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A single optical fiber can carry multiple signals if
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a different wavelength.

Decreased latency if signals can avoid expensive

optical-electrica
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-optical (OEQO) conversions.

neory problems arise...
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Minimizing “Hops
® At each node, can only switch signals optically within
sets of ¢ incident fibers.

ROADM

® Any signal not switched optically requires an OEO
conversion or “hop.”

® MinHop.: Given a single infinite capacity fiber in each
link, route demands simply and set Roadms to
minimize average number of hops.
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Any signal not switched optically requires an OEO
conversion or “hop.”

MinHopc: Given a single infinite capacity fiber in each
link, route demands simply and set Roadms to
minimize average number of hops.

Approx: O(log n) and >2 for c=2  [Anshelevich, Zhang '05]

Our Results: Q(log'-€ n) for c=2...
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MinHop.

® [nput: Supply network G=(V,E) and demands
® Solution:
a) Decomposition of E into “transparent islands”

b) Simple routing path P, for each demand h

® Goal: Minimize average number of times each Pj
needs to hop between transparent islands.
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® Reduction from LongPath:
Given a 3-regular Hamiltonian graph find a long path
Constant approximation is hard [Bazgan, Santha, Tuza *99]
® |etL be an instance of LongPath on t nodes:

Replace each node u with K33 = {uj,uy, vi,v2,v3} and
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Undirected Graphs & 2-arm Roadms

/“\ Insert multiple

copies of L into
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Consider demands from leaves to root :
L is Hamiltonian so MinHop2(G)=1 '

Finding a solution of cost o(log'-¢ n)
requires finding length Q)(t) path in L.
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(Q(n'-¢) Hardness

Directed Graphs & 2-arm Roadms

Reduction from 2DirPaths:

For directed graph L and sy,t,s,,t2, it is NP-hard to determine
if there is edge disjoint paths between s| and tj; and s; and t..

[Fortune, Hopcroft, Wyllie '80]

Form supply graph G with demands (a,b) and (b,a)

If there exists edge disjoint paths then MinHop2(G)=|I
and otherwise MinHop2(G) =Q(n'-).

Can assume G is strongly connected...
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An O(n'?) Approx

Directed Acyclic Graphs & 2 arm Roadms
e Thm:An O(n'?) approximation for DAGS.

® |emma: Call a sequence ajy, .., an boosted if ai#aj+; and if
ai=ay, then agi=a for all i<j<k. Length of a boosted
sequence with alphabet {l, 2, ..., k} is at most 2k.

Proof: Induction on k: k=1 trivial!
Let g be minimum repeated element and let sequence
be of theform Sqgl;ql2q..ljgP.

Assume [ I ...l has length rand so Iy g2 g...] g has
length at most 2r.

Sequence S g P is boosted and has alphabet size k-r
hence length is 2(k-r) by induction.



An O(n'?) Approx
Directed Acyclic Graphs & 2 arm Roadms
® Thm:An O(n'’?) approximation for DAGS.
Proof (Sketch):

Define “long” paths Py, Py, ..., Px that route some demands

P;: If shortest route in G augmented by edges of distance
n? between all pairs of nodes in P; for all i<j is length at

least n'’? then let P; be this route.

Define transparent islands as maximal sub-paths of P}\
(Py, ... P-1) and all remaining individual edges.

G is a DAG implies that k=O(n'?)

Boosting lemma implies every routing requires O(k) hops
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Summary of MinHop

2-arm Roadms 3-arm Roadms

Algorithm | Hardness Algorithm

Undirected O(log n) | Q(log'-¢ n) O(log n)

Strongly Connected| O(n) Q(n'-€) O(log n)

e O(n'?) | Q(log n) O(n'2)

® Open Question: Resolve the
hardness of directed acyclic graphs
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MinFiber

® [nput: Supply network G=(V,E), demand graph H, costs
c. to install a fiber in link e, and fiber capacity A.

® Solution:
a) Multiple [ of fibers at link e

b) Simple routing path P, for each demand

¢) Assignment of one of A colours to each P, such
that the number of paths of the same colour using
any edge is at most le.

® Goal: Minimize 2 ce I.
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Integer Decomposition Property

® A polyhedron P has the integer decomposition

property (IDP) if for any x € P and integer k such
that kx is integral then we have

kx = Z XT;
1€ (k]

where z; is an integral vector in P.

® Thm (Baum, Trotter): Matrix A is totally unimodular

iff {x : Ax < b,z > 0} has the IDP for every integer
vector b.



WDM Flows on Directed Trees

® T[hm: Exact solution MinFib on directed tree instances.
® Proof (Sketch):

Let B be the matrix with Bsh=1 if routing for demand h goes
through arc a. B and [B'[]" are totally unimodular.

Let [ an allocation of fibers that satisfies capacity
requirements.

Define P,={z: B-2<1[,0<z <1} and note P;is IDP.

By assumption (I/A, I/, ...,1/A) is in Prand hence there
exists a decomposition of demands into A classes such that
each class can be assigned the same colour.
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Open Question

® |ncompatible Assumptions:

MinHop assumes an existing infinite capacity fiber in
each link.

MinFiber assumes full wavelength selective switching
(i.e. infinite-arm Roadms)

® How can we unify both problems?

In MinHop, consider purchasing extra fibers in each
link at some cost.

If we have to hop, can’t we get a wavelength
conversion for free!



Summary

MinFiber:

Exact Solution for Directed Trees
3.55 Approximation for Single-Source
via “Fractional implies Integral” results

MinHop:
2-arm Roadms 3-arm Roadms
Algorithm | Hardness Algorithm
Undirected O(log n) | Q(log'-€ n) O(log n)
Strongly Connected| O(n) Q(n'-€) O(log n)
DAG O(n'?) | Q(log n) O(n'?)




