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Abstract. XPathisalanguage for navigating an XML document and selecting a set of element nodes.
XPath expressions are used to query XML data, describe key constraints, express transformations,
and reference elements in remote documents. This article studies the containment and equivalence
problems for afragment of the XPath query language, with applicationsin all these contexts.

In particular, we study a class of XPath queries that contain branching, label wildcards and can
express descendant rel ationships between nodes. Prior work has shown that languages that combine
any two of these three features have efficient containment algorithms. However, we show that for the
combination of features, containment is coNP-complete. We provide asound and compl ete algorithm
for containment that runsin exponential time, and study parameterized PTIME special cases. While
we identify one parameterized class of queries for which containment can be decided efficiently, we
al so show that even with some bounded parameters, containment remains coNP-complete. Inresponse
to these negative results, we describe a sound algorithm that is efficient for all queries, but may return
false negatives in some cases.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems; H.2.3 [Database M anagement]: Languages
Genera Terms: Algorithms, Languages, Theory

Additional Key Words and Phrases. Tree pattern matching, XPath expressions, query containment,
query equivalence

1. Introduction

XPathisasimplelanguagefor navigating an XML treeand returning aset of answer
nodes. XPath expressions are ubiquitous in XML applications. They are used in
XQuery [Chamberlin et al. 2001] to bind variables; in XML Schema [ X Sch 1999]
to define keys; in XLink [DeRose et a. 2001] and XPointer [DeRose et al. 1999]
to reference elementsin external documents; in XSLT as match expressions, and in
content-based packet routing [ Snoeren et al. 2001] asfilter expressions. Instances of
the containment problem for X Path expressions occur in each of these applications,
and others. For exampl e, inference of keysdescribed by X Path expressionsrequires
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Fic. 1. A simple tree pattern with return node x marked. It corresponds to the XPath expression
a// *[b//d][c].

a test for containment, and similarly certain optimization methods for XQuery
reguire an X Path containment test.

The focus of this article is the complexity of the containment problem for a
simple fragment of XPath which is used frequently in practice. This fragment
consists of: node tests, the child axis (/), the descendant axis (//), wildcards (), and
predicates (or filters, denoted [ . .. ]). Isolating the three most important features,
we call this class of queries XPU1*/} |t isarather robust subset of X Path: many
applicationsuse only expressionsin thisfragment. Further restrictions, on the other
hand, seem impractical since each of the constructs mentioned occur often. An
expression in XP!*/} is best represented as a tree pattern. For example, the
expression a// *x [b//d][c] is represented by the tree pattern pictured in Figure 1
where double-lines represent descendant edges, * is alabel wildcard, and x marks
the return node. Starting at the root, this pattern first checks if the root node is
labeled a. If not, it returns the empty set; otherwise, it returns al its descendants
that have both a b-child with a d-descendant, and a c-child: the b and ¢ children
may occur in any order.

For a given XPath expression p and input tree t, we denote by p(t) the set of
nodes int returned by the evaluation of p. Two expressions p, p’ are contained,
denoted p C p/, if Vt.p(t) C p/(t). Two expressions are equivalent if p € p’ and
p’ € p. We show in Section 2 that these two problems are mutually reducible, and
focus our attention on the containment problem.

Our first result is that the containment problem for XPl1-*/} expressions is co-
NP complete. Thisis rather surprising in light of prior results on the complexity
of XPath containment, which have shown that for any combination of two of the
constructs *, // and [. . .] the containment problemisin PTIME. In the absence of
descendant edges, a PTIME containment algorithm for the fragment XP{U* fol-
lows from classic results on acyclic conjunctive queries [ Yannakakis 1981]. With-
out label wildcards, the fragment XPU{1/} was recently found to have a
polynomial time containment algorithm [Amer-Yahiaet al. 2001]. And for X P&/},
patterns do not have branching, and are therefore closely related to a fragment of
regular string expressions. A result in Milo and Suciu [1999] shows that the con-
tainment problem for this fragment is also in PTIME. We show that containment
is coNP-complete if branching, label wildcards, and descendant edges are consi-
dered together.
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This result creates a new challenge: find practical agorithms for checking con-
tainment. We pursue two goals: (i) to find an efficient, sound algorithm, and show
that it is complete in particular cases; and (ii) to find a sound and complete algo-
rithm and show that it is efficient in particular cases. We answer (i) by describing a
simple agorithm (Algorithm 4), which always runs in PTIME and proving that it
is complete when the containing query has no branching.

Our second class of resultsdeal with problem (i), which ismoredifficult than (i).
It is not hard to describe a sound and compl ete algorithm that runs in exponential
time, but the challenge consists in improving it to run in PTIME in nontrivial
special cases. In particular, we considered specia casesthat generalizethose where
containment wasknownto bein PTIME: (a) bound the number of //’sby aconstant,
(b) bound the number of *'s by a constant, and (c) bound the number of branches
by a constant. We give a positive answer to (a): containment can be checked in
PTIME whenever the number of //’sin p is bounded by some number d (d will
be the degree of the polynomial describing the running time). However, (b) and (c)
have negative answers. More precisely, the containment of X P/} expressionsis
coNP-completeevenwhen p hasno*’sand p’ containsonly two x’s, which answers
(b) negatively. For (c), the containment of X P!1-*//} expressionsis coNP-complete
evenwhen p hasfive branchesand p’ hasthree branches. Asour answer to problem
(i), we describe a containment algorithm that runs in exponential time in general,
but runsin PTIME in some specia cases of practical interest (Algorithm 2).

In summary, the results in this article characterize the cases when the XPath
containment problemisin PTIME and those when it isco-NP complete. The article
also describes two algorithm for containment, a PTIME incompl ete algorithm, and
an exponential-time complete algorithm, and proves formal properties justifying
their usage in practice.

ANotetothePractitioner. Thereaderinterested inimplementing acontainment
algorithm may first read Algorithm 4 (Section 3.2), and the associated Algorithm 3
for finding a homomorphism. It checks containment of two XPath expressionst
p and p’ intime O(| p|| p']), and has two advantages over an ad-hoc approach: it
is more efficient (an ad-hoc approach runs in time O(| p|?| p|)), and returns fewer
false negatives. Still, this algorithm may return some false negatives, that is, may
fail to detect containment for certain XPath expressions p and p’. Such cases are
rare, and for many applications this simple containment algorithm is sufficient. To
see an example where the algorithm fails, the reader may want to look at Figure 10.
For applicationswhere such X Path expressions may occur, and whereit isimportant
to detect containment in all cases, the reader is advised to consider Algorithm 2, in
Section 3.1. While more complex, this algorithm always determines containment
correctly, and can be quite efficient in certain special cases. In general, however,
the algorithm runs in exponential time.

Article Organization. The organization of the article is as follows: Section 2
contains the definition of tree patterns, their semantics and evaluation, and therela-
tionship between tree patterns and X Path expressions. Section 3 discussestwo ways
of reasoning about containment: canonical models and pattern homomorphisms,

1 Thealgorithmisexpressed in terms of tree patterns. Section 2 describes the correspondence between
tree patterns and X Path expressions.
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respectively. Canonical models result in a complete algorithm for checking con-
tainment whose worst case running timeis exponentia (Section 3.1), while homo-
morphisms lead to a polynomial-time algorithm for checking containment that is
incomplete (Section 3.2). Westateand provethe co-NP hardnessresultsin Section 4.
Section 5 discuss a number of assorted issues: digunction in patterns, connections
to computation treelogic, and the special case when the al phabet isfinite. Section 6
discusses related work, and Section 7 concludes.

2. Definitions and Background

Wereview herethe basic definitions of XML trees, X Path queries, and their seman-
tics. Then weintroduce an alternative query formalism, called tree pattern, whichis
eguivalent to X Path queries, and prove that for the purpose of the containment and
equivalence of XPath queriesit is sufficient to consider only the containment prob-
lem for Boolean tree patterns. Finally, we describe an algorithm for the evaluation
of aBoolean tree pattern on an XML tree.

2.1. TREES AND PATTERNS

2.1.1. XML Trees. We model an XML document as a tree with nodes |abeled
fromaninfinitea phabet X. Thesymbolsin X represent the element |abels, attribute
labels, and text values that can occur in XML documents. By requiring this set to
be infinite we ensure that no XPath expression contains all possible labels: all our
results on containment of X Path expressions depend critically on this assumption,
and we will briefly discuss the case when X is finite in Section 5. Notice that
the XML trees we consider are unordered and unranked. We denote the set of all
trees with Tx. For atreet € Ty we denote NODES(t) and EDGES(t) the sets of
nodes and edges, respectively, by ROOT(t) itsroot node, and write LABEL (X) for the
label on node x, LABEL(X) € X. We also denote EDGES™ (t) the transitive closure of
EDGES(t): EDGES™ (t) = EDGES(t) UEDGES(t) 0o EDGES™ (t), and denote EDGES*(t) the
reflexive and transitive closure of EDGES(t): EDGES*(t) = NODES?(t) U EDGES™ (t).
Define the distance between two nodes (X, y) € EDGES*(t) to be: d(x, x) = O,
d(x, y) = 1when (X, y) € EDGES(t) and d(X, y) = 1+ d(z, y) when 3z, (X, 2) €
EDGES(t), (z, y) € EDGES™(t). Finally, we define the size of atreet, in notation |t|,
to be the number of edgesint.

2.1.2. XPath Queries. We study afragment of X Path, denoted X P/} con-
sisting of expressions given by the following grammar:

qg—->n [ *x] . | a/9 | 9/9 | qlq] D

Heren € X isany label, x denotesalabel wildcard, and . denotesthe* current node.”
Theconstructions / and // mean child and descendant navigation respectively, while
[ ] denotesapredicate. Our discussionwill focusonthethreeconstructs| ], //, * and
the notation X P!1-*//} signifies that all three are allowed. We will denote X P11},
XPUL/ X P/ the subsets of XPath expressions restricted to only two of the
three constructs.

The meaning of an expression q € XP1*/} on atreet e Ty, in notation q(t),
isaset of nodesint. We adapt the formal semantics from Wadler [1999], fixing
the root as context node: that is, g(t) = q(RooT(t)), where q(x) for x € NODES(t)
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is defined below, by induction on the structure of g:

nx) = {y| (x, y) € EDGES(t), LABEL(Y) = n}
*(X) = {y | (X, y) € EDGES(t)}
(X) = {x}
(/dR)(X) = {z|y € qu(x), Z € q2(Y)}
(A1//9)(X) = {z|y € qu(X), (Y, U) € EDGES'(t), Z € go(u)}
Au[a](X) = {y | Y € qu(x), a=2(y) # 9}

Noticethat the definition of g(t) never inspectsthelabel of theroot node, ROOT(t).
For exampleif a € X, then a(t) returns the children of ROOT(t) that are labeled a,
and ignores the root label. This follows standard XML semantics, where ROOT(t)
corresponds to the document node and is unlabel ed.

We need to include the current node construct in our fragment in order to use it
in contexts like a/b[.//c]. It can sometimes be eliminated (for example, a/./b is
equivalent to a/b), however, in other cases it cannot. For example, the semantics
of a//. is that of the union between a and a//*. While most of the results we
discuss in this article extend to a language which has explicit union, we prefer
to keep the discussion simple and restrict the usage of . to a context immediately
inside a predicate [ ]. Thus, a construction like a[.//b] is alowed, while a//.
is not.

Two expressions q, g’ in XP!*/} are contained, in notation q < q, if their
result sets are contained for every tree: q(t) < q(t’), Vt € Ty. Two expressions are
equivaent if their result sets are equal .

2.1.3. Tree Patterns. We use an alternative, and more general representation
of queries as tree patterns. A tree pattern of arity k, k > 0 is a tree p whose
nodes are labeled with symbolsfrom = U {x}, with a distinguished subset of edges
called descendant edges, and a k-tuple of nodes called the distinguished nodes.
We use the same notations NODES( p), EDGES(p), ROOT(p) and LABEL(X) for X €
NODES(p) as before. The set of descendant edges is denoted EDGES)/(p), while
the other edges are called child edges and their set is denoted EDGES,(p); thus
EDGES(p) = EDGES/(p) U EDGES,(p). In diagrams we represent descendant edges
with doublelinesand child edgeswith singlelines. Figure 1illustrates atree pattern
of arity 1; another tree pattern of arity 1 isshown in Figure 2(b). In both figuresthe
distinguished node is indicated with an Xx.

The set of all tree patterns is denoted P/} We define the following three
subclasses: P!1* denotes all patterns without descendant edges, P/} denotes
patters without s labels, and P*//} denotes linear patterns, that is, where every
node has at most one child. As before, the size of atree pattern, | p|, is defined to
be the number of edgesin p.

Everytreet e Ty isautomatically atreepatternof arity O: just defineEDGES, (t) =
EDGES(t) and EDGES,(t) = #.

Given atree pattern p and atree t, define an embedding from p tot to be a
function e : NODES(p) — NODES(t) which satisfies the following conditions:

Root-preserving. e(ROOT(p)) = ROOT(t),
Label-preserving. For each X € NODES(p), LABEL(X) = * Or LABEL(X) =
LABEL(e(X)),
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(a) (b)

FiG. 2. (@) Treeinstancet, (b) pattern p and an embedding from p tot.

Child-edge-preserving. For each (X, y) € EDGES,(p), (e(x), e(y)) € EDGES(t),
and

Descendant-edge-preserving. For each (Xx,y) € EDGES;,(p), (e(x),e(y))
EDGES™ (t).

An embedding does not need to be an injective function. An example of an
embedding is pictured in Figure 2(a) and (b).

Finally, denoting X = (X1, X2, ..., Xk) the k-tuple of distinguished nodesin p,
we define the meaning of atree pattern p on atreet to be the following subset of
NODESX(t):

p(t) = {e(x) | eisan embedding from p tot}

2.2. FROM XPATH TO TREE PATTERNS. Every XPath expression can be trans-
lated into atree pattern of arity 1, and vice-versa, while preserving semantics. The
only subtlety isthat X Path expressionsignore the label of the root node, while tree
patterns do not. To account for that, given sometreet € Ty and alabel r € =, we
denote r /t a tree whose root node is labeled r and has a single subtree, t. Then,
every XPath expression g can be trandated into a tree pattern q of arity one, such
that vt € Ty, q(r/t) = q(t); and, conversely, every tree pattern p of arity one can
betranslated into an X Path expression p suchthat vVt € Ty, wehave p(t) = p(r /t).
We omit the tedious, but straightforward trandglation, and only illustrate with two
examples: Figure 1 shows the tree pattern for a//*[b//d] [c], and Figure 2(b)
showsthetree pattern for the X Path expression a[a] //* [b]//c. The containment
problems for XPath expressions and for unary tree patterns are thus equivalent.
Moreover, the translation also preserves the fragments of interest to us; XP{1*
corresponds to P XPUL/ corresponds to P/} and XP™/ corresponds
to P/} respectively. Thus, from now on, we shall consider tree patterns only,
that is, P11/} and its fragments, but it should be clear that all results apply also to
XPath expressions.

Tree patterns are actually more general, since they can have arities other than 1.
This makes them applicable, for example, to the optimization of the FOR clause of
an XQuery expression [Chamberlin et al. 2001]: there, multiple X Path expressions
are used to bind multiple variables, and they can be combined into a single tree
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M 1

FiIG. 3. A tree pattern p of arity 3, with the distinguished nodes x;, X2, X3, and its trandation to a
Boolean pattern po, used in Proposition 1: pg has three extranodes labeled s, s, S3.

pattern whose distinguished nodes correspond to those variables. For the study of
containment, however, arity is not an important consideration, as we explain next.

2.3. BOOLEAN PATTERNS. For the purpose of the containment problem, it suf-
ficesto limit our discussion to tree patterns with arity zero, which we call Boolean
patterns. When p is Boolean, then p(t) is either @ or {()}: in the first case, we say
that p(t) isfalse; in the latter, we say it is true. For Boolean patterns, containment
means implication: p € p’ if and only if Vt.p(t) = p'(t). The next proposition
shows how a solution to containment of Boolean patterns can be used to solve
containment for k-ary patterns.

PROPOSITION 1. Lets, ..., bek labelsthat are notin X. Thereisa trans-
lation of k-ary patterns over the alphabet X, to Boolean patterns over the al phabet
Y U{s,S,..., X}, such that for any k-ary patterns p, p’, and their translations
Po, Py, We have p € p’if and only if po € py,.

The trandation of p into pg consists of adding k extranodes, labeled sy, .. ., s
and making them children of the k distinguished nodes in p. Figure 3 illustrates
this construction. Intuitively, p € p’ <= po € p, because the extranodesin po
and p; have to match exactly, implying that the distinguished nodes in p and p’
match too. A formal proof based on this argument is given in the Appendix.

Thus, al results about containment of Boolean patternsimmediately apply to k-
ary patterns, for any k > 0. Noticethat thetranslation from p to pg in Proposition 1
preserves both fragments P!/} and P!1#} | henceaall resultsfor Boolean patternsin
these two fragments also hold for k-ary patterns in the same fragments. However,
the translation does not preserve P/}, since py may have extra branches. For the
positive resultsto carry from Boolean patternsin P*//} to k-ary patterns, we need a
different encoding, which we describe here briefly. Assumefirst that p and p’ have
no output nodes labeled with ’s. Then we construct the Boolean tree patterns po
and pg by replacing each label a on some node x with anew label consisting of a
and followed by those symbolss that correspond to the positionsin the output tuple
where x occurs. For example, assuming the output tupleto be (X, vy, X, X, z, y), then
node x will have itslabel a replaced with (a, s;, Sz, S4), node y will have its label
b replaced with (b, s,, S5), and node z will have its label ¢ replaced with (c, ss).
All other nodes have their labels unchanged. Doing thisin both p and p’ resultsin
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the Boolean patterns po, Py, over theaphabet X x P({sy, . .., s}). Thenew labels
ensure that output nodesin pg can only be mapped to corresponding output nodes
in po. But, in general, this technique fails because it prevents us from mapping a
nonoutput nodein p;, to an output nodein po. Still, the technique worksfor the case
when p’ isalinear pattern, since then any embedding from p’ isinjective, and we
never need to map a nonoutput node to an output node. It remains now to consider
the case when p and p’ have x’s. Here the observation is that an output node must
be mapped to the correspondingly labeled output node: hence, if it islabeled with
x, wemay aswell relabel it with thelabel of the corresponding output nodein p: if
the latter isalso *, then relabel it first with afresh symbol in X. This eliminates all
x's from output nodes, and we apply the construction above. We leave the details
to the reader. As a consequence, all results discussed in the article for Boolean
patterns also apply to k-ary patterns, for arbitrary k.

In the rest of the article, we will assume all tree patterns to be Boolean tree
patterns, unless otherwise stated.

2.4, MUTUAL REDUCIBILITY OF CONTAINMENT AND EQUIVALENCE. The con-
tainment and eguivalence problems are mutually reducible in polynomial time.
Equivalence is simply two-way containment. In addition, given two Boolean pat-
terns p and p’, and an algorithm for equivalence, we can decide containment.
First, form a new tree pattern po from p and p’ by fusing their roots. If con-
tainment is to hold, either LABEL(ROOT(pP)) = LABEL(ROOT(p’)) or for some
a € X, LABEL(ROOT(p)) = a while LABEL(ROOT(P’)) = *. In the former case,
LABEL (ROOT(pg)) is their common label; in the latter LABEL(ROOT(pg)) = a. Pat-
tern po isaBoolean pattern such that, for any input treet, po(t) istrueif and only
if p(t) A p'(t) istrue. Thenit followsthat p C p’ if and only if p isequivalent to
Po. We discuss only containment in the remainder of the paper.

2.5. TREE PATTERN EVALUATION. We give below an agorithm that, given a
Boolean pattern p and treet, checkswhether p(t) istrue. The algorithm deploys a
standard dynamic programming method, computing a Boolean matrix C(x, y) for
X € NODES(t), y € NODES(p) such that C(x, y) is true if there exists an embed-
ding from the subpattern rooted at y to the subtree rooted at x. An improvement,
suggested by N. Dalvi and S. Sanghai (2002, personal communication), allowsthe
algorithm to run in time O(] p||t]), by computing a second matrix D, whose entry
D(x, y) istrueif there exists an embedding from the subpattern rooted at y to some
subtree of t whose root is either x or a descendant of x. Recall that |t| denotes the
number of edgesint, and | p| the number of edgesin p.

PrROPOSITION 2. Algorithm 1 decides for any tree pattern p, and input tree t
whether p(t) istrue, and runsin time O(| p||t]).

Algorithm 1. Find embedding p — t

1: forx in NODES(t) do {The iteration proceeds bottom up on nodes of t}

2: foryinNODES(p) do {The iteration proceeds bottom up on nodes of p}
3 compute C(X, y) = (LABEL(Y) = * V LABEL(Y) = LABEL(X))A

4 N ¢y.y)<EDGES, (5 (V (x.x)cEDGES() C(Xs YDA

5! Ny.y)<epces, (m)(V . x)<EpGESH P(X' ¥))
6 compute D(X,y) = C(X. ¥) V Vxeencesy DX ¥)
7: return C(ROOT(t), ROOT(p))
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ProoF. The inner loop consists of lines 4, 5, and 6. The condition C(X’, y)
in line 4 is checked once for every pair of edges (y,y’) € EDGES/(p) and
(x, x") € EDGES(t). The condition D(X’, y’) is checked once for every pair of edges
(y,Y') € EDGES//(p) and (X, X") € EDGES(t). The total number of times that these
two conditions are checked is thus no more than |EDGES(p)||EDGES(t)| = | p]|t].
The condition D(x’, y) inline 6 is checked once for every node y € NODES(p) and
every edge in EDGES(t). Thetotal running timeisthus O(|p|it]). O

2.6. OTHERNOTIONSOF PATTERN MATCHING. Thestudy of tree pattern match-
ing problems has a long history that has focused primarily on the problem of
evaluation of patterns, not containment. Nevertheless, it is illuminating to con-
sider the differences between the semantics of our patterns and other match-
ing problems.

Two pattern matching problems are especialy related to ours. The first, some-
times called classical tree pattern matching, involves a more restrictive embedding
[Hoffmann and O’Donnell 1982]. Here both the patterns and the trees are or-
dered, and the patterns are Boolean, and without descendant edges. An embedding
is required to be order preserving, but not necessarily root preserving. A simple
extension of the Algorithm 1 to account for the node order runs in time O(mn)
for a pattern with m nodes and a tree with n nodes. Improving this bound was
a long-time open problem, first solved in Kosargju [1989] to attain a bound of
O(nm®®polylog(m)). The best algorithm to date is O(nlog® m)[Cole et al. 1999].

The second related problem was defined in Kilpelainen and Mannila [1995] as
unordered tree inclusion. The simplest statement of the problem is: given a pattern
and input tree, can the pattern tree be obtained from theinput tree by node deletions.
It turns out that this problem is equivalent to evaluating a pattern in our formalism
where all edges are descendant edges, where the embedding e is required to map
two distinct children of anode x € NODES(p) into two different subtrees of e(x).
In particular, eisinjective. This subtle difference resultsin an increased eval uation
complexity and it is shown in Kilpelainen and Mannila [1995] that unordered tree
inclusion is NP-complete.

3. Checking Containment

How does one check containment p € p’ for two Boolean patterns? Based on
its definition, is not even clear that this is decidable, since we need to check that
p(t) = p'(t) holdsfor all treest, and there areinfinitely many trees. One approach
isto show that it suffices to check only finitely many trees: in fact one can restrict
the search to “canonica” treest, which “look like” p and are “no bigger” than p'.
We pursue thisideain Section 3.1, and arrive at an exponential-time algorithm for
checking containment, and a proof that containment isin co-NP.

The second approach we discuss here uses a different concept to reason about
containment: find apattern homomor phismfrom p’ to p. Thisleadsusin Section 3.2
toapolynomial time containment algorithmsthat i ssound, but not awayscompl ete.
We show however that this procedure is also complete in certain cases.

3.1. CHECKING CONTAINMENT WITH CANONICAL MODELS. A model of a
Boolean pattern p isatreet € Ty on which p evaluates to true. We denote with
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/ //\ < “\
/ (%) \\Extensi(m nodes C@\ \\Extemlon nodes
) .

CHENCE ® &
\
(a) tree pattern p  (b) tree pattern p[0, 2] (c) canonical model s*(p[0, 2])

FiG. 4. A pattern p, the extension pattern p[0, 2], and the canonical model t = s?(p[0, 2]).

Mod( p) the set of models:
Mod(p) = {t € Tx | p(t) istrue}.

Containment of Boolean patterns can be restated in terms of models: p € p’ if and
only if Mod(p) € Mod(p").

Consider the containment problem: given p, p’, check if p € p’. One way to
approach the problem isto search for atreet such that p(t) istrueand p’(t) isfalse,
because this implies noncontainment, p £ p’. If such atreet exists, we call it a
witness. Thus, to solve the containment problem it suffices to search for awitness
tree, or to establish that none exists. Sincethereareinfinitely many trees, weneedto
reduce the space of witnesses. Clearly, it sufficesto search the withesst in Mod(p),
but the latter is till aninfinite set. To further restrict this set we introduce canonical
models next.

Let p be atree pattern, p € Pl1*/} The canonical models for p are obtained
in two steps. first eliminate al descendant edges, by replacing each edge // witha
sequence of wildcards =/ / . .. /*, second replace each wild card with asymbol z.
Theresulting trees are the canonical modelsfor p. We describe thisformally next.

Suppose p hasd descendant edges, EDGES)/(p) = {I'1, . . -, I'q}. Givend numbers
U= (Ug,...,Uq),uy >0,...,ug > 0, define the u- @(tenson of p, in notation
p[u], to be the pattern obtal ned from p by replacing every descendant edger; with
achain of uj new nodes, labeled x and connected with child edges. Thus, p[u] is
a pattern obtained by replacing each descendant edge with a sequence of *'s. If
ri = (X, y) istheith descendant edge in p, then the distance in p[u] from x to y
isd(x, y) = u; + 1 (see the definition of the distance function in Section 2). We
call the new nodes in NODES(p[u]) extension nodes. For an illustration, consider
the pattern in Figure 4(a) and the extension p[0, 2] in Figure 4(b); there are two
extension nodes. We have the following:

LEMMA 1. Lete: p — t beanembedding fromthetreepattern p tothetreet.
There exists a unique extension p[u] and a unique embedding € : p[u] — t such
that Vx € NODES(p), &(x) = €(X).

ProoF. Foreachi =1, ..., d,theembedding e mapsthedescendant edger; =
(Xi, ¥i) € EDGES/(p) into a pair of nodes (e(x;), &(y;)) € EDGES' (t). Defineu; =
d(e(xi), e(y;)) — 1 whered isthe distance functionint, and let u = (uq, ..., Ug).
Extend eto € : p[u] — t by mapping the extension nodes between x; and y; to
the nodes connecting e(x;) to e(y;). O
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The second step is to replace the *'s with some symbol. Given a pattern p
and asymbol z € X, denote s?(p) the tree pattern obtained by substituting each
occurrence of % in p with z. Hence, s?(p) € P/}, We can now define canonical
models formally:

Definition 1. Let z €  be some symbol, and p € P1*/} be a Boolean tree
pattern with d descendant edges. A canonical model for p is atree of the form
s?(p[u]), for someu = (Ug, ..., Uq), U1 > 0, ..., uq > 0. We denote mod*(p) the
set of canonical models:

mod“(p) = {s*(p[u]) | U= (U1, ..., U4),0<uy,...,0 < ug} 2
Also, given anumber n > 0, we define the set of bounded canonical models:
mody(p) = {s*(p[u]) | U= (u,...,Uq),0<ur <n,...,0<uq <nj

One should think of a canonical model as some treet that “looks like” p. The
symbol zisjust somearbitrary symbol to substitute . For anillustration, Figure4(c)
shows the canonical model s?(p[0, 2]) for the pattern p in Figure 4(a).

For every canonical model t = s?(p[u]), thefunctiong : NODES(p) — NODES(t)
defined ase;(x) = X, VX € NODES( p) isan embedding, which we call the canonical
embedding. Hence, acanonical mode! isindeed amodel and mod?(p) € mod?(p) <
Mod(p). When p has at | east one descendant edge, then mod*(p) isinfinite. The set
mod?(p) is always finite, for any tree pattern p and any n > 0. The main property
of a canonical model is that, in order to find awitnesst for p Z p/, it sufficesto
restrict the search to t € mod?(p), where z € X isany symbol that does not occur
in p’ and n depends only on p’. We show now how to construct this number n from

'Defi ne the star length of a pattern g to be the largest number w such that there

exists a sequence of w nodes, X, ..., Xy, labeled with x’s and connected by child
edges: that is, (Xi_1, X)) € EDGES/(Q), Vi = 2,..., w, and LABEL(X;) = x, for
i=1,...,w.

ProPosSITION 3. Let pand p’ betwo Boolean tree patterns, z € X bea symbol
that does not appear in p’, and w’ be the star length of p’. Then, the following are
equivalent: (1) p € p', (2) mod“(p) < Mod(p’), (3) mod;(p) S Mod(p’), where
n=w+1

PrOOF. Statement (1) is equivalent to Mod(p) € Mod(p’); hence, the impli-
cations (1) = (2) and (2) = (3), are obvious. We prove now (3) = (1). Suppose
p<Z p,andlett € Ty beawitness, that is, p(t) istrue and p'(t) isfase. Since
p(t) is true, there exists an embedding e : p — t. It follows from Lemma 1
that there exists an embedding from some p[u] to t, € : p[u] — t, which
agrees with e on the nodes of p. Consider the canonical model t; = s?(p[u]);
we show that t; isstill awitness, that is, p’(t;) isfalse. Indeed, suppose p'(t1) were
true. Then there exists an embedding e; : p° — t1, and we define the function
f : NODES(p’) — NODES(t) by composing e; : p' — t; with € : p[u] — t: thisis
possible since NODES(t;) = NODES(p[u]). We show that f is an embedding, con-
tradicting the fact that p’(t) isfalse. Clearly f preservesthe structure (root, edges)
sinceboth e; and € do so, and the structure of t; isidentical to that of p[u]. We show
that f also preserves the labels. The only case where the labelsin t; = s?(p[u])
and p[u] differ is at nodes y that are labeled z in t;. So let x € NODES(p’) such
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that the label of y = e1(X) inty isz. Inthat case LABEL(X) = *, because z does not
occur in p’, which impliesthat f islabel preserving at node x. This ends the proof
of the fact that t; = s*(p[u]) € mod*(p) is a witness, that is, p(ty) is true while
p'(ty) isfalse.

We now construct some canonical model t, € mod?(p) that is still a witness.
Thisfollows directly from the next lemma.

LEMMA 2. Let p and p’ be two Boolean tree patterns, z € ¥ be a symbol
that does not appear in p/, and w’ be the star length of p’. Let t; = s?(p[u])
be a canonical model such that p'(t;) is false. Define v = (vq,...,Vvq) to be
Vi = min(uj,n), fori = 1,...,d, wheren = w’ + 1, and t, = s?(p[v]). Then
p'(to) isfalse.

The intuition for the lemmalis that, if p’(t;) were true, then we can stretch the
chains of extranodesint, to obtaint;, and we still have p’(t;) true. Thisis because
the chainswe need to stretch fromt, to t; aretoo long for any chain child-connected
of x’sin p’ to cover them completely, hence p’ maps descendant edges to those
chains, allowing us to stretch them. A formal proof is given in the appendix. To
conclude the proof of Proposition 3, we notice that t, is still awitnessfor p € p’
and that t, € mod?(p). [

PrROPOSITION 4. The following problem is in coNP: given two tree patterns
p, p’ € Pl=/) decide whether p € p'.

PrOOF. This is a conseguence of Proposition 3. In order to check p £ p' it
suffices to guess d numbers ug, ..., uq, each u; < w’ + 1, where w’ is the star
length of p’, and construct canonical model t = s*(p[uy, ..., Ug]), then check in
polynomial timethat p/(t) isfase. [

Proposition 3 also gives a naive algorithm for checking containment: simply
iterate over al t € mody,,,(p) and check p'(t), which requires O(|t| |p'|) steps
using Algorithm 1 (Section 2.5). Recall that | p| denotes the number of edgesin p.
We compute now the total running time of this naive algorithm. Given a d-tuple
u=(Ug, ..., Uq), the size of the canonical model s*(p[u]) is:

Is*(p[u])| = |pl 4+ U1+ -+ Ug

Checking p'(s?(p[u])) thus takes O(|s*(p[u])| x | p’|) steps, and the total running
time of the naive algorithm is:

> (1Pl + Uz + -+ +ug) x [P

O<u;<w’'+1,...,0<ug<w’+1
= (IpIW +2)% + dw’ + 2%

< |plW' + 2% p/|

We used herethefact that d < [p| and 1 + (W' + 1)/2 < W’ + 2. Thus, one can
decide p € p’intime O(|p| |p/|(W’ + 2)@+D).

This naive algorithm is not practical, however, since much of the work in evalu-
ating p'(t) isrepeated for various canonical modelst.

W'+ )W +2)
2

/
|

) X |p

3.1.1. An Algorithm for Checking Containment. We present now an improve-
ment of the naive algorithm for checking containment of two patterns, p C p/,
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(a) tree pattern p (b) tree pattern p and its subpatterns

FIG. 5. A pattern p (a); Another tree pattern p’ and its seven subpatterns (b).

which is complete, and which avoids repeated computations. The agorithm may
seem complex, at afirst look: the need for this complexity is best appreciated after
reading Section 3.2, where a much simpler and efficient algorithm turns out to be
incomplete. This section can be skipped at afirst reading.

We start with some definitions and notations.

Match Sets.  Let t be a tree. Each node and each edge in t defines a subtree,
as follows. A node x € NODES(t) defines the subtree ty consisting of the node x
and all descendants of x; in particular, ROOT(ty) = X, and treorqy = t. An edge
(X, y) € EDGES(t) defines the subtree t, y consisting of ty plus the node x and the
edge (X, y). We denote S(t) the set of all subtrees associated to nodes and edges.
If |t] denotes the number of edges, then S(t) has 2|t| 4+ 1 subtrees. We apply the
same definition to patterns p, and denote S(p) the set of subpatterns. Figure 5(b)
shows apattern p’ with three edges, where the set S(p’) has seven subpatterns (two
of which areidentical to p’, and are not repeated).

For apattern g, denote g* the pattern obtained by relabeling q'sroot node with x.

We now introduce the notion of a match set, which is adapted from Hoffmann
and O'Donnell [1982]. We fix atree pattern p’ for the remainder of this section.
Lett € Ty atree. The match set, ms(t) € P(S(p’)), isthe set defined by:

ms(t) = {p} | X € NODES(P'), p(t) = true} U
{Ply | (X, y) € EDGES/(P'), Py ,(t) = true} ©)
{Py I (X,'y) € EDGES);(P), (P} ,)*(t) = true} (4)

The definition treats descendant-edge subpatterns dightly differently in that it ig-
nores the label of their root node, for reasons that will become clear below.

For the pattern p’ in Figure 5(b), consider the linear tree t; = /a/b/c: then
ms(ty) = {P, Py.y» Py.us Pul- INnparticular pj , isin the match set because (y, u) is
adescendant edgein p’ andweignoretheroot label btreatingit like . Consider now
thelinear treet, = /a/b/z/c (here zisanother symbol). Then ms(tz) = {p{ ,, P, }-

We now describe the main idea behind Algorithm 2. We know that p € p’ iff
there exists a canonical treet € mod*(p) such that p'(t) is fase. Hence, if we
computed ms(t), it suffices to check whether pr... ) ¢ ms(t). Of course, we don’t
know for which canonical treet to compute ms(t), so the ideaisto compute the set
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closeMS(ms, a) = msU{pj | (LABEL(X) = @V LABEL(X) = *) A (¥(X, y) € EDGES(P'). p} , € ms})
nodeMS§msy, .. ., msg,a) = closeMSms U ... Ums, a)
edgeMS(ms, a) = closeMS({py , | (X, Y) € EDGES/(P'), p|; € Ms, LABEL(X) = a}u
{Pky | (x,y) € EDGES/(P'), Py, € msiU
{Pky | (x,y) € EDGES//(P'), P} y € MS}, &)
inflateMS(ms) = {ms | ms' = edgeMS(. .. edgeMS(ms, %), ...,*),0 <k <w’' + 1}

k times

FIG. 6. Auxiliary functionsused in Algorithm 2. All functions return amatch set, with the exception
of inflateMSwhich returns a set of match sets.

of al match sets, MS[p] = {ms(t) | t € mod*(p)}. Thisisdonein lines 1-12 of
Algorithm 2, aswe explain below, and it isin general more efficient than computing
ms(t) for every canonical tree, because many match setsareidentical. Finally, once
we have MS[p], it suffices to check the condition Ims € MS[p], Proor(y) & MS
to determinethat p £ p': thisisdonein lines 13-16 of Algorithm 2.

For anillustration, consider the patterns p and p’ in Figure 5. Wehave MS[p] =
{p p;(’y, pg,,u, p.t {pg,gu, p,}- Indeed, t; and t; illustrated earlier are canonical
trees for p, hence, both ms(t;) and ms(t;) are in MS[p]. Moreover, any other
canonical treeis of theformt = a/b/z/---/z/c, that is, has at least 2 Z's, and
m(t) = m(tz). Here, the containment test fails, because for ms = {p{ ,, p,} we
have ms e MS[p] and p' = p| & ms.

Notice that, while amatch set msisan element of P(S(p’)), the set of matchsets
MS[p] is an element of P(P(S(p’))). MS[p] has at most as many elements as
canonical treesin mod;, . ,(p), wherew’ isthe star length of p’. Thisfollows from
Proposition 3. But MS[ p] may be much smaller than mod;, _ ,(p), because many
canonical treest may produce the same match set.

By focusing on match sets rather than canonical trees, we avoid the repeated
computations in the naive algorithm. So all we need is to explain how MS[p] is
computed in the first part of Algorithm 2. In order to do that, we need to examine
how to compute simple match sets first.

Computing Match Sets.  Asawarm-up, we show how to compute ms(t). In fact,
we don’t need to computeit in the algorithm, but the notations introduced here will
be useful in computing M S| p]. To compute ms(t), one can proceed inductively, by
computing ms(t,) and ms(t, ) for all node- and edge-subtrees of t. The functions
we need for that are shown in Figure 6. We explain them here.

First, suppose we have computed the set ms € S(p’) consisting of the edge
subpatterns matching t (the second and third line in the definition of ms(t), that is,
Egs. (3) and (4)). Then we can find the node subpatterns matching t by computing:

ms(t) = closeM§ms, LABEL(ROOT(t))),

wherecloseMSisinFigure6. That is, it sufficesto add all node subpatterns p; which
match the root label in t and for which all outgoing child-subpatterns p; , arein
ms. Notice that, if ms = @ then closeMS(ms, a) returns the set of node-subpatterns
p; for which x is aleaf and LABEL(X) matches a.

Now consider anodeu of t, and assumewewant to computems(t, ). Letvy, . . ., vk
be al children of u. Then:

ms(tu) = nOdqun’lS(tu,vl)’ R rns(tu,vk)v LABEL(U)),
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where nodeMS is shown in Figure 6. Thus, all edge subpatterns in any ms(ty v, ),
fori =1,...,k, areincluded in ms(t,), while closeMS may add some extra node
subpatterns.

Similarly, lets compute ms(t, ) from ms(ty):

ms(tu,v) = edgeMS(mS(tv)a LABEL(U))»

where edgeMSis shown in Figure 6. This function requires some discussion. The
first two lines should be clear: we just move one edge up, in all subpatternsin ms.
The third line is justified as follows. If (x, y) is a descendant edge and p; , isin
ms(ty ), then it should also be in ms(t,). To enable this simple inductive definition,
we had to ignore the label on the root node of p ,: that label will be checked later,
in closeMS

Computing Setsof Match Sets. We can now describe how to compute M S| p].
To the previousinductive computations, we only need to add an inductive computa-
tion for adescendant edge in p. Recall that such an edge is replaced by a sequence
of uptow’ + 1 symbols z. Thisjustifiesthe function inflateMS(ms) in Figure 6. The
function applies edgeMS(—, =) repeatedly, thus simulating the effect of an edge
labeled z (z and * can be used interchangeably in edgeMS, since z does not occur in
p). Thatis, inflateMS(ms) returnsthe set {msy, ms;, ms,, . .. } wheremsy = msand
ms, = edgeMS(ms,_1, *). This set can be computed in at most w’ + 1 iterations,
but we may stop earlier when we find ms, = ms,_;.

To compute MS[p] we will compute inductively MS[q] for al node- and
edge-subpatterns g of p. For anodeu in p, wedenote vy, ..., v itschildren.

MS[p] = {nodeMS(msy, ..., ms,, LABEL(U)) | ms; € MS[py,l, - - ., Ms
€ MS[puy]}
MS[puy] = {edgeMS(ms, LABEL(U)) | ms € MS[py]}
when (u, v) € EDGES,(p)
MS[puyv] = {edgeMSms, LABEL(U)) | msy € MS[pv], ms € inflateMSmsp)}
when (u, v) € EDGES/(p).

These expressions justify Lines 1-12 in the Algorithm 2.

Algorithm 2. Check containment p € p’: a sound and complete algorithm. The auxiliary functions
are shown in Figure 6.
1: for uin NODES(p), (U, v) in EDGES(p) do {Theiteration proceeds bottom up on nodes u and edges
(u,v) of p}

To process anode u:
let a = LABEL(U), vy, . .., Vi = children(u)
compute MS[p,] = {nodeMS(ms;, ... ., ms, a) | ms; € MS[puy,], ..., mse € MS[pu,v]}

To process an edge (u, v):

let a = LABEL(uU), and MS= MS[p,]

if (u, v) € EDGES;,(p) then

10: let MS = | {inflateMS(ms) | ms € MS}

11: compute MS[p,] = {edgeMYms, a) | ms € MS}

© O NOTRE®WDN
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13: for ms € MS[ proor(p] do
14: ifp,;OOT(p,) ¢ msthen
15: return false

16: return true

Running Time. We compute now the running time of Algorithm 2. A sub-
pattern in S(p’) can be represented as either a node or an edge. We assume that
nodes and edgesin p’ have unique identifiers, for example, an integer in the range
0,1,...,2/p|. A match set, ms € P(S(p’)) can be represented as a Boolean
array? of length 2|p’| + 1. A union, ms; U ms;, or an equality test, ms, = ms,
can thus be performed in O(|p’|) time. A set of matchsets, MS € P(P(S(p'))),
is represented as a trie. Insertions, and membership tests also take O(|p’|). To
compute the running time of the algorithm it is important to notice that there ex-
ists a many-to-one correspondence between canonical databases in mod;, . ;(q)
and match sets in MS[q] for any subpattern g of p. In particular, |M8[q]| <
|mod, +1(q)| < |mod}, ,(p)l = (W + 2)4, where d is the number of descendant
edgesin p. It follows that the two computatlon of entriesin MS, that is, lines 5,
and 11 in the algorithm, take O(| p’|(w’ + 2)9) time. For example, in line 5, we
notice that each of the match sets msy, ..., msc corresponds to a canonical tree
t1 € mody, . 1(Puvy), - - -, tk € mody, +1(pu Vk) In turn, the k-tuple (g, . .., t) cor-
respondsto acanonlcal treet € mod;, , ,(pu), hence the total number of steps done
inline 5 is no more than |mody, . , (pu)|; moreover, each takes O(| p'[) time.

Thus, we have:

THEOREM 1. Algorithm 2 is sound and complete for checking containment of
two tree patterns p, p'. It runsintime O(| p||p'|(W’ + 2)%).

Soecial Cases.  While the running timeis only marginally better than the naive
algorithm discussed earlier, it can be much better in practice, because the number
of matchsets in MS[q] is often much smaller than the number of canonical trees
for g. We discuss here two specia cases.

First, consider the case when p has no descendant edges, that is, d = 0. While
Theorem 1 aready gives us a running time of O(|p||p’|), it is instructive to see
how this happens exactly. In this case al entries MS[py] and MS[py.v] con-
tain a single match set. This is because the function inflateMS is never called,
and this (line 10) is the only place in the algorithm where we may generate
more than one match set in MS[—]. Thus, MS[—] can be viewed as a relation
from the nodes and edges in p to the nodes and edges in p'. It is interesting to
see the analogy to Algorithm 1 (Section 2.5), which computes an embedding from
apatternto atree, by computing two relationsC[—, —] and D[—, —]. For two nodes
u, X we have p; € ms e MS[py] iff C[u, x] istrue, and for a descendant edge
(X, y) € EDGES)/(p') we have p; , € ms € MS[p,] iff u has some child v such
that D[v, y] istrue. Thus, Algorithm 2 corresponds to Algorithm 1, in the special
case when p has no descendant edges.

Next, consider another simple case, when every symbol in p’ occurs only once.
Thatis, if X, y aretwo distinct nodesin p’, then LABEL(X) # LABEL(Y); we assume
for simplicity that p’ does not contain *. Let u beanodein p and a = LABEL(u).

2 A bitmap can be used in practice.
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FIG. 7. Two patterns p, p’ on which Algorithm 2 takes exponential time to determinethat p  p'.

Then any match set ms € MS[p,] may contain at most one node-subpattern p;,
namely that one for which LABEL(x) = a, and at most d’ edge-subpatterns p; ,,
namely the descendant edges in p’, where d’ = |EDGES(p’)|. Thus, there are at
most 29+ different matchsets that can be included in MS[ p,]. The running time
isthen O(| p|| p’|25m=(@+D), where kmnax IS the maximum out-degree of anodein p.
This can be seen by examining line 5 of Algorithm 2, which iterates over < Kmax
sets, each with < 29+1 elements.

Finally, we illustrate in Figure 7 one interesting example where the algorithm
runsin exponential time. Both pattern arerelatively simple, that is, with no «'s, and
p’ has no descendant edges. But p’ has n occurrences of the same label b; hence,
it does not fall under the previous special case. In this example, MS[p,] contains
2" match sets, namely al possible subsets of {pg,l, e, p;,n}; hence, the running
time is exponential in n. At the next level, MS|[p,] aso contains 2" sets. oneis
{P%s Pyys -+ +» Pyy,t (i-€, here closeMS has added pj) while the others are all
subsetsof size<n—1of {p ., ..., Py} (i.e, without p). Hence, theagorithm
concludesthat p Z p’, but takes exponential time to do that.

We will illustrate Algorithm 2 on a more complex casein Example 1.

3.2. CHECKING CONTAINMENT WITH PATTERN HOMOMORPHISMS.  The second
technique that we use to reason about containment is a homomorphism between
patterns. As a first attempt, let us define a homomorphismh : p° — ptobea
function from NODES(p’) to NODES( p) that satisfies the definition of an embedding
(given in Section 2), with the following strengthening of the child-edge preser-
vation condition: if the edge (X, y) isin EDGES,(p’) then (h(x), h(y)) must be in
EDGES,(p) (i.e., it is not alowed to be in EDGES)/(p)). Figure 8 illustrates such a
homomorphism. We will show that, given two patterns p, p’, one can determinein
time O(| p|| p’|) whether a homomorphism p’ — p exists. Moreover, if it exists,
then we can show that p C p’. Thus, an efficient practical algorithm for checking
containment is to search for a homomorphism. However, this algorithm is not al-
ways complete. The challenge isto make it as complete as possible, at least in the
cases for which efficient containment agorithms were already known.

3.2.1. Motivation for Adornment. The problem with the naive definition for
a homomorphism above is that it fails to be a necessary criterion for patterns in
P/} (i.e., no branches). This was aready observed in Milo and Suciu [1999],
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FIG. 9. (@) Two equivalent queries p, p’ with no homomorphism from p’ to p; (b) same queries
represented differently, and a homomorphism between them.

and isillustrated here in Figure 9(a). The two tree patterns here correspond to the
XPath expressions p=a/*//b, p'=a//*/b. Although p, p’ are equivalent, thereis
no homomorphism from p’ to p because there is no destination for the wildcard in
p’: for example we cannot map * to * because then the child edge (x, b) would be
mapped into a descendant edge. The solution is to eliminate the « node and adorn
the descendant edgewith “>1", meaning that thereisat | east oneintermediate node
on this paths. Thisis shown in Figure 9(b), which also illustrates a homomorphism
from the adorned tree pattern. When introducing the adornments, every descendant
edgeisinitially adorned with >0, then adjacent edges sharing a: node are combined
into descendant edge with a higher adornment. Only % nodes that have a unique
child may be eliminated thisway, that is, if ax node hastwo or more outgoing edges
then we cannot eliminateit. Thisprocess can be described asaaset of rewriterules,
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using X Path-like syntax:
A

/Zm*/ — //2m+1

Y/ e (%)

I N = e,

For example, p' = a//*/*/b/*/c//d isrewrittento p” = a//Z? b/*/c//=".
Now the homomorphism is defined from the adorned pattern p” to p, and its
existenceis shownin Milo and Suciu [1999] to be a necessary and sufficient condi-
tion for containment when both patterns are linear. To illustrate on our examplein
Figure 9, the pattern p’ reducesto theadorned pattern p” in (b), making ahomomor-
phism possible.

3.2.2. Adorned Patterns and Homomorphisms. We now define formally
adorned tree patterns and homomorphisms between adorned tree patterns. An
adorned tree pattern is a tree pattern p with an adornment function «
EDGES/,(p) — N. Using the notations in Section 2, given two nodes (X, y) €
EDGES*(p) we define their distance, d(x, y), asfollows:

d(x,x) =0
dix,y) =1 if (X, y) € EDGES/(p)
dix,y) = 1+ «a(x,y) if (X, y) € EDGES;/(p)

d(x,y) = d(x,2) +d(z y) if (x,2) € EDGES(p), (z, y) € EDGES"(Pp)

Definition 2. A homomorphismh : p’ — pisafunction h : NODES(p') —
NODES( p) satisfying the following four conditions:

(1) h(rooT(p’)) = ROOT(P),

(2) if x € NODES(p'), then LABEL(X) = = or LABEL(X) = LABEL(h(X)),

(3) if (x, y) € EDGES,(p'), then (h(x), h(y)) € EDGES,(p), and

(4) if (x,y) € EDGES;(P'), then (h(x), h(y)) € EDGES"(p) and 1 + a(X,y) <
d(h(x), h(y)).

It follows that for any two nodes (X, y) € EDGES*(p’), we have (h(x), h(y)) €
EDGES*(p) and d(h(x), h(y)) > d(x, y). Figure 8 and Figure 9(b) show two exam-
ples of homomorphisms.

Every (unadorned) tree pattern p admitsatrivial adornment by setting a(X, y) =
0, for every (X, y) € EDGES;(p), hence our discussion in the remainder of this
section also applies to unadorned patterns.

Given atreet and an adorned pattern p, an embedding e : p — t isdefined to
be a homomorphism from p to t, where t is viewed as a pattern. Obvioudly, this
coincides with the definition of an embedding in Section 2 when p is unadorned.

3.2.3. Computing a Homomorphism.  Algorithm 3 takes two adorned tree pat-
terns p, p’ and checksif there exists ahomomorphism from p’ to p. The agorithm
runs in time O(|p|| p'|), and generalizes the algorithm for finding an embedding
(presented in Section 2). It proceeds bottom up in both p and p’, and computes
two tables C(x, y) and D'(x, y) with X € NODES(p), ¥ € NODES(p’). The meaning
of these tablesis the following: C(x, y) is a Boolean value denoting whether there
exists a homomorphism from the subpattern rooted at y to the subpattern rooted at
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Algorithm 3. Find homomorphism p’ — p
1. for x in NODES(p) do {The iteration proceeds bottom up on nodes of p}
2: for y in NODES(p’) do {The iteration proceeds bottom up on nodes of p'}

3 compute C(X, y) = (LABEL(Y) = “ #” VLABEL(X) = LABEL(Y))A
4 Ny e EDGES, (1) (V (x.x)  EDGES; (p) C(X's YDA
S Ay.yycepces, @' (. Y) = 1+a(y. y))
6: if C(x, y) then
7: d=0;
8: else
9: d=-o©
10: compute D'(x, y) = max(d, 1 + MaXx x)c EDGES,(p) D' (X', ¥).
11 1+ MaX vy EDGES,(p) (@ (X, X') + D' (X', ¥)))

12: return C(ROOT(p), ROOT(P"))

Algorithm 4. Check containment p C p’: asound, incomplete algorithm
1: Add shadow leaf symbolsto p and p’

Connect them with descendant edges to the old leaves

and label them with the same symbol a € X.
2:  Apply the re-writing rules (5) to p’, repestedly, until it reducesto p”
3 Find homomorphism from p” to p (using Algorithm 3)

if found then return true elsereturn false

X. D'(x, y) is defined to be max{d(x, x’) | (X, X’) € EDGES*(p) A C(X’, y) = true}.
We take maximum of an empty set to be —oo, hence D’(x, y) iseither > 0, or —oc.
The agorithm computes both tables bottom up in an obvious way.

PrROPOSITION 5. Algorithm 3 decides whether there exists a homomorphism
from p’ to p and runsintime O(|pll p’|).

PrROOF. The proof for the running time isidentical to that for the Algorithm 1.
Theinner loopsarethetest C(x’, y') inline4, thetest D’(x, y') > - - - inline5, and
the computation of D’(x’, y) in lines 10 and 11. These are executed at most once
for every pair of edges, in p and in p’ respectively, hence the total number of steps
isO(lpllp'l). O

3.2.4. Checking Containment. We now turn to our main guestion: checking
containment of two patterns, by using homomorphisms. Algorithm 4 checks con-
tainment of two tree patterns, p C p’. Itissound, and runsintime O(| p|| p’|), but,
aswe shall see, is not necessarily complete. Line 1 modifies p and p’ by adding a
shadow leaf to each leaf and labeling it with some symbol a € X: more precisealy,
for each leaf node x in p (and similarly in p’) create a shadow leaf x’, label it with
the symbol a € X and insert a new edge (X, x’) into EDGES(p) (or EDGES;,(p’)
respectively). There are no restrictions on the choice of the symbol a except that
all shadow leaves must be label ed with the same symbol. This step at most doubles
thesizeof p and p’, and preserves the containment relationship between p and p'.
The purpose of this step is to remove dangling tailsin p’. For example, consider
p=Db/x//cand p' =b//x. Here p C p’ (recal that they are Boolean patterns),
but no homomorphism existsfrom p’ to p: therewritingsin Line 2 are useless here
because the dangling = in p’ has no outgoing edge, hence cannot be eliminated.
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In XPath notation:

p = /al.//vlc/*//d1/blc//d] /blc/d]]
p' = /al.//blc/*//d]/blc/d]]

FiIG.10. Two patternssuchthat p € p’ but whereno homomorphism existsfrom p’ to p. Algorithm 4
fails to detect containment.

However, by transforming both p and p’ asin Linelweget p = b/ %« //c//a
P =b//*//a, and now p’ reducesto p” = b//>'a, and there exists an obvious
homomorphism from p” to p.

Line 2 applies repeatedly the reductions (5) to p’. In effect, this step replaces
a chain of nodes x4, Xo, ..., X, in p’ with a single descendant edge (x1, X,) and
adorns it such that the distance d(xi, Xn) is preserved, provided that all nodes
X2, ..., Xn_1 are labeled with %, each node x;_1 has only one outgoing edge,
namely to x;, for i = 2,...,n, and there exists at least one descendant edge
among (X1, X2), (X2, X3), . .., (Xn_1, Xn). We have seen in Figure 9 that, without this
step, the algorithm would be incomplete on linear patterns.

Line 3 checks for ahomomorphism from p” to p and reports the result.

We prove now the main properties of this algorithm. The soundness and the
running time follow immediately from our discussions above:

THEOREM 2. Algorithm3issound (i.e. if it returnstruethen p C p’) and runs
intime O(| p[l p'l).

In general the algorithm isincomplete, as shown by the following example.

Example 1. This example illustrates two patterns p, p’ such that p € p’ but
no homomorphism exists from p’ to p. In particular, Algorithm 4 returns false,
athough p € p’. The two patterns are shown in Figure 10. Pattern p’ reduces
to a pattern p” where the right branch has the adornment “>1"; p” is not shown,
because it is not relevant to our discussion. Intuitively, the three branchesin p and
the two branches in p’ impose certain conditions on the number of intermediate
nodes between the ¢ node and the d node: it should be either =0, or >0 (i.e,, no
condition), or >1: this is noted under each branch.® There is no homomorphism

3 These are not adornments.
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from p’ to p (and neither from p” to p). Sincethetwo b nodesin p’ are connected
with achild edge, (y1, y2), ahomomorphism can map the two branches either to the
first two (Y2 — Vs, y1 — V), or thelast two branchesin p (Y, — V2, y1 — Vi):
but thisis not possible since none of the branchesin p’ can be mapped to the middle
branch: no edge in p’ can be mapped to the edge (w5, t) in p. (The same argument
applies to the reduced pattern, p”, which we omit.) However, p C p’, aswe show
next. Lett € mod*(p) and consider the middle branchint. If the there are no nodes
between ¢ and d then we can embed p’ to t by mapping it to the second and third
branchint(y, — v, y1 — Vv1). If thereis at least one node between ¢ and d then
weembed p’ tot by mapping it to thefirst and second branch (y> — Vs, y1 — Vo).
Thus, to check containment we need to “reason by cases,” and the homomorphism
isan incomplete test.

By contradt, it is interesting to see how Algorithm 2 (Section 3.1.1) detects
that p € p’. Thisis done by having two match sets in MS[ pw,], MS[py,], and
MS[py,]. Thisway, Algorithm 2 keeps track of the two cases. As the match sets
continue to be computed bottom up, when we reach MS[ pw,v,)] the two match
sets become identical, that is, MS[ pw,v,)] and MS[ py] have only one match set:
the reason is that the two cases have now merged, and all canonical treesat pg,v,)
and p, match the same subpatternsin p’. A fragment of the match sets computed
by the algorithm is given below:

MSIpv] = {{ Pl Pz P Plssy )
MS[Pn] = {{Plyrys Per Plssy})
MS[p] = {ps, Ps )}
MS[Pw,] = MS[Pw.n] = {{Ph: Pss Plssy s {Pos Pes Plssy )
MS[Pwomn] = {{PL,: Plyoz P Plssy b {Plyszy: P Plsso
MSIp] = {{Plysyn Por Plyazy P Plsso b { Pl Plysya:
pé Yi.21) ps p(s sl)}}
MS[puwy] = {{ Pz Psr Pls.sy H
MS[Pwvy] = {{Plyiyn: Ps Pasyls [Py Ps Plssyl)
MS[p,,] = {{ Py, /yl 20 Plysy) P Ps 51)} {péx,yl)’ Plys. 20"
Ps, p(ssl)}}
MS[puwn] = {{Pe Py P Plssy ]
MS[pu] = {{Pe: Pxyy» PS5 Plssy )}

Since p'(= p;) belongsto theunique match setin MS[ py], Algorithm 2 concludes
that p C p'.

Thus, Algorithm 4 isincomplete in general, but we prove next that it is complete
in four important specia cases. The first three are rather simple, and essentially
show that the algorithm unifiesand generalizestechniquesfrom Yannakakis[1981],
Wood [2001], and Amer-Yahia et al. [2001]. The fourth caseis nontrivial, and isa
significant generalization of the result in Milo and Suciu [1999].
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THEOREM 3. Algorithm3for checking containment p C p’iscompletein each
of the following cases:

(1) pe Pl or
(2 p e Pl or
(3) p e P/ or
(4) p’ e P/,

Clearly, asthe previousexampl e shows, thetheorem cannot be generalized further
inany significant way. Before giving the proof, we discussthe method used. All four
cases are proved as follows. assuming no homomorphism exists from p’ to p, we
construct some canonical “witness’ t € mod*(p) such that there is no embedding
from p’tot, provingthat p £ p’. Thefirst three casesin thetheorem arerather easy,
since the witness is obtained in a generic way, independently on p’. The last case
is the most interesting and difficult one, because there is no generic witness, but
depends on p'. In this witness, some descendant edgesin p need to be extended to
long chainsz/z/ - - - /z, while others to short chains, and the exact choice depends
on p’ inasubtle way. Thisisillustrated by the example below.

Example 2. This example illustrates two linear patterns p, p’ € P*//} such
that there exists no homomorphism p’ — p, but thewitnesst € mod?(p) for which
p’'(t) isfalse can only be obtained in a complex way. Consider:

p= a/b/s//c/b/s/c//d
P = a//b/*x/c//*/d.

Herea,b,c,d,s € X and p has two descendant edges, denote them r; and r».
Thereisno homomorphismfrom p” (= a//Z° b/*/c//Z' d)to p, and awitness
t € mod?(p) is obtained by taking u = (1, 0); that is, by some abuse of notation,
the witnessis:

t =s*(p[u]) = a/b/s/z/c/b/s/c/d

One can verify that there exists no embedding from p’ to t. But the two obvious
choicesfor canonical modelsfor p, when all chainsare short or al chainsarelong,
do not serve as witness. If we take all chains to be short, u = (0, 0), then:

t= a/b/s/c/b/s/c/d

and p'(t) istrue: the embedding p’ — t mapstheb nodein p’ tothefirstbint. If
we make all chainslong, say u = (1, 1), then

t = a/b/s/z/c/b/s/c/z/d

and p'(t) isaso true: the embedding mapstheb nodein p’ tothesecondbint. In
fact, it is easy to see that the only witnesses are of the form u = (k, 0), for k > 1,
that is, the first chain must be long and the second must be short.

PrROOF (OF THEOREM 3).  We assumethat p, p’ have been processed accord-
ingto Step 1 of thealgorithm, and p” hasbeenreducedto p” (Step 2). Tosimplify the
discussion we assume that p is unadorned, that is, Ye € EDGES),(p), «(e) = 0: the
extension to adorned patterns is trivial, and not really important for us, since
the main purpose of the adornmentsisto beusedin p’, notin p.
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Let p e P} Inthiscase, thereisasingle canonical model for p, mod?(p) =
{t}, whichisisomorphicto p except that every * isreplaced with z. Pick t to be
thewitness. Any embedding e : p” — t immediately yields ahomomorphism
p” — p. Steps (1) and (2) are not need for the algorithm to be completein this
case

Let p' € P1*, Step (1) is needed here, so assume that all leaves in p’ are
labeled with symbolsin X, not with x. In this case, no reductions are possible,
hence p” = p’. Let w’ be the star length of p’ (i.e., longest sequence of *'s,
Section 3.1), and let n = W’ + 1. Defineu = (n, n, ..., n), and choose as
witness the canonical databaset = s?(p[u]). Lete: p’ — t be an embedding.
We observe that none of the extension nodesint isin theimage of e. Suppose
it were, that is, there are nodes y € NODES(p’) and X = e(y) € NODES(t)
such that LABEL(X) = z and X is an extension node, hence belongs to a chain
of n extension nodes. Clearly, LABEL(Yy) = *, and going in both directions
up and down from y we must find nodes y’, y” such that LABEL(Y') # x,
LABEL(Y”) # =, and d(Y', y’) < W’ + 1 = n, because the star length of p’
isw’. But thisimplies that d(e(y’), e(y”)) = d(y’, ¥”) < n and none of e(y’)
and e(y”) islabeled z: this contradicts the fact that e(y) is part of achain of n
consecutive Z's.

Let p' € P11/} Thiscaseisrather similar tothepreviousone. Heretoo p” = p'.
Definel = (1,1, ..., 1), and let the witnessbet = s*(p[1]). Lete: p' — t
be an embedding. None of the nodesin p’ is mapped to any z symbol, hence
only descendant edges in p’ can be mapped over the z's. It follows that e is
also a homomorphism from p’ to p. Steps (1) and (2) are not needed for the
algorithm to be completein this case.

Let p’ € P*/7, Inthis case we need Steps (1) and (2) in order for the algorithm
to be complete, so we assume that p’ has been reduced to p”. We will further
assume here, without loss of generality, that the root nodes in both p and p”
are labeled with a symbol a € ¥ that does not occur anywhere else in p or
p”: otherwise, we replace p and p” with a/p and a/ p” respectively, where a
isafresh symbol in . Giventhat p” isalinear pattern, it followsthat it has a
special structure that we describe next. We need the following:

Definition 3. A block is a linear pattern b € P (i.e., with no branches
and no descendant edges), where the first and last nodes are labeled
with symbols in X. That is, NODES(b) = {Xo, X1, ..., Xn}, EDGES/(b) =
{(Xo0, X1), (X1, X2), ..., (Xn—1, Xn)}, EDGES;(b) = @, and LABEL(Xo),
LABEL(X,) € X. Thesize of the block b isn (the number of edges).

Thespecial structureof p” isthat it consists of asegquence of blocks, inwhich
every two consecutive blocks are connected by a descendant edge. That is,

p’ = bo//Zby/ /72 ./ /FRbp, (6)

where by, . .., by are blocks. Indeed, Step (1) plus our assumption about the
root nodes ensures that the first and last node in p” are labeled with symbols
in X. Step (2) ensures that any descendant edge connects two nodes that are
labeled with symbolsin X.

For the proof of this case, it is convenient to consider homomorphisms (and
embeddings) that do not necessarily map the root node to the root node, but
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otherwise satisfy all the conditions of the homomorphism. In other words they
are defined by conditions (2), (3), (4) of the homomorphism in Definition 2.
We call them unrooted homomor phism, and unrooted embedding, respectively.
Then we prove the following Proposition:

PROPOSITION 6. Suppose that there exists no unrooted homomorphism
from p” to p. Then there exists a “ witness;” that is, atreet € mod*(p) such
that there exists no unrooted embedding from p” tot.

We give here the intuition behind the proposition, and defer a formal proof
to the appendix. Referring to the structure of p” given by Eq. (6), we attempt
to find an unrooted homomorphism from by to p, searching p top-down, along
all itsbranches, starting at theroot. All descendant edgesthat we traversewhile
searching for this unrooted homomorphism we expand to along chain, that is,
take u; = n, where n isthe size of by. Continuing from where we managed to
map by to p, we attempt to map the descendant edge / /=%, along all possible
branchesin p: all descendant edgesin p that we traverse this way we expand
to short chains, that is, u; = 0. Finally, we proceed recursively, for the pattern
by//Z¥% ... //*nby, aong al branches in p where we succeeded in mapping
both by and / /%, The formal argument is given in the appendix.

Finally, we can complete the proof of Theorem 3. Suppose that for every
treet € mod*(p) there exists an embedding e : p” — t; in particular eisalso
an un-rooted embedding. Hence, by Proposition 6, there exists an unrooted
homomorphismh : p” — p. Sinceboth p” and p havetheir roots labeled with
some symbol a € ¥ that does not occur elsewherein p, h must be a (rooted)
homomorphism. [

4. coNP Hardness of Containment

We prove here that the containment problem for two tree patterns p, p’ € P/}
is coNP hard, thus justifying the limitations of the algorithms in Section 3. This
result isin sharp contrast with the fact that containment isin PTIME for each of
thethreerestricted classesPil1-#! | piL1-/} pt//}- hence, we ask whether containment
remainsin PTIME if weimpose somearbitrary bound on the number of occurrences
of descendant edges, or wildcards, or branches. We know already from Theorem 1
that the answer is positive for descendant edges: for any d > 0, the containment
problem p € p’isin PTIME, where p has at most d descendant edges. We prove
here that the answer is negative for the other two. Containment remains coNP hard
even when we allow at most two wildcards, and, similarly, remains coNP hard even
if we allow at most five branchesin p and at most three branchesin p'.

Technically, thefirst coNP hardnesstheorem is subsumed by any of thefollowing
two. We include it here, however, for the sake of the proof technique, which is
simpler than that of the other two theorems.

4.1. MAIN CONP-HARDNESS. We start with a preliminary result, which is of
independent interest. Define containment of a Boolean pattern p in a union of
patterns as follows: p € py U --- U pg holdsif, for al treest, p(t) = pi(t) v
p2(t) v - -+ v pk(t).

LEMMA 3. Givenpatternspand p1, pa, ..., pcinPll*/) thereexist patterns
q,q inPl=/  suchthat p € p1U--- U pcifand onlyif g € g'. Furthermore, g
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FiG. 11. Patterns q and g from Lemma 3, constructed from p, ps, P2, - ., px so that q <
q ifandonlyif pC pyU---U pg

and g’ are polynomial inthesizesof p, p1, p2, ..., Pk, ahd g and g’ have no more
label wildcards than those present in p, p1, p2, ..., Pk

PrOOF. We assume without loss of generality that all patterns p, p1, ..., Pk
havetherootslabeled withthesamesymbol a € X: if not, wetransform the patterns
into p’, py, ..., Py by adding another root node labeled a to each pattern, and we
havep C p1U---Upgiff p' S pjuU---Up.

The construction of g and q" isshown in Figure 11. Pattern g’ consists of aspine
of the k subtrees py, p2, ..., px connected to a root node by a descendant edge.
Pattern p consists of alonger spine, at the center of which sits a subtree equal to
pattern p. The pattern subtree V, which is repeated in g, has no wildcards and no
descendant edges, and is chosen so that for any j, V € p;. This can be achieved
by fusing the (common) roots of the p; subtrees (thisis possible because their roots
have the same label), and replacing all label wildcards in the p; with an arbitrary
letter, and all descendant edges with child edges.

With this construction, the canonical models of g are completely determined by
a choice of canonical model for q’s subtree p: for eacht € mod*(q) we denote
t, € mod“(p) the subtree corresponding to p (see Figure 11).

We assume first that p € p; U - - - U pk, and show that for every t € mod*(q),
we have q'(t) is true, which provesq € q'. Givent € mod“(q), clearly p(tp) is
true, hence p;(t,) istrue, for somei = 1,..., k. We prove that q'(t) is true by
constructing the following embedding e : " — t: e maps the subpattern p; to t,
(thisis possible since pi(t,) is true); e maps every other p; to acorresponding V
(thisis possible since V C p;, and there enough V’s both above t, and below tp,
namely k — 1 both above and below); finally, e mapsthe root of g’ to the root of t.

Conversely, weassumeq < q' and show that Vt, € mod*(p), pa(tp)V: - -V pk(tp):
one can show that thelatter implies p C p;U- - -U py, using with the same argument



28 G. MIKLAU AND D. SUCIU

) G )

FiIG.12. Thecanonical modelsof A encodetruth assignmentstotheliteralsys, vs, ..., yn of ¥ based
on the lengths of the branches. Tree pattern C; is constructed from clause ¢ = (=y; V Yk V —=yi).

as in Proposition 3. Let t, € mod“(p), and denote with t its extension to a tree
t € mod*(q), by adding the spine and k — 1 copies of V above and below t, in
an obvious way. Since q(t) is true we have g'(t) aso true, hence there exists an
embedding e : g° — t. This embedding must map the spinein g’ to the spinein
t. Let x bethe spine nodein t that isright above t,. At least one spine nodein g’
must be mapped to x: thisisbecause there are only k — 1 spine nodes above x, only
k — 1 spine nodes below, and the spinein q' has k nodes and no descendant edges.
hence e cannot avoid mapping some node y into x. Let p; be the pattern below y:
it followsthat pi(t,) istrue. [

THEOREM 4 (CONP COMPLETENESS). The problem whether p C p/, for two
tree patterns p € P17/} and p’ e PL%//1 is coNP-complete.

PrOOF. We already know that it isin coNP (Proposition 4). Let ¢ be a3-CNF
formulawith n propositional variablesyy, yo, ..., ¥n, andk clausescy, Cy, .. ., Ck.
We construct patterns A, Cq, ..., Cy, pictured in Figure 12, such that v is not
satisfiableiff A C C,U-- - UCy. Treepattern A is constructed so that its canonical
models, mod*(A), encode truth assignments to the n variables of 1. Tree pattern
Ci isconstructed so that the following property holds:

(*). Forevery t € mod’(A), Ci(t) istrueiff the truth assignment encoded by t
makes the clause ¢; false.

Property (*) issufficient to prove coNP hardness because of the following equiv-
alences and of Lemma3: (A € C; U --- U Cy) <= (for every t € mod*(A) there
existsi such that C(t) istrue) < (for every truth assignment there existsi such
that, ¢; isfalseunder that assignment) <= ( isnot satisfiable). Intheremainder of
the proof, we show how to construct A, Cg, ..., Cy such asto satisfy property (*).

Pattern A hasone branch for each variable y; in , and the corresponding subtree
is denoted Y; in Figure 12. The figure defines Y; on the left: it consists of some
unique element of the al phabet a; , which we associated to the variable y;, connected
to some node labeled b. Consider a canonical model t € mod*(Y;) (see Figure 12).
If t consists only of g followed by b, then we say that it corresponds to a truth
assignment making y; true. If t contains one or more added nodes between g and
b, then we say t corresponds to a truth assignment making y; false. Under this
interpretation of true and false, each canonical model of A corresponds to a truth
assignment of the variables vy, ..., yn, and al truth assignments are represented
by some canonica model.

Next we define atree pattern C; for each clause of . Weonly illustrate on an ex-
ample: thegeneral casefollowsimmediately. Supposeclausec; = (=Y V Yk V—Wi).
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Pattern tree C; is pictured in Figure 12, and consists of aroot node with three sub-
trees, onefor each term appearinginc;. A variablelike y; that appears negated in ¢

resultsin abranch consisting of subtree T (y;). Variable yx, which does not appear
negated in ¢;, results in a branch containing F(yx). Thetrees T(—) and F(-) are
shown in Figure 12 on the left. This construction enforces property (*). [

4.2. coNP-HARDNESS FOR BOUNDED WILDCARD. We strengthen here Theo-
rem 4 by showing that only two x’s sufficein p’, and no = isneeded in p.

THEOREM 5 (CONP-BOUNDED WILDCARDS?. The problem whether p € p/,
for two tree patterns p € P17} and p' e Pll=/} where p’ has at most 2 label
wildcards, is coNP-complete.

PROOF. The proof is by reduction from the complement of 01-integer linear
programming [Garey and Johnson 1979] (01-ILP) which consists of m equations
inn variables:

a;1X1 + apXo + - -+ aXn = by

amiX1 + amaXo + - - + AunXn = b

where each & and by are 0 or 1, and we search for asolution X = (X1, X2, . .., Xn)
of integers greater than or equal to 0. Checking whether (01-ILP) has a solution
is NP-complete. If &; = 1, then we say that variable x; occurs in equation i; if
a;j = 0, then we say that the variable x; does not occur in equation i. We assume,
without loss of generality, that the by are uniformly equal to 1. Then, we notice that
thereisno solution if and only if for every vector of nonnegative integers, X:

(1) therearex; > 1and x; > 1 that occur in the same equation, fori # j, or
(2) thereisan equation j with all occurring variables equal to zero.

Given a 01-ILP problem, we construct patterns p, p;, P, -- -, P, such that p C
ppU- - -U pp,if and only if (1) or (2) hold for every solution X. The canonical models
of p encodesolutionvectors, andwedesign p;, to hold precisely on canonical models
satisfying (1), while p{ holds on canonical models satisfying (2) for equation .
Wedescribetheconstructionof p, pg, p;, - .., Py, andwillillustratein Figure 13
with an example wheren = 5. Let Sbe the set of pairs of variables (x;, x;),i < j,
that occur together in the same equation, and let w = |S|, w < n(n — 1)/2. Pattern
p consists of aroot labeled by r, followed by a chain of length w of b nodes,
followed by n main branches, each corresponding to a variable x;: see Figure 13.
Each branch contains a sequence of w nodes labeled b, connected with child edges,
then ends in the postfix d//e/fi, where f; is a unique symbol for the variable x;.
Next, we add some side-branches, as follows. Impose some order on the pairsin
S, and consider pair number k, foreachk =1, ..., w: let (x;, X;) € Sbethat pair.
Add two side-branches, one in the main branch corresponding to x; , the other in the
main branch corresponding to x; . Both side-brancheswill hang from the kth b node
on that main branch, and one will have anode labeled ¢;, while the other will have
anode labeled c,. This construction isbest illustrated on the example in Figure 13,
whereweassumed S = {(X1, X3), (X1, Xs), (X2, X3), (X1, X4)}, hencew = 4. Thefirst
row of b’s has the two side-branches in positions 1 and 3: this corresponds to the
first pairin S, (x1, x3). The second row of b’shasthetwo side-branchesin positions
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Fic. 13. Patterns p, p;, and p; (for some equation j) used in the reduction of 01-ILP to P{U-*/)
containment.

1 and 5, corresponding to the pair (X1, Xs), etc. This completes the construction of
p. We assumethat al symbolsr, b, ¢, ¢, €, f1, ..., fyaredistinct, and notice that
there are no x’sin p.

Notice that each of the n main branchesin p has asingle descendant edge, hence
that part of acanonical t € mod*(p) represents avalue x; > 0: hence, a canonical
model corresponds precisely to an n-tuple of non-negative numbers, X.

Pattern p; is shown in Figure 13. It consists of one descendant edge, followed
by two branches with fixed height which contain a c; and ¢, node, respectively. If
P, accepts a canonical model t of p, then c; and ¢, must occur at the same level in
t, implying that some variables x; and x; occur together in an equation. Further, the
two branches are terminated with d/ * //e which impliesthat t encodes a solution
vector in which both x; and x; are >1. Therefore, for any canonical mode! of p
accepted by pp, condition (1) holds for the corresponding vector X. Notice that
there are only two wildcards in pp, and they are needed to check the condition >1
on both x; and x;. Thiscompletesthe construction of p;, which has exactly two x’s.

It remains to construct pj, p5, ..., Py, from the m equations of the 01-ILP
instance. Suppose equation j is X3 + X4 + X5 = 1. Then we construct p’ as shown
in Figure 13. The pattern consists of asequence of w b nodes followed by a branch
for each variable that occurs in the equation. The terminating phrase d/e/f; of
each branch implies that if t is a canonical model of p accepted by p; then each
variable occurring in equation j is zero in the solution vector encoded by t. In
other words, if p;(t) istrue, then condition (2) holds for the corresponding vector
X. This completes the construction of p{, which hasno «’s.

It should be clear from the construction that vVt < mod*(p), p(t) =
Pp(t)V py(t) V- - -V pl(t) iff thevector X corresponding tot satisfieseither condition
(1) or(2).Hence, p € pyU- - -U py, iff the01-IL P probleminstance hasno solutions.
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FIG. 14. Patterns used in the proof of Theorem 6.
Given patterns p, Py, P;, - - .. Py, We use Lemma 3 to construct patterns g, '

suchthat p € pyU--- U pp, if and only if g € g’. We can then conclude that
g C g’ if and only if for every solution vector X either condition (1) or (2) holds.
Therefore, g € ' if and only if the 01-ILP instance has no solution.

It isclear that the construction of g, q’ is polynomial in the size of the problem
instance. In addition, there are only two label wildcards in the patterns (those in
q’ which are inherited from py), so the Theorem follows. [J

4.3. cONP-HARDNESS FOR BOUNDED BRANCHING. Next, we strengthen
Theorem 4 in adifferent direction, to show that only five branches sufficesin p and
only three branches in p’ for co-NP hardness. We define the number of branches
in atree pattern to be the number of leaves: for example, linear tree patterns have
one branch.

THEOREM 6 (CONP-BOUNDED BRANCHING). The problem whether p C p/,
for two tree patterns p € P/} and p' e P!/} where p has at most five
branches and p’ has at most three branches is coNP-compl ete.

ProOOF. We show thisresult by reduction from the complement of satisfiability
to the containment problem. Let ¢ be a formula with n literals X1, X, ..., Xn,
and m clauses ¢y, Cy, .. ., Cm. We first define a linear pattern W whose canonical
models represent assignments to the variables of . Pattern W consists of a root
node followed by n repetitionsof x//y//. Inacanonical model t € mod*(W), each
pair of x and y nodes corresponds to a truth assignment, as follows. true is the
sequence x/z/y while false is the sequence x/y/z; see Figure 14. Hence, only
a subset of the canonical models mod*(W) of W are correct encodings of a truth
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assignment to the Boolean variables, the others areincorrect encodings. W also has
two extra nodes: aroot labeled a and aleaf labeled x; hence, if a canonical model
of W isacorrect encoding, then it has exactly 3n + 2 nodes.

Next, we construct from each clause ¢; apattern C;, such that for every canonical
model t € mod*(W) that is a correct encoding, C;(t) is true iff ¢; is false for the
corresponding truth assignment. C; consists of 3n + 2 nodes, having 3 nodes for
each variable, plus a root labeled a and a leaf labeled x. We describe now the
three nodes corresponding to the Boolean variable x;. If x; occurs negated in ¢;,
then these nodes are x/ * /y; if x; occurs positively in ¢;, then the three nodes are
X/y/*; and if X; does not occur in ¢; then the three nodes are x/ * /*. Figure 14
illustrates the pattern C; for a clause ¢; of the form X1 v X, vV X4 V X5--- (the
figure shows the nodes for X1, X, and x3 only). It is straightforward to see that for
every correct canonical modet € mod?(W), Ci(t) istrueiff clause ¢; is false for
the corresponding truth assignment. Now define C to be linear pattern obtained by
concatenatingCq, Co, ..., Cy,innotationC1/C,/ - - - /Cpp. Itslengthism(3n + 2).

Because C is much longer that W, we construct a pattern V which consists of
m — 1 copiesof apattern A followed by W and then followed by m — 1 more copies
of A. Pattern A is designed so that any C; will be true on the (single) canonical
model of A: namely, it consists of n copies of the sequence x/y/y, plus an a
root and plus an x leaf. A canonical model of V is completely determined by the
canonical model of its W subpattern. A canonical model of V which represents a
truth assignment consists of exactly (2m — 1)(3n + 2) nodes.

At this point, we give the main intuition of the proof, before continuing with the
formal argument. Consider now the following two linear patterns (these are not the
final patterns of our reduction):

po=r/V
po =r//C.

Here, r is a new symbol, used for the root. For every correct canonical model
t € mod“(po), py(t) is true iff the formulayy = ¢ A -+ A cy is false on the
truth assignment corresponding to t. This is because an embedding e : p; — t
can map any of the clauses C,, ..., Cy, to the portion of t corresponding to W,
and conversely, each embedding must map some C; to the W fragment. However,
Po and pg are not the reductions we need, because they don’t say anything about
incorrect canonical databases. In fact, po isnot contained in pg, because p; isfalse
on al incorrect canonical databases. We address the latter next.
A canonical model t € mod?(V) isincorrect if either of the following holds:

B1. the length of t is greater than (2m — 1)(3n + 2)
B2. t contains the substring x/y/X.

It is a simple matter to construct patterns B; and B, that express these condi-
tions, respectively:

Bi =a/%x/*---x /% thereare(2m — 1)(3n + 2) + 1 nodes

B> = a//x/y/x

Given al of the above building blocks, we are ready to construct the final queries
p and p’ pictured in Figure 15. Tree pattern p’ has a branching node u and three
branches, ending in C, By, and By, respectively: we denote these with C’, B, B,
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FIG. 15. Patterns used in the proof of Theorem 6. Pattern p has five branches while p’ has three
branches. C' = C, B{ = B4, and B} = B,. The drawing shows the leading a symbol in B, and the
fact that B, is one node longer than a correct canonical model in mod®(V). The drawing also shows
that B, starts with an a symbol.

to distinguish them from their isomorphic copiesin p. C’ is preceded by m(2m —
1)(3n + 2) nodes labeled x; B} is preceded by one additional « node, while B;
by two additional = nodes. The tree pattern p starts with two side branches, each
consisting of two chains of m(2m — 1)(3n+ 2) nodes |abeled « followed by C. The
branching nodes for these two side branches are called b; and b,. Then, the main
branch continues with a chain of m(2m — 1)(3n + 2) nodes labeled *: we denote
V1, Vo, ..., Vm thefirst nodein each subchain of (2m— 1)(3n+ 2) nodes. Thenthere
arethreebranches: V, and By, By, with thelatter two preceded by «/a/a/a/ - - - /a.
The three way branching node is labeled a.

We provenow that p € p’if and only if ¥ isnot satisfiable. Assumefirst that v
isnot satisfiable. Let t € mod*(p) be any canonical database. To show that p'(t) is
true, we will construct an embeddinge : p° — t. Therearethree cases, and in each
we will explain where e maps the node u, and each of the branches C’, B}, and B5,.
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(1) tis“incorrect” becauseit violates condition B1. Then we define e as follows:

u | C B; | B,

e|b|[leftC |V | B
That is, e(u) = by, C" ismapped precisely over theleft C branch, B; ismapped
precisely over V, while B} is mapped to B,: thefirst a symbol in B is mapped
to thethree-way branching a node, whiletherest of B, (whichisseparated from
a by adescendant edge) is mapped along the B, branch to the appropriate depth
(i.e,, x/y/x over x/y/x). Noticethat for any embedding e such that e(u) = by,
B; cannot be mapped to either the B, branch nor to the B, branch, because the
first symbol in B] is a, and, when e(u) = by, this will be mapped precisely to
the z node corresponding to the leading * on either the B; or the B, branch,
which isimpossible.

(2) tis“incorrect” becauseit violates condition B2. Then define e as follows:

u | C B; B,
e| by |rightC | Bybranch | V
Here e(u) isone level lower, and C’ is mapped to the right C branch, whichis
one level lower too. B; is mapped to the B, branch: more precisely it will be
mapped starting to the first a node on the chain on that branch. B} is mapped
to V. Notice that for every embedding e such that e(u) = b,, e cannot map B,
to either the B, branch nor to the B, branch in p: thisis because the a symbol

in B, would be mapped to the z symbol (corresponding to the x).

(3) t is*“correct,” and the corresponding assignment to Boolean variables makes

4

clause ¢; false. Then we define e as follows:
u | C B; B,

e|v, | insdeV | B branch | B, branch
The mapping of C’ inside V should be obvious, according to our previous
discussion. B; ismapped starting at some a along the B, branch. Since B} only
checksthat thereareat least (2m—1)(3n+1)+1 nodes, theembeddingiscorrect
aslong as we have enough a’s on this branch (we need m(2m — 1)(3n+2) + 1
such a’s, where the +1 is needed for case 2 above). Similarly, B} is correctly
mapped to the B, branch: its a node is mapped to some a (again, we need to
have enough: in this case we need m(2m — 1)(3n + 2) a’s, that is, one less than
on the B; branch), then its x/y/y sequence is mapped to the corresponding

X/Yy/Yy sequencein B..

Now we prove the converse, that if p C p/, then ¢ is not satisfiable. Suppose
were satisfiable, and let t € mod*(p) be the (correct) canonical database corre-

sponding to the truth assignment that satisfies all clauses ¢y, cy, .. ., Cy. We show
that there cannot be any embedding e : p’ — t. Indeed, suppose there were such.
We consider four cases, according to where e maps the node u:

(1) e(u) = by. We have argued in this case that e cannot map B; to the B, branch

or to the B, branch. It cannot be mapped to any of the two C branches, because
they aretoo short. Hence, it hasto be mappedto V proving that t isnot “ correct”
because of the violation B1. But this contradicts our assumption.

(2) e(u) = b,. We have argued already that in this case B; cannot be mapped to

either the B, branch nor to the B, branch. It cannot be mapped to any of the
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two C branches, because they don’t contain the sequence x/y/x. Hence, it has
to be mapped to V, proving that t is not correct, because of the violation B2:
but this contradicts our assumption.

(3) e(u) is some node along the chain of *’'s. Then one can see that C’ has to be
mapped inside V (it is easy to see that it cannot be mapped to the B, or B,
branches). Because clauses are separated by the a symbol, some C/ in C’ will
be mapped precisely to W in V (see Figure 14 for the structure of C and V).
But then the truth assignment makes ¢; false, contradicting our assumption.

(4) e(u) isinone of the five branches. Thisisimpossible because the branch B is
too long to mapped below e(u). O

5. Discussion
This section briefly covers additiona topics of interest.

5.1. DISIUNCTION. Itiseasy to extend our discussion to patterns with digunc-
tion. It turns out, however, that with digunction, P (pattern trees) and XP (XPath
expressions) behave differently. We extend P to P/ alowing pattern trees with
or nodes of degree two. A treet is accepted by p if (1) there exists a choice of
“left” or “right” for each or -nodein p, which transforms p into a pattern g without
or -nodes, and (2) q(t) istrue. If no branches other than OR nodes are allowed, then
containment for two patternsin P°? can be reduced in PTIME to the containment
of two patternsin P, by asimple application of Lemma3. However, when branches
are allowed, a minor modification to the proof of Theorem 4 shows that contain-
ment for P12 patterns is coNP-complete. No descendant edges are needed for
the coNP-hardness to hold: indeed, in Theorem 4, we essentially used descendant
edgesto simulate disjunction, which we now get for free. On the other hand, we can
extend the grammar for XPath, Eq: (1), withq ::= q | g, and denote with P{L1-*//:1
thisextended language. Thisform of disjunction isexponentially more concisethan
or nodes because, for example (a1 | b1)/(ax | by)/--- /(@ | bn) requires a tree
pattern of exponential sizein P, If we form the fragment XP!!} by including just
the child axis and disjunction (in the absence of all other features), we can see that
the containment problem is already coNP-complete.

THEOREM 7. Given expressions p, p° e XP!!!, deciding containment is
coNP-hard.

ProOF. In Stockmeyer and Meyer [1973], it is shown that deciding language
equivalence is coNP-complete for string languages defined using only the regular
operations of concatenation and union. (This problem is referred to as language
equivalence for star-free regular languagesin Garey and Johnson [1979], athough
here complement is not present, as it is in the customary understanding of “ star-
free”.) Such languages, over an alphabet X, are defined by expressions in the
following simple grammar:

E—a|EE|EUE

for a € . We can reduce equivalence of expressionsin XP!!! to this problem as
follows. If e is an expression in this grammar, we construct an XPath expression
in XP' in a natural way, then add a terminal symbol t ¢ ¥ to the end of the
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expression. For instance, e = (aU a.b) Ucistrandatedto p = (a | a/b) | ¢c/t.
If p, p € XP') are trangations of expressions e, € it's not hard to show that
Le)=L(e)ifandonlyif p=p. O

Containment for XP!!) expressionsisin coNP because we can define the canon-
ical models for an expression in XP!!! (by making choices for each disjunction)
and then guess a counter example to containment (closely related to Proposition
4). In fact, it's not hard to show that containment remains in coNP for P/
by a similar argument. Neven and Schwentick [2003] show this result, as well as
providing complexity results for these disjunctive fragments in the case of finite
alphabets, discussed next.

5.2. FINITEALPHABET. Throughout thearticle, weassumed that our alphabet X
isinfinite. While thisis the only scenario of interest in practice (since the alphabet
denotes XML tags), the case when X is finite is interesting from a theoretical
standpoint. All co-NP completenessresultsinthisarticlehold if | £ |= 2 (theidea
is that symbols from alarger alphabet can be encoded with chains, if we have at
least two symbols). But most decision procedures, including those that preceded
our work, fail. For instance, when p=a/a//b/b and p'=a//a/v//b,then p C p’
if X ={a,b}but pZ p’when X = {a, b, c}. Thus, the homomorphism criterion
in Amer-Yahia et al. [2001] no longer holds for a finite alphabet. In the presence
of digunction, finite alphabets have a substantial impact on the complexity of
containment, since digunction allows to express negation over label predicates.
Neven and Schwentick E2003] show arather remarkable result: that containment is
in PSPACE for P{U-*//-I) and complete for PSPACE for PV/1),

5.3. EVALUATION ON GRAPHS. In addition to the tree structure, an XML doc-
ument has agraph structure defined by node ids and references. X Path can traverse
this graph structure. Thisis captured in our formalism by interpreting tree patterns
on graphs rather than trees. All resultsin this article apply directly to an extension
of Boolean patterns evaluated on graphs. Namely, for a graph g, define p(g) to
be true if there exists an embedding e : p — g. Then, one can show that the
containment problem on graphs is the same as the containment problem on trees:
vg.p(g) = p(g) iff vt.p(t) = p'(t). To see this, let unfold(g) be the (possibly
infinite) tree unfolding of some graph g. Then, for any pattern p, the following are
equivalent: (1) p(g) istrue, (2) p(unfold(g)) is true, (3) 3t < unfold(g), t finite
and p(t) istrue. Thus, if there exists a witness graph g such that p(g) is true but
p’(g) isfase, then we can construct awitnesstreet such that p(t) istrueand p'(t)
isfase just taket C unfold(g) as above. Notice that p’(t) cannot be true, since
any embedding from p’ tot extends to an embedding from p’ to g. This showsthat
Vt.p(t) = p'(t), then Vg.p(g) = p'(g). The other directionistrivial.

5.4. APPLICATIONTOCTL. Treepatternscan beexpressedinacertainfragment
of computationtreelogic (CTL) [Vardi 1997] consisting of true, x = a, conjunction,
“eventually true” formulas EF¢, and “successively true” formulas EX¢. We call
thisfragment conjunctive existential CTL, ECTL ., and show that it isequivalent to
tree patternsin P/} Thus, all coNP completenessresultsin this article apply to
thisfragment of CTL aswell, showing that in thisfragment theimplication problem
is coNP-complete.

We need to consider a few changes to our formalism, to align to the standard
definitionsin CTL. Weassume X to befinitein thisdiscussion: recall that all co-NP
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hardness results still hold in this case. We consider both finite and infinite trees:
in this section, Ts, denotes the set of al trees, finite and infinite. Define a complex
tree with labelsfrom X to beatreein T,=. Thus, nodesin complex tree are labeled
with sets of symbolsfrom X. We define acomplex tree pattern similarly: its nodes
are now labeled either with x or with a set of symbolsin X. We also modify the
definition of an embedding e from atree pattern p to atreet asfollows: whenever
e(y) = x, for y € NODES(p), X € NODES(t), we require that either LABEL(Y) =
or LABEL(Y) € LABEL(X). With this definition, * is analogous to ¢, and is actually
not needed any more in tree patterns. Simple trees and patterns are a special case
of complex trees and patterns, where each node label set has size one, or is ¢
(representing * in atree pattern).

Definition of ECTL , We define here the fragment ECTL ., whichisof interest to
us, and refer thereader to Vardi [1997] for adefinition of CTL. We define below both
the syntax and the semantics of formulas of ECTL .. For the purpose of ECTL .,
we call the elementsin X propositional constants. ECTL , formulas are built from
these propositional constants. The semantics of aECTL ,-formula¢ isatruth value
for each (possibly infinite) complex treet € T,x and each X € NODES(t): we write
(t, X) = ¢ for thetruth value of ¢ at t and x. Noticethat in CTL the main interest
is interpreting formulas over graphs, or, equivalently, over their unfoldings into
infinite trees. We adopt here the same semantics for the ECTL ., fragment, hence
dlow thetreet to be infinite. The chart below defines both valid ECTL , formulas
and their semantics:

Formulas Semantics

a foranyae X (t,x) =a if a € LABEL(X)

png forany¢p,¢ e ECTL, (A, X)EopAg if(t,x)=¢and(t,X)=¢’

EX¢  for¢ € ECTL, (t,x) = EX¢ if Ay.(X, y) € EDGES(t)
and (t, y) = ¢

EF¢ for ¢ € ECTL, (t, x) = EF¢ if Ixg, IX1, ..., Ixe, k>0,

with xo = x and
(Xi, Xi+1) € EDGES(t) for
O<i<kand(t,xk) = ¢

For any formula ¢, (t, X) = EX¢ if x hasachild satisfying ¢, and (t, X) &= EF¢ if
x hasadescendant satisfying ¢. The formulaEF¢ isan abbreviation for E(truelU ¢)
infull CTL.4

Given two formulas ¢, ¢ € ECTL 4, the implication problem asks whether for
al (infinite) treest and nodes x, (t, X) = ¢ implies (t, X) &= . We prove that the
implication praoblem for ECTL . isco-NP complete, by showingthat it isequivalent
to the containment problem for tree patterns. We need to handle with care the fact
that ECTL , implication is defined over all trees (finite and infinite) while pattern
containment is only for finite trees.

We start by showing that ECTL . implication is equivalent to containment of
complex tree patterns.

4 Thishighlightsanother restriction of ECTL , that isnot evident from its name, conjunctive existential
CTL: full CTL alowsformulas of the form E(yU ¢) for any .
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FiG. 16. ECTL, formula to tree pattern translation. For each of the four kinds of formulas, an
equivalent treeis pictured. The proof of Theorem 7 describesthe details. The example tree pattern on
theright is equivalent to formula: a A EXa A EF(EXb A EFc).

ProPOSITION 7. There exists a one-to-one translation from ECTL,, to com-
plex tree patterns, ¢ — py, such that for any complex tree t (finite or infinite),
(t, ROOT(t)) = ¢ if and only if p,(t) istrue.

ProoF. We describe the trandation informally, by induction on the formula
¢. See Figure 16 for an illustration. For the base case, if ¢ = afora € X, then
Py is the tree pattern consisting of a single (root) node labeled a. Obviously, the
theorem holds in this case. For the inductive cases, if ¢ occursin ¢ we assume
we have a complex pattern p,, satisfying the theorem. If ¢ = EX¢, then p, isthe
tree pattern consisting of a x-labeled root node under which p, isrooted by achild
edge. Similarly, for ¢ = EFg, we construct p, as ax-labeled node with p,, rooted
beneath it by adescendant edge. If ¢ = ¢ A ¢’, then wefuse theroots of p, and p,
to form py, setting the label for the fused node to the union of the set-labels on the
roots p,, and p,,. Notethat « functionslike the formulatrue, so, under union, it will
disappear. Under these constructions, it is fairly obvious that (t, ROOT(t)) & ¢ if
and only if p,(t) because the semantics of the formulasand our pattern embeddings
areidentical.

We must also confirm that for any complex pattern, we can construct an ECTL ,,
formula satisfying the theorem. It is relatively clear that any complex pattern can
be built, bottom up, from the tree construction operations applied above. Thus, it
follows that thereis always an equivalent ECTL ,-formula. [

Now we bridge the gap between finite trees for patterns and infinite trees
for formulas.

ProPosiTION 8. If ¢,¢" are ECTL ,-formulas, and p,, p, are their equivalent
complex patterns, then p, < p, (over all finitecomplextrees) ifandonlyif ¢ = ¢’
isvalid.

PrRoOOF. Theimplication ¢ = ¢’ isvaidif it issatisfied in every node of every
(finite or infinite) tree. We must al so contend with the fact that the tree need not be
finite. The following equivalences prove the proposition:

Py € Py IFF pyu(t) = py(t) vV complex, finite trees Q)
IFF py(t) = py(t) vV complex, finite or infinitetrees  (2)
IFF (t, ROOT(t)) &= ¢ vV complex, finite or infinitetrees  (3)

= (t, ROOT(1)) = ¢

Line (1) isthedefinition of complex pattern containment. Theimplication (2) = (1)
is trivial. The implication (1) = (2) follows from the fact that, if there exists an
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infinite witnesst such that p,(t) istrueand py (t) isfalse, then we can find afinite
witness, to, by taking it to be the image of the embedding p, — t, and we still
have p,(to) true and py (to) false. The equivalence of (2) and (3) follows directly
from Proposition 7. [

Containment of complex tree patternsisin co-NP: thisis relatively easy to see,
since all constructions in Section 3.1 extend straightforwardly to complex trees
and complex patterns. It follows that the implication problem for ECTL , isalsoin
co-NP.

To prove that the implication problem for ECTL , is co-NP hard, we show that,
as far as simple pattern trees are concerned, containment over complex trees is
equivalent to containment over simple trees. This proves our result, since we have
shown that containment for simple treesis coNP-hard.

PROPOSITION 9. For anysimpletreepatterns pand p’ inP{ll-=/} p(t) = p/(t)
for all complex treesif and only if p(t) = p’(t) for all simple trees.

ProOF. The forward direction of the claim is obvious: If p(t) = p/(t) for all
complex trees, then this also holds for al simple trees. For the converse, suppose
p(t) = p'(t) for all smpletrees, andlett € T,= beacomplex tree suchthat p(t) is
trueand p'(t) isfase. Unfoldt such that the embedding v from p into t becomes
injective. Construct a new simple tree ty isomorphic to t by considering only the
image under v, and repl acing each complex label of some nodev(x) withthesimple
label of the node x € NODES(p); when X is labeled %, pick any label for v(x), say
z. Denote with tq the resulting tree. Clearly, p(to) istrue, and p'(t) isfalse, since
otherwise, if there exists an embedding from p’ to ty then we can extend it to an
embedding from p’tot. [

In summary, we have shown:

THEOREM 8. Theimplication problemfor ECTL, isco-NP complete.

6. Related Work

The classes of patterns that include descendant edges (P11} and P!1-* /1) can be
expressed indatal og with recursion, for which containment isundecidablein general
[Shmueli 1993]. Wood [2000] showed, using chase techniques, that the datalog
fragment needed for P{lI:*//} has a decidable containment problem. Containment
for P11/} was shown to bein PTIME in Amer-Yahiaet al. [2001]. Queriesin P
can be viewed as conjunctive queries over tree structures. In general, containment
for conjunctive queries is NP-complete [Chandra and Merlin 1977], however for
acyclic conjunctive queries containment is in PTIME [Yannakakis 1981], from
which it follows that Pl1*} containment is solvable in PTIME. This bound for
Pl1-# was also noted in Wood [2001].

Linear queriesin P*//} are a special case of regular expressions on strings, for
which there is a PSPACE-compl ete containment algorithm in general [ Stockmeyer
and Meyer 1973]. For the fragment of regular string expressionsin P/} alinear-
time containment algorithm was announced in Milo and Suciu [1999]. A PTIME
algorithm for linear patternsin P/} was provided in Buneman et al. [2001].

On a graph-based data model, the authors of Florescu et a. [1998] showed
that for a restricted language without wildcard, similar to P11/} containment is
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NP-complete. Calvanese et al. [2002] studied tree two-way regular path queries
on a graph model. In addition to a more genera data model, these queries are
more expressive than ours because they allow general regular path expressions
and inverse. A PSPACE upper bound for containment is shown for this class
of queries. Deutsch and Tannen [2001] proved containment results for a host of
XPath-related languages. One closely related result applies to an extension of
pill-=//}  which includes binding of variables and equality testing, for which con-
tainment is shown to be I5-hard. Neven and Schwentick [2003] show that con-
tainment of patternsin P/ while coNP-complete for an infinite alphabet, is
in PSPACE for finite alphabets, and show that for fragment P/+!' containment is
complete for PSPACE. In the same work, the authors also study the complexity
of containment for X Path languages that include variable bindings under two diff-
erent semantics.

Algorithm 1 is a particular evaluation agorithm of a small fragment of XPath
on XML documents. More general techniques are studied in Gottlob et al. [2002,
2003], which discuss evaluations of larger fragments of XPath.

Hoffmann and O’ Donnell [1982] introduce the tree pattern matching problem,
in which a subject tree (the data) has to be matched with a set of tree patterns (the
gueries). The problemwasmotivated by several applications, and hassince spawned
alarge amount of work [Cai et al. 1992; Thorup 1996; Cole et al. 1999]. Hoffmann
and O’ Donnell show that the tree patterns can be preprocessed into adata structure
of exponential size, which factors out all common subpatterns, such that every
subject tree can subsequently be matched bottom-up in linear time. Algorithm 2in
this article borrows the idea of match sets from that work.

7. Conclusion

We have studied the complexity of containment and equivalence for an important
core fragment of XPath. Many XML applications benefit from a practical decision
procedure for containment of such expressions. We show this fragment of XPath
has an intractable containment problem in general, and our results provide intuition
into the factors that contribute to its high complexity. Nevertheless, we show that
in some significant special cases, containment can be decided efficiently, and we
provide an algorithm that does so.

One direction for future work is to extend this fragment of XPath with addi-
tional features, although it is clear that it will be even more challenging to prove
efficient special cases of the problem. Another direction is to study containment
of XPath expressions over sets of documents conforming to constraints or schema
restrictions. Preliminary work shows that sufficiently expressive constraints make
this problem intractable for X Path fragments that otherwise have efficient contain-
ment problems.

Appendix A

PROOF (OF PROPOSITION 1).  We introduce first a notation. Let p be either a
tree or atree pattern, and atuple z = (zy, . . ., ) of k nodesin p (not necessarily
distinct). We denote p[z/s] thetreeor tree pattern over thealphabet T U{s,, ..., &}
obtained from p asfollows: Add k new nodesys, .. ., Yk, label themwiths,, ..., s
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respectively, and add k new edges (z1, Y1), . . ., (z« Yk). We cal y the extra nodes
in p[z/s].

Given apattern p of arity k we trandate it into the Boolean pattern po = p[X/9],
where X is the tuple of distinguished nodes. Thus, pg consists of the nodes in p
plus k “extra’ nodes. The relationship between p and pg is expressed by the pro-
perty below:

Vt € Ty, VZ € NODESK(t), Z € p(t) < po(t[Z/3]) istrue.

We prove =—>. Let e : p — t be an embedding such that e(x) = z. Then e can be
extended to an embedding from po (= p[x/S]) to t[z/s], by mapping the k extra
nodesin pg to the corresponding k extranodesin t[z/s], proving that po(t[z/s]) is
true. The direction <= is egually simple and omitted.

To prove the proposition, it remains to show that p € p’ iff pg € pg, for any
two tree patterns p, p’. Assumefirst that po C pg, andlett € Ty, and z € p(t): we
haveto show that z € p'(t). First, we usethe property aboveto show that po(t[z/s])
istrue; hence, py(t[z/s]) istrueand hence, wecan usethe property againto conclude
that z € p'(t).

Assumenow that p € p’ and lett € Txys,,.. s} be such that po(t) istrue: we
have to show that py(t) is true. The problem here is that t is not necessarily of
the form t’[z/s]; hence, we cannot apply the property immediately: we construct
first such at’. Let e : pp — t be an embedding making po(t) true, and denote
Z = e(x) the images of the distinguished nodes in p. Also denote u the images
under e of the extranodesin po: thus the nodes z are the parents of the nodesu in
thetreet. Let s € X be alabel that does not appear in p’, and denotet’ € Ty, the
tree obtained from t by renaming all labels sy, ..., sc with s. We prove that there
exists an embedding po — t[z/S]: define such an embedding to agree with e on
NODES(p), and to map the k extranodesin pg to the corresponding k extranodesin
t[z/s]. It is easy to see that thisisindeed an embedding. Hence, po(t'[z/S]) istrue
and, by the property above, we havethat z € p(t’). It followsthat z € p'(t), hence
Po(t'[z/9]) is true and hence there exists an embedding € : py — t'[z/s], which
maps the distinguished nodes in p; to z. We construct now an embedding from p;
tot asfollows: it agrees with € on NODES(p’), and it maps the k extra nodes in
P, to u. One can check that thisis indeed an embedding. Indeed, the restriction to
NODES(p’) is an embedding since the label s does not appear in p’, so replacing it
with sy, ..., scint will not result in any violations of the embedding. It maps the
extranodesin p; to nodes u with the correct labels, sy, . . ., s¢. Finally, the parents
of these extranodesin py are precisely the distinguished nodesin p’, and the | atter
are mapped to the nodes z: hence the k pairs (dinstinguished node, extranode) in pg
are mapped to the k pairs (z, u;), for z € z, u; € u, showing that the embedding
respects the parent-child relationship for the extranodes. Hence, py(t) istrue.

PROOF OF LEMMA 2. Weusethefollowing lemma. Given atreet, defineachain
int to beasequence of nodes xy, Xo, ..., X, suchthat x; isthe unique child of x; _1,
fori =2,3,...,n.Thatis, the nodesin the chain must have a unique child, except
for the last node.

LEMMA 4. Lett; € Ty be atree and p’ a tree pattern such that p'(ty) is
false, and let w’ be the star length of p'. Let Xq,..., X, be a chain in t such
that n > w’ + 1 and none of the labels LABEL(X3), ..., LABEL(Xn) Occursin p'.
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Let t, be the tree obtained from t; by deleting the node X, and transforming all
its children into children of x,_;: that is, NODES(t;) = NODES(t;) — {x,} and
(Xn, Y) € EDGES(t1) < (Xn_1,Y) € EDGES(t2), Vy € NODES(t;). Then p'(ty) is
also false.

First, we show how the lemma compl etes the proof of Lemma 2. Indeed, assume
without loss of generality that u; > w’ + 1, hencet; = s*(p[us, Uy, ..., Uq]) hasa
chain of length u; whose nodes are labeled with z, which doesnot occur in p’. Since
p’(t,) isfalse, we can apply thelemmarepeatedly and del ete one by one nodesfrom
thischain, until we obtain atreet, wherethe chain haslengthw’+ 1. It followsfrom
the lemmathat t, is still awitness, and, obviously t, = s*(p[w’ + 1, Uy, ..., Ug]).
By repeating this process, for every u; such that u; > w’ + 1, wefinaly obtain a
witnessin mod, _ ,(p).

We now provethelemma. Let t;, p/, t, beasinthelemma. Assumethat p'(ty) is
true, and let e, : p° — t, bethe embedding. Denote C the set {X4, ..., Xn}. Define
the following two sets:

S = {(20, z1) | (20, 21) € EDGES)/(P'), €2(21) € C}
C' = {z|e(2) e CAIz2,21) €S, (71, 2) € EDGES*(P)}.

The set S contains all descendant edgesin p’ where the end node is mapped to the
chain C. The set C’ consist of all nodes that are mapped to C and are below some
descedant edge in S. Now we define the following function e; : NODES(p') —
NODES(t1):

e1(2) = xi;1 ifze C' andey(2) = X
e(2) = ex(2) ifz¢gC.

We check now that e; is indeed an embedding. It is easy to see that it is root-
preserving and label-preserving, so we only have to check that it is a so child-edge
and descendant-edge preserving. Consider an edge (z, Z) € EDGES(p’). One can
check that (e1(2), e1(Z))) € EDGES'(t;) and that that the distance d(ey(2), e1(Z)) is
either d(ex(2), ex(Z)) or d(ex(2), ex(Z)) + 1. Thisis because e; is either identical
to e, or is one node below e,. Then clearly e is descendant-edge preserving, so
now we check that it is child-edge preserving. The only problem here is when
(z,Z) € EDGES/(p’) and d(ei(2), e1(Z')) = 2, and this can only happen when
Xn_1 = €1(2) = e(2) and e1(Z) = ex(Z). In this case ex(2), e,(Z)) are connected
by an edge in t,, while in t; we have the node x, between them. This happens
if z ¢ C/, that is, there is no descendant edge above it mapped to C. Consider
then the path in p’ from z to ROOT(P'): VY1 = Z, V2, V3, ..., Yk = ROOT(p’). We
have ex(y1) = Xn_1 € C and let m be the largest number such that e;(ym) € C;
hence ym.1 &€ C’ (there exists such m, because e;(ROOT(p’)) ¢ C’). Consider the
path Vm, Ym-1, ..., Y1 in p’. All its nodes are mapped by e, to nodes in C, hence
they are all labeled with . Furthermore, all edges (yi,1, i) are child edges, for
i =1,2,...,m,since if one where a descendant edge then z = y; € C’, while
we have aready established that z ¢ C’. Hence, it is a sequence of *'sin p/, O
m < w’. On the other hand, since all edges are child edges, their image under e,
must include all nodes X3, Xo, ..., Xn_1, in other wordsm = n — 1. Thisimples
thatn — 1 < w’, whichisacontradiction. [
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PrROOF OF PROPOSITION 6.  We start by proving another lemma:

LEMMA 5. Letbbeablockofsizen. Letq e P!/} beanytreepattern, define
u = (n,n,...,n), and consider the canonical model t = s?(q[u]) € mod*(q).
Then, if thereexistsan unrooted embedding e : b — t, thenthere existsan unrooted
homomorphismh : b — q, suchthat e = g o h, whereg : q — t isthe canonical
embedding (Section 3.1).

ProOF. Recall that there are two kinds of nodes labeled z in t: those corre-
sponding to x nodes in g, and those corresponding to extension nodes. We show
that none of the extension nodesisintheimage of e. Let NODES(D) = {Xo, ..., Xn}.
Thetwo end points, Xp and x,, are each label ed with somesymbol in X (not x) which
is different from z: hence, e cannot map them to az-node. Suppose y = e(x;) isan
extension node (hence, it islabeled with z). Thenodey ispart of achain of n nodes,
extending some descendant edge: let u and v the nodes before and after this chain,
henced(u, v) = n+ 1. e(xp) iseither u or an ancestor of u, whilee(x,) iseither v or
adescenant of v. Hence, d(e(xo), €(Xn)) > n+ 1, whiled(Xg, Xn) = n. Thisisacon-
tradiction since the definition of an embedding requires d(e(xo), €(Xn)) = d(Xo, Xn)
(since al edgesin b are child edges). It follows that e maps all the nodesin b only
to nodesin g, and not to the extra z-nodesintroduced by the extension. Then define
h(x) = e(x), Vx € NODES(b); it is easy to see that h is a homomorphism and that
e=egoh. [

Returning to the proof of Proposition 6, we proceed by induction on the number
of blocksin p”. The base case, when p” has a single block, follows immediately
from the lemma, by taking q = p.

We prove the inductive step, and assume that p” has at two or more blocks.
Then we can write it as p” = b//=¥p/, where b is the first block and p; has
one less blocks, hence Proposition 6 holds for p;. To prove it for p”, assume that
there is no unrooted homomorphism from p” to p, and we will construct awitness
t = s?(p[u]) € mod?(p) such that thereis no unrooted embedding from p” tot. All
we need in order to construct t isto defineu = (uy, ..., Ug). We will define each
u; to be either O, or n, where n isthe size of the blaock b (i.e. the number of edges),
or we will obtain it inductively, from some witness for p;. Given x € NODES(p)
denote x |= {y | (X, y) € EDGES"(p)} the set of its strict descenants, and given
X < NODES(p) denote X |= [J{x || x € X}. Let w be the last node in b,
and w’ be the first node in py: that is (w, w’) € EDGES;(p”) and a(w, w’) = k.
Then define;

= {h | h:b— pisanunrooted homomorphism}
{h(w) | h € H} € NODES(p)
NODES(p) — X |
= {y|3Ix € X, (X,y) € EDGES'(p) Ad(X,y) = k + 1}
= NODES(p) — Y |
Yo=Y-Y|
We give the intuition first, then describe the construction formally. Imagine trying
to find an unrooted homomorphism h from the block b to p. We proceed top-down

in p, traversing every root-to-leaf path, trying to map b into that path. The set X
consists of all nodes that we need to visit when searching for h. If we succeed

H
X
X
Y
Y
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finding h, then we stop including further nodes down that path into X. If we fail,
then we end up including the entire path in X. In constructing the witnesst, we will
extend all descendant edgesin X tolong chains(u; = n): thisprevents*accidental”
un-rooted embeddings from b to this portion of t. Next, Y consistsof al nodesin X
plus all nodes at distance < k + 1. Here, we will extend the descendant edges into
short chains, by taking u; = O: this prevents accidental embeddings of the edge
(w, w') into this portion of the tree t. Finally, Yo C Y are the frontier nodes and
here we consruct the witness inductively, by applying Proposition 6 to p;. With
this basic intuition in mind, we give now_the formal proof. o

The sets H and_X may be empty, but X isaways nonempty. Noticethat X € Y
and that both X, Y are upwards closed: if y €_X and (x, y) € EDGES'(p), then
x € X, and similarly for Y. Then the sets X, (Y — X),and y |, for y € Yp form
a partition of NODES(p): for example, to check that (y |) N (y’ |) = @ for every
y, Y € Yyitsufficestoseethat (y, y') € EDGES™ (p). We will construct the witness
t differently on each such partition.

For every y € Yy denote py, the subpattern of p defined by the set of nodes
{ylUy |, thatis, NODES(py) = {y} U (y {). Thereisno unrooted homomorphism
from p] to py. Indeed, suppose there were one, hy : p; — py. Let x € X be
such that d(x, y) = k + 1 (given by the definition of Y), and let h € H be such
that h(w) = x (given by the definition of X). Then one can easily check that h
and h; together define an unrooted homomorphism from p” to p, contradicting
the assumption in Proposition 6. By induction hypothesis the lemma holds for the
pattern p;, hence, there existsawitnesst, € mod*(py) such that there exists no un-
rooted embedding from p; to t,. Now we define the witnesst as follows: Consider
each descendant edge (x;, i) € EDGES/(p). If yi € X, then define u; = n. If
yi € (Y — X), thendefineu; = 0. Andif y; e y |, for somey € Yy then define
u; asin the witness ty. We prove that there exists no unrooted embedding from
p’tot.

Assumee : p” — t issuch an unrooted embedding. We first show that e(w) e
XU X |.Supposee(w) ¢ X |, and denote g the subpattern of p defined by the set
of nodes X. Then e gives us an un-rooted embedding from b to acanonical model of
g, sincew, thelast nodein b, ismappedinto q. By Lemmab, we al so get an unrooted
homomorphism h from b to q and, moreover, h(w) = e(w). Obvioudly, h is also
an unrooted homomorphism from b to p, hence h € H, hence x = h(w) € X.
Thus, we have shown that elw) € X U X |. TheneWw’) € YUY |, because
d(w, w’) = k + 1, and, by the definition of an embedding, d(e(w), e(w’)) > k + 1.
It follows that e maps p; entirely into the witness ty, which is a contradiction.
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