Length and frequency
of collection limits the responsiveness of garbage collected pro-
grams. Generational collectors reduce average pause time by re-
peatedly collecting the nursery, and occasionally collecting the whole
heap. They therefore tend not to improve on worst case pause time.
Other algorithms are more aggressively incremental. For example,
the Mature Object Space collector [24] collects only one increment
at a time and never collects the whole heap.

Copying GC can improve locality. Programs often access ob-
jects of a similar age together [20]. Copying collectors exploit
this pattern to improve locality with consequent benefits for cache
and TLB behavior [38]. Collectors copy older objects near to each
other in the heap. This clustering reduces the incidence of point-
ers that span regions of the heap, and thus avoids retaining dead
objects simply because they are referenced by a dead object in an
uncollected region [35]. The nursery attains locality by keeping the
youngest and most frequently accessed objects near each other.

Previously, no collector has exploited all of these ideas together.
Simple semi-space collectors improve locality through copying, but
do not exploit any of the other ideas. Generational collectors do not
give the very youngest objects time to die and must occasionally
collect the whole heap, so are not fully incremental. The older-first
collector cannot always avoid frequent copying of old objects, and
because it does not collect the whole heap it is not complete, i.e., it
cannot guarantee it will collect all garbage.

2.2 Beltway Collectors
Beltway collectors depend on two very simple organizational prin-
ciples. An increment is an independently collectible region of mem-
ory. A belt is a grouping of one or more increments, collected in
strict FIFO order (analogous to conveyor belts). By selecting dif-
ferent increment sizes, belt organizations, and promotion policies,
a collector in the Beltway framework can be configured to imple-
ment any of the well-known copying collection algorithms.

Figure 2 shows a Beltway collector with three belts, each with
one or more increments. This collector promotes survivors from
each increment in to the next higher belt. It copies survivors in the
highest belt to the end of that belt. New allocations go to the last
increment in the lowest, nursery belt.

A Beltway collector can exploit each of the five ideas outlined
above as follows. Belts generalize over generations by decoupling
incrementality from the generation size. Thus, the lowest belt is
analogous to the nursery in a generational collector. By preferen-
tially collecting increments from the nursery belt, we exploit the
weak generational hypothesis and avoid collecting old objects. Be-
cause Beltway decouples collection and belts, it can be arbitrarily
incremental. Because the oldest increment on a belt will always be
collected first (FIFO order), Beltway can give objects time to die.
Finally, the copying, generational, and incremental aspects of Belt-
way improve the locality of surviving objects, and provide locality
for the youngest objects by allocating them together in the nursery.

3. Concrete Instances of Beltway Collectors
To demonstrate the generality of the Beltway framework, we de-
scribe Beltway configurations that correspond exactly to well-known
copying collectors. We then describe two new collectors, and the
novel mechanisms that are key to implementing these new collec-
tors efficiently.

3.1 Modeling Existing Copying Collectors
One factor in common among all copying collectors is that they
must hold in reserve sufficient memory to accommodate a collec-
tion of the largest possible increment. This copy reserve space must

be large enough to accommodate the worst case survival for a col-
lection, i.e. when all objects survive.1 If the copy reserve is fixed
at half the heap, as it is in the semi-space collector and generational
collector implementations, heap utilization and efficiency can suf-
fer. In the remainder of this section we use the term usable memory
to refer to the total heap space less the appropriate copy reserve for
that collector.

Semi-space collectors are the simplest copying collectors [12].
They correspond to a trivial Beltway configuration: a single belt
containing a single increment, as large as the usable memory, col-
lected whenever it is full, as shown in Figure 3(a). We call this
configuration BSS, Beltway Semi-Space. BSS copies survivors into
a new increment on the same belt.

Appel-style generational collectors have two generations [3].
They make efficient use of memory by allowing the nursery to grow
to consume all usable memory not consumed by the higher genera-
tion. Consequently, they collect the nursery only when both gener-
ations consume all usable memory. Appel corresponds to Beltway
configured with two belts, each with one increment capable of ac-
commodating all usable memory, as depicted in Figure 3(b). We
call this configuration BA2, Beltway Appel with two generations.
Whenever the two increments consume all usable memory, BA2
collects the nursery increment, copying survivors to the higher belt.
When the higher increment consumes all usable memory, BA2 col-
lects it, copying survivors to a new increment on the same belt. (In
practice, if the nursery size drops below some small fixed threshold,
the heap is considered full.)

Older-First Mix algorithms are an incremental variation on the
semi-space collector [19, 31]. They are called older-first mix be-
cause they mix copies and newly allocated objects in memory. This
Beltway configuration, BOFM, shown in Figure 3(c), has one belt
and multiple increments. BOFM both allocates and copies sur-
vivors to the last increment on the belt, triggering collection when
the increments consume all usable memory.

Older-First collectors organize the heap by object age [32].
They collect a fixed-size window that slides through the heap from
older to younger objects. When the heap is full, OF collects the
window, returns any free space to the nursery, and then positions
the window for the next collection over objects just younger than
those that survived. If it bumps into the allocation point, it resets
the window to the oldest end of the heap. This Beltway configura-
tion, BOF, illustrated in Figure 3(d), has an allocation belt A and a
copy belt C where increments are the size of the collection window.
BOF allocates to the back of belt A. Whenever all usable memory
is consumed, BOF collects the first increment in belt A, copying
survivors to the back of belt C. If all usable space is consumed and
A is empty, then BOF ‘flips’ the belts, collects the first increment
in the new belt A, and copies its survivors to the last increment in
the new, now empty, belt C. BOF then continues to allocate to the
back of the new belt A.

3.2 New Beltway Configurations
We now go beyond existing copying collectors and describe two
new collector configurations, Beltway X.X and Beltway X.X.100.

Beltway X.X collectors add incrementality to Appel-style gen-
erational collection. They have two belts, and each belt contains
increments of maximum size X, conventionally expressed as a per-
centage of usable memory. The two belts correspond to genera-
tions, and X reflects the degree of incrementality. As with Appel’s
collector, the lower, nursery belt grows until it consumes all re-

1In fact the copy reserve must be slightly more generous because
the copied data may not pack as well as the original data, as an
artifact of object alignment and copying order.
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Figure 3: The Beltway configurations described in Sections 3.1 and 3.2. Each diagram shows a configuration of belts and increments during
the copying of survivors. An arrow indicates the allocation that triggered the collection.

maining usable space, at which point Beltway X.X collects the old-
est increment in the nursery. It promotes survivors to the youngest
increment in the higher belt. When the higher belt becomes full,
it collects the oldest increment in the higher belt, and copies sur-
vivors to the youngest increment in the same belt. Similar to gener-
ational collectors, Beltway X.X collects the higher belt only when
the higher belt is full and the nursery belt is thus empty. However,
it collects only a fixed size increment, rather than the entire belt.

Beltway X.X combines most of the features of Appel’s genera-
tional collector and the Older-First collector, and exploits all five
ideas outlined in Section 2.1. In fact, BA2 is a special case of Belt-
way X.X where X is set to 100. When X < 100, the steady state
differs from BA2 as follows.

The nursery typically contains one increment that varies in size
up to size X, and the older belt contains the other increments. To-
gether they can occupy no more than the usable heap space. For ex-
ample with X = 33, we can have four increments, one partially full
and two completely full increments on belt 1, and one partially full
increment on belt 0. Our framework and implementation also sup-
ports Beltway X.Y collectors where X 6= Y , but we do not explore
these configurations here. Unfortunately, when X < 100, Beltway
X.X lacks completeness: it does not guarantee the eventual collec-
tion of all garbage, because it fails to collect garbage cycles that
span more than one increment.

Beltway X.X.100 collectors address the failure of Beltway X.X
with respect to completeness by retaining the two lower belts with
increments of size X � 100, and adding a third, highest belt with
a single increment that may grow as large as the usable memory.
Any objects Beltway X.X.100 does not reclaim in the lower belts, it
promotes to the third belt, which it will collect in its entirety only
once it has grown to consume all usable memory. It thus guaran-
tees eventual collection of large dead structures. This configuration
achieves completeness at the expense of incrementality (the worst
case collection increment is the same as the classic semi-space and

generational collectors). Note that when X is equal to 100, Beltway
X.X.100 implements a three-generational Appel-style collector.

Section 4 shows that Beltway X.X.100 almost always outper-
forms the Appel collector, sometimes by as much as 35% of total
benchmark running time. An alternative approach to lack of com-
pleteness in the Beltway X.X collector is to use a complete, incre-
mental collector (such as the Mature Object Space collector [24])
in place of the third belt, but that investigation is beyond the scope
of this work.

3.3 Realizing Efficient Beltway Collectors
Three broad implementation issues are key to the viability of our
approach. (1) Incrementality depends heavily on the use of write
barriers, so the efficiency of write barriers and their associated data
structures is critical. (2) We found that the best time to collect is not
always when the heap is full. To this end, Beltway collectors use
collection triggers to preempt identifiable performance problems in
later collections. (3) Finally, we exploit a dynamically sized copy
reserve based on the increment size and heap occupancy, which
leads to better heap utilization and ultimately better performance.

3.3.1 Frames and Write Barriers
In order to collect increments independently and efficiently, garbage
collectors must remember references into collected increments from
the rest of the heap. A simple semi-space collector avoids the need
for any such mechanism by always collecting all usable memory.
Generational collectors very cheaply notice and remember the cre-
ation of any references into the nursery from the rest of the heap.
For example, they place the nursery in high memory and observe
the creation of any pointers that cross a boundary between high and
low memory [7]. One also must instrument the mutator, (i.e., the
application) with a write barrier to remember relevant pointers.

Beltway collectors implement increments by using frames. A
frame is an aligned contiguous region of virtual memory that can
accommodate an increment. Frames reduce the cost of incremental
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collection in two ways. First, frames are power-of-two aligned in
the address space, and we can distinguish inter-frame pointers from
intra-frame pointers using a shift and compare. Second, we main-
tain a number associated with each frame that indicates the frame’s
relative collection order.

When we encounter an inter-frame reference, we need to re-
member it only if we might collect the target frame sooner than
the source frame. We therefore do not record all inter-frame refer-
ences. Further, if an increment spans multiple frames marked with
the same collection time, we do not store pointers between the con-
stituent frames. Although the barrier is not address-ordered, it is
uni-directional with respect to frames. For example, in the BOFM
collector (Figure 3), only cross-increment pointers in the right-to-
left direction must be remembered. Figure 4 shows a basic im-
plementation of this frame-based, unidirectional write-barrier. We
partially inline the write barrier [7].

1 public static final void writeBarrier(ADDRESS source,
2 ADDRESS target) {
3 int s = (source>>>FRAME_SIZE_LOG);
4 int t = (target>>>FRAME_SIZE_LOG);
5 if ((s != t) // pointer is inter-frame
6 && (Belt.collect_[t] < Belt.collect_[s])) {
7 // target will be collected before source
8 int rsidx = (s<<REMSET_SHIFT) | t;
9 GCTk_RememberedSet.insert(rsidx, source);

10 } }

Figure 4: The basic Beltway frame-based write-barrier.

3.3.2 Remembered Sets
The total number of frames in a configuration is limited by the in-
crement size, the number of belts, and the total usable memory, and
is tightly bounded. We can thus maintain distinct remembered sets,
remsets, for each target-source frame pair. At run time, we enter
each inter-frame reference in the appropriate set. An advantage of
this approach is that we can trivially delete all remsets relating to a
frame. We also ignore remsets between two increments in the oc-
casional case when we collect them together. For example, given
sufficient copy reserve, if we are about to empty a lower belt and
fill the next higher belt, we will collect the increment on the lower
belt together with the first increment on the next belt. This opti-
mization performs a single collection, rather than two in immediate
succession.

Because of the high write-barrier activity in the nursery, we lim-
ited Beltway X.X and Beltway X.X.100 to a single, bounded nursery
increment, which minimizes write-barrier activity. Jikes RVM in-
troduces substantial write barrier overhead due to the initializing of
each object’s type (‘TIB’) pointer. The type object is older, usu-
ally much older, than the object. To eliminate this overhead, we
use a single nursery increment and extend the basic Beltway bar-
rier to filter any pointers where the source is in the nursery. This
optimization foregoes older-first behavior within the nursery. Sys-
tems without this overhead should be able to benefit from multiple
nursery increments.

3.3.3 Collection Triggers
For a variety of reasons, it is not always best to collect only when
the heap is completely full. For instance, fixed-size nursery col-
lectors collect when the nursery is full rather than when the heap is
full. In this section, we describe a number of collection triggers that
define a range of additional conditions that can initiate a garbage
collection. We explored three mechanisms, nursery, remset, and
time-to-die triggers with multiple nursery increments, and believe
that configurations of Beltway will benefit from one or more of

them. For the Beltway X.X and Beltway X.X.100 configurations we
report below, only the nursery trigger that limits the nursery to a
single increment proved useful.

Nursery Trigger. The size of the nursery belt may be bounded
to ensure that we frequently collect the young objects since many
die quickly. An obvious example of this trigger is the classic fixed-
size nursery generational collector which limits the nursery to one
increment, where the size of that increment is always equal the
maximum nursery size. In Beltway X.X and Beltway X.X.100, we
use this trigger to limit the maximum size, but not the minimum
size of a single nursery increment.

Remset Trigger. Because remembered set entries are collection
roots, as the number of remset entries grows, the survival rate for
an increment goes up as well as the time to scan the remset itself.
A simple and very effective solution to this problem is to trigger
collection whenever remembered sets grow to some threshold.

Time-to-Die Trigger. We may want to collect a nursery in-
crement before it reaches its maximum capacity. For example,
an Appel-style nursery increment can accommodate all the usable
memory, but we often collect the nursery when it is only partially
full. By using two increments on the youngest belt rather than one,
we can avoid collecting the very youngest objects, which would not
yet have had time to die. The time-to-die trigger ensures that all ob-
jects will have at least TTD time to die before we collect them (time
is measured in bytes of allocation). When the heap is within TTD
bytes of being full, we can use the time-to-die trigger to ensure that
all new allocations go into the second frame. If the system is allo-
cating into the first increment, it then starts allocating objects into
the second frame. Subsequently, when the heap fills, it collects the
first frame, which may not be full. This trigger prevents the collec-
tors from collecting the objects allocated in the last TTD bytes of
allocation (i.e., when they are too young).

We believe future configurations of Beltway will be able to ex-
ploit all these triggers to improve collector performance further, but
we use only the nursery trigger in our results.

3.3.4 Dynamic Conservative Copy Reserve
As we pointed out in Section 3.1, all copying collectors need a copy
reserve space into which to copy survivors. In order to avoid failure
in the worst case, the copy reserve must be slightly larger than the
largest possible collection increment. Since the usable memory is
the heap space less the copy reserve, it is obviously advantageous
to minimize the copy reserve. Finer-grained incremental collec-
tors, such as Mature Object Space (MOS) collectors or Beltway
X.X, where X�100, have a distinct memory utilization advantage
because they require only a small copy reserve. Classical genera-
tional and semi-space collectors must reserve half the heap.

Beltway collectors dynamically calculate a conservative mini-
mal copy reserve that will always accommodate survivors from
the worst case collection sequence. The copy reserve is either the
largest increment size, or the largest potential increment occupancy
at the next collection. We determine maximum potential occupancy
for each increment by adding its current occupancy plus the max-
imum occupancy of any other increment from which the collector
could copy into this one.

The dynamic conservative copy reserve is particularly effective
in the Beltway X.X.100 collector where the third belt is rarely full.
The copy reserve is thus usually determined by the smaller incre-
ment size. As the third belt fills, the copy reserve grows until it
is finally half of the heap (so that the third belt occupancy and the
copy reserve are equal in size). After we collect the third belt, the
copy reserve automatically falls back to a smaller size, thereby con-
tinuously maximizing usable memory.
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Benchmark Description Min. heap size Total allocation GCs
202 jess An expert system shell 12MB 301MB 24–337
205 raytrace A ray tracing program 15MB 127MB 9–139
209 db Simulates a database management system 22MB 102MB 5–115
213 javac The Sun JDK 1.02 Java compiler compiling jess 32MB 266MB 10–100
228 jack Generates a parser repeatedly 20MB 320MB 16–135

pseudojbb Emulates a 3-tier transaction processing system 70MB 381MB 4–126

Table 1: Benchmark characteristics: minimum heap size, total bytes allocated, and the number of GCs performed by an Appel-style collector
at large and small heaps respectively.

4. Results
This section describes our experimental setting, including our garbage
collector environment, hardware, and benchmarks. We then present
GC time and total execution time for Beltway and generational col-
lectors with a variety of configuration parameters. Finally, we show
some sample responsiveness results.

4.1 Experimental Setting
Jikes RVM and GCTk. We use Jikes RVM version 2.0.2 for our
implementation study. Jikes RVM (formerly Jalapeño) is a high
performance VM written in Java that includes an aggressive opti-
mizing compiler [1, 2]. We used the Jikes RVM adaptive compiler
and its fast build-time configuration (which omits assertion check-
ing and pre-compiles as much as possible into the Jikes RVM boot
image).

We have recently developed a new GC toolkit for Jikes RVM
called GCTk, which includes Beltway as well as implementations
of previous generational collectors. GCTk is an efficient and flexi-
ble platform for GC experimentation that exploits the object-orientation
of Java and the VM-in-Java property of Jikes RVM. Prior to de-
veloping Beltway, we implemented a number of GC algorithms in
GCTk. These collectors include Appel-style and fixed-nursery gen-
erational collectors whose performance we report below. We found
their performance to be similar to existing Jikes RVM GC imple-
mentations. Existing Jikes RVM collectors all statically partition
their heap into small and large object spaces, and unconditionally
utilize the large object space. Unfortunately, GCTk currently does
not yet implement a large object space. Direct comparisons be-
tween GCTk and the native Jikes RVM collectors are therefore not
possible without significant changes to one of the systems.

After developing the generational collectors, we tuned them over
an eighteen-month period of heavy use in several contexts [7, 8].
For example, they use a very fast address-order write barrier [7].
We compare Beltway against these collectors. These collectors are
not limited in any way by the generalizations we employ in Belt-
way. We did however design GCTk using object-oriented tech-
niques which enables the reuse of key GC infrastructure. Of the 26
classes in Beltway and in the generational collectors, 23 are com-
mon to both. We implemented the Beltway collectors in GCTk as
a single collector with command-line options to specify the config-
uration.

Benchmarks. We use six SPEC benchmarks, five drawn from
the SPEC JVM98 suite, and pseudojbb, a slightly modified vari-
ant of SPEC JBB2000 [28, 29]. Rather than running for a fixed
time and measuring transaction throughput, pseudojbb executes a
fixed number of transactions. This modification made it possible to
compare running times reasonably. Dieckman and Hölzle present
a thorough analysis of SPEC JVM98 [17]. Table 1 shows some
characteristics in our system: the minimum heap size in which an
Appel-style collector does not fail, the bytes allocated in this sys-
tem, and the number of GCs at large and small heap sizes.

We ran each program 5 times for each collector configuration
and picked the best execution time (i.e., the one least disturbed by
other effects in the system). We separately performed a statistics
gathering run for each configuration to measure the rate at which
write barrier fast and slow paths were taken. We ran these pro-
grams on 33 heap sizes, ranging from the smallest one in which the
program completes up to 3 times that size.

Hardware. Our experimental timing runs were performed on
a Macintosh PowerMac G4, with a 733MHz processor, 32KB on-
chip L1 data and instruction caches, a 256KB unified L2 cache,
a 1MB L3 off-chip cache, and 128MB of memory, running PPC
Linux 2.4.10.

4.2 Throughput
This section examines the GC and total application performance for
a range of generational, Beltway X.X.100, and Beltway X.X collec-
tors. We begin by comparing Beltway configurations that match
Appel-style generational collectors and show they perform simi-
larly. We then turn to the choice of generational collector; we com-
pare fixed-nursery collectors with a range of sizes to the flexible-
nursery Appel generational collector. Our experiments show that
Appel improves performance, typically by about 50%, regardless
of nursery size. We therefore use it as our main comparison point.

We then explore the effect of increment sizes on Beltway X.X.100
and find that as long as the size is not too small, Beltway X.X.100
is not very sensitive to increment size. We also compare Beltway
X.X.100 to Beltway X.X for one increment size, and find their per-
formance comparable. We finally present execution and collection
times for Beltway X.X.100, Appel, and a fixed-size nursery col-
lector, which show that Beltway X.X.100 generally performs much
better than generational collectors.

4.2.1 Beltway as Appel
Figure 5(a) compares GC time, and (b) compares total application
time. In all the performance graphs, the left y-axis is the perfor-
mance relative to the best in the figure, the right y-axis is the actual
time, the bottom x-axis is the heap size relative to the minimum,
and the top x-axis is the actual heap size.

Figure 5 compares Appel, Beltway 100.100 (the Appel configu-
ration of Beltway), and Beltway 100.100.100, using the geometric
mean of our 6 benchmarks. These collectors adapt the nursery size
to occupy all available space not consumed by the higher genera-
tion. Garbage collection time is virtually the same for Appel and
Beltway 100.100. Beltway 100.100.100, the logical generalization
of Appel to 3 generations, enjoys a collection time advantage at
the smallest heap size, but has the same performance as Appel and
Beltway 100.100 at most heap sizes. There is more variation in the
total time results because two programs, 209 db and pseudojbb,
are very sensitive to locality effects, which are magnified here by
small variations in the collectors. For example, Appel uses a simple
boundary crossing write barrier and thus must scan the boot image
on each collection [3]. Beltway 100.100 uses the general write bar-
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Figure 5: Comparison of the Appel-style collector with Beltway two- and three-generation Appel configurations.

rier described in Section 3.3.1, which records as needed pointers
from the boot image.

Most importantly, these results show that Beltway X.X.100 does
not obtain performance improvements over Appel by simply adding
a third generation.

4.2.2 Incrementality in Generational Collectors
Incrementality is a key parameter for both generational and Belt-
way X.X.100 collectors. This section measures the performance
of generational collectors, both with a range of fixed nursery sizes
and also with a flexible nursery. It then explores the impact of in-
crementality on the Beltway X.X.100 collector.

Figure 6 compares the performance of four configurations of a
fixed-size nursery generational collector and an Appel-style collec-
tor, with respect to both GC time and total time, using a geometric
mean of performance of all 6 benchmarks. The Appel collector’s
superior space utilization naturally makes good trade-offs between
frequency of collection and space utilization, which results in its
good total and collector performance.

In contrast, a small fixed-size nursery increases the frequency
of GCs and limits time-to-die in the nursery. Both degrade overall
performance. A large fixed-size nursery reduces the available space
for the higher generation and thus leads to more frequent full heap
collections and worse overall performance. Furthermore, the reser-
vation of a fixed proportion of the heap for the nursery significantly
impacts the collector’s capacity to perform in tight heaps. The lack
of results for small heap sizes in Figure 6 illustrates the failure of
the generational collector to perform at all in small heap sizes.

These results show that the Appel-style collector is the best per-
forming generational configuration, a result that to our knowledge
has not previously appeared in the literature. On the basis of these
results, we use the Appel-style configuration, and the best perform-
ing fixed-size nursery collector with nursery size of 25% in subse-
quent comparisons.

4.2.3 Incrementality in Beltway
Figure 7 compares the peformance of Beltway X.X.100 with four
different increment sizes. We can see that Beltway X.X.100 is fairly
robust across increment sizes, although the small increment size
of 10 degrades performance. This degradation could be attributed
to more frequent nursery collections and less time-to-die, or to a
diminished capacity to collect large cycles in the second generation.
The latter would increase the load on the third generation, and lead
to a reduction in heap utilization because it also will increase the

copy reserve. We use the 25.25.100 configuration in the remainder
of the results section as it appears to perform well, and it is a natural
point of comparison with the 25% fixed-size nursery generational
collector.

4.2.4 Beltway X.X versus X.X.100

Figure 8 compares Beltway 25.25 to Beltway 25.25.100 to explore
if sacrificing completeness improves performance. However, the
geometric means for these two configurations are the same. A few
programs do improve slightly using Beltway 25.25, but 213 javac
performance actually degrades because Beltway 25.25 never re-
claims a large cyclic garbage structure.

4.2.5 Garbage Collection Time
Figure 9(a) shows the geometric mean of the time spent in GC for
Beltway 25.25.100, a fixed-size 25% nursery generational collec-
tor, and an Appel-style collector. The robustness of Beltway with
respect to heap size is clear. The Appel configuration allows the
higher generation to grow as large as possible and so performs bet-
ter than the fixed nursery configuration, whereas Beltway X.X.100
exploits the small increment size, dynamic copy reserve, and FIFO
behavior in the higher generations to reduce GC overhead substan-
tially in small heaps.

4.2.6 Total Time
Figure 9(b) presents the geometric mean of the program execu-
tion times for Beltway 25.25.100, Appel-style generational, and
a fixed-size 25% nursery generational collector. Figure 10 shows
the results for each benchmark. In general, Beltway improves per-
formance significantly in small to moderate heaps, and performs
excellently across all heap sizes.

Two interesting results standout. First, Appel performs very
poorly in large heaps for pseudojbb because the program thrashes
when its nursery becomes too large and spreads out live data too
much. Second in 209 db, garbage collection is not a dominant
factor. Again, locality effects cause the variations in performance
across different heap sizes on all collectors. With the exception of
209 db and jbb, Appel outperforms the fixed nursery collector at

all heap sizes and all programs.
Comparing Appel to Beltway 25.25.100 Appel’s performance

does not match Beltway X.X.100 until the heap grows to at least
1.5 times the minimum heap size (except for 209 db). In ad-
dition, Appel needs at least 2.5 times the minimum heap size for
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Figure 6: Impact of nursery size on performance of a two-generation collector.
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Figure 7: Impact of increment size on performance of Beltway X.X.100.
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Figure 8: Comparisons of Beltway 25.25, Beltway 25.25.100, and Appel-style generational relative to best.
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Figure 9: Performance of Beltway 25.25.100, Appel-style, and fixed-size 25% nursery generational collectors relative to best.

213 javac and 2 for 228 jack to match Beltway X.X.100’s per-
formance. Beltway X.X.100 uses small and moderate heaps more
effectively than Appel and the fixed nursery collector, achieving
good performance even when memory is constrained. In 202 jess,
205 raytrace, 213 javac, and 228 jack, Beltway achieves within

5% of the best performance for virtually every configuration. It thus
performs well in a wide variety of circumstances.

4.3 Responsiveness
We did not design Beltway to provide hard real-time performance.
However, we did expect that some configurations would offer better
responsiveness than other collectors, such as Appel. Simple mea-
sures, such as the length of the longest GC pause or a distribution
of pause times, do not take into account clustering of GCs, which
might prevent mutator progress over a longer period. To our knowl-
edge this issue was first considered by Hölzle and Ungar [22], with
respect to pauses caused by dynamic compilation. We follow the
methodology of Cheng and Blelloch [13].

To incorporate such possibilities, we measure mutator utilization
(MU). We define MU to be the fraction of time the mutator runs
within an interval [t0;t1). Clearly, MU ranges over [0;1] and higher
MU means the GC is running less. In our graphs, we present min-
imum mutator utilization (MMU). A point (w;m) lies on an MMU
curve if, for all intervals (windows) of length w or more that lie
entirely within the program’s execution, the mutator utilization is
at least m. MMU curves are monotonically increasing, with the x-
intercept being the maximum GC pause for the run, and the asymp-
totic y-value being overall throughput (fraction of time spent in the
mutator).

Figure 11 shows graphs of MMU curves for runs of 213 javac
at two heap sizes. In each graph there are two groups of curves.
Those to the left indicate better responsiveness: higher MMU over
the same or smaller intervals. On both graphs, Beltway 10.10 and
10.10.100 behave similarly, and offer better responsiveness (and
throughput) than other configurations. In the second graph, we see
that at larger heap sizes, the maximum pause time is larger (because
the increment size is larger, being 10% of the usable heap, etc.),
and that Beltway 33.33 and 33.33.100 offer behavior intermediate
between 10.10/10.10.100 and Appel.

It is clear that some configurations of Beltway offer better re-
sponsiveness than others, including Appel. Thus Beltway can be
adjusted to provide better responsiveness, though we have not yet
explored the configuration space fully, or related it to characteris-
tics of various benchmarks, to offer a tuning strategy.

5. Related Work

The Beltway framework combines and exploits key insights of in-
cremental garbage collection [6], segregating objects to different
physical regions of the heap in order to improve collector (and
sometimes mutator) performance. This section compares Beltway
to other collectors with respect to object segregation, pointer track-
ing, promotion policies, incrementality, completeness, and hybrids.

The most common segregation policy is by age: two or three
age-based regions are common, but some collectors use more [27].
Generational age-based collectors exploit the weak generational
hypothesis [34]. Older-first collection [32] and renewal older-first
(here called older-first mix) [15, 19] are premised upon the just al-
located (Older-First) or copied (renewal older-first) objects being
likely to stay reachable for a while. Beltway configurations ex-
ploit these characteristics with multiple increments on FIFO belts.
Beltway X.X.100 is complete, unlike older-first. More importantly,
Beltway generalizes over all these previous collector organizations,
and, in addition, supports segregation by object characteristics such
as size [21], type [27], or allocation-site (e.g., segregation of long-
lived, immortal, or immutable objects) [8, 14], although we do not
explore this type of segregation in this paper.

Any references into an increment must be tracked if that incre-
ment is to be collected independently. Pointer tracking may use
remembered sets [34], card marking [39], hardware support [4, 9,
16, 26], or a combination of techniques. Card tables [39] are a
common alternative to the remsets we use in Beltway. Card tables
trade a fast write-barrier (typically two or three machine instruc-
tions) for increased work scanning at collection time. A marked
entry in the card table means that one or more pointers were writ-
ten to some address within the heap range (the card) corresponding
to this mark; the collector must scan the card to find such pointers
and test each one to discover whether it is ‘interesting’. Beltway
collectors do not use card tables for two reasons. First, Jikes RVM
lays out array and scalar objects in different directions in the heap.
Thus, the start of one object cannot be determined from the pre-
vious object. Second, the performance of card tables or remsets
depends strongly on application behavior, and in particular on the
relative frequency of writes and remset/card table scanning. Earlier
experience [23] suggests that remsets are generally faster.

To give objects more time to die, generational collectors may
vary the size of the nursery [3], use an allocation threshold rather
than a capacity [40] to trigger collection, or move the boundary be-
tween generations to reflect demographic changes [35]. Beltway
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(f) pseudojbb

Figure 10: Execution times for Beltway 25.25.100, Appel-style, and fixed-nursery generational collectors relative to best.
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Figure 11: MMU plots for 213 javac at two heap sizes.

can use these techniques, but not the ‘threatening boundary’ tech-
nique [5]. To prevent less frequently collected increments from
filling prematurely, some collectors further segregate surviving ob-
jects by age to mitigate early promotion [40]. For example, col-
lectors can control promotion by recording object ages [36], or
by organizing generations into creation and survivor spaces or into
bucket brigades [34, 37]. At collection time, these methods must
access every object in the generation, whether to promote it, copy
it within the generation, or increment its age. Beltway subsumes
and improves on these techniques through multiple increments and
time-to-die triggers in a belt. Not only does it prevent premature
promotion, it also does not touch objects prematurely.

By collecting one region at a time, region collectors provide in-
crementality [24]. Generational collectors offer improved expected
pause-times, but their need for occasional full-heap collections pre-
vents any worst-case guarantee. The Beltway framework allows
investigation of throughput and pause-time tradeoffs. Beltway X.X
offers incrementality at the expense of completeness, and Beltway
X.X.100 provides completeness at the cost of occasional full-heap
collections. One possibility that we leave to future work is adding
Mature Object Space [24] copying rules to Beltway so as to obtain
completeness without full-heap collections.

It is common for region collectors to manage different regions
with different policies or through different managers. For exam-
ple, large object areas or the oldest generation of a generational
collector may be managed by a non-moving collector. A Mature
Object Space (MOS) collector handles older generations specially,

bounding the volume copied at any collection and offering (even-
tual) completeness [24]. Some regions may not be managed by a
collector at all, either remaining uncollected [8], handled by static
analysis [33], or via a stack-like discipline [11, 18, 30]. We could
combine Beltway with other collectors, but such exploration is be-
yond the scope of this paper.

6. Conclusion
We present a new collector design, Beltway, that subsumes pre-
vious work on copying collectors. The generality of the Beltway
framework enables the implementation of new copying collectors
that combine key ideas in the garbage collection literature. We il-
lustrate how Beltway encompasses all of the previous generational
and region copying collectors of which we are aware, and iden-
tify two new collectors, Beltway X.X and Beltway X.X.100. The
design and implementation of these collectors introduces the need
for a number of new mechanisms, including the use of frames to
minimize write barrier costs, collection triggers to preempt future
collection problems, and a dynamic conservative copy reserve to
make the most efficient use of heap space. Using these mecha-
nisms, our results show that Beltway X.X.100 outperforms both a
state-of-the-art Appel-style collector and a fixed-size nursery gen-
erational collector. The Beltway framework provides a novel, very
general, and efficient design and implementation that results in bet-
ter collectors, but more importantly opens to further exploration a
large design space for copying region collectors.
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