Island Hopping and Path Colouring

Andrew McGregor UPenn→UC San Diego Bruce Shepherd Bell Labs→McGill

• Route a set of signals, s_i to t_i , in a graph G

- Route a set of signals, s_i to t_i , in a graph G
- Advantages of optical communication:

A single optical fiber can carry multiple signals if each is assigned a different wavelength.

Decreased latency if signals can avoid expensive optical-electrical-optical (OEO) conversions.

- Route a set of signals, s_i to t_i , in a graph G
- Advantages of optical communication:
 - A single optical fiber can carry multiple signals if each is assigned a different wavelength.
 - Decreased latency if signals can avoid expensive optical-electrical-optical (OEO) conversions.
- Many interesting theory problems arise...

• In each link e of G, a fiber that can carry a single signal of each wavelength $\{1, ..., \lambda\}$ can be installed with cost c_e .

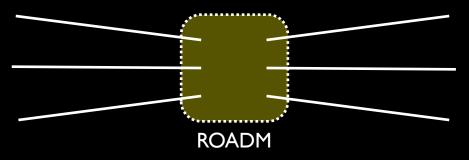
- In each link e of G, a fiber that can carry a single signal of each wavelength $\{1, ..., \lambda\}$ can be installed with cost c_e .
- MinFiber: Minimize the cost of fibers installed such that every signal can be routed monochromatically.

- In each link e of G, a fiber that can carry a single signal of each wavelength $\{1, ..., \lambda\}$ can be installed with cost c_e .
- MinFiber: Minimize the cost of fibers installed such that every signal can be routed monochromatically.
- Approx: $O(\log n)$ and $\Omega(\log^{1/4-\epsilon} n)$ [Andrews, Zhang '05]

- In each link e of G, a fiber that can carry a single signal of each wavelength $\{1, ..., \lambda\}$ can be installed with cost c_e .
- MinFiber: Minimize the cost of fibers installed such that every signal can be routed monochromatically.
- Approx: $O(\log n)$ and $\Omega(\log^{1/4-\epsilon} n)$ [Andrews, Zhang '05]
- Exact solution if G is a path [Winkler, Zhang '03]

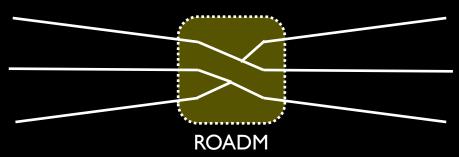
- In each link e of G, a fiber that can carry a single signal of each wavelength $\{1, ..., \lambda\}$ can be installed with cost c_e .
- MinFiber: Minimize the cost of fibers installed such that every signal can be routed monochromatically.
- Approx: $O(\log n)$ and $\Omega(\log^{1/4-\epsilon} n)$ [Andrews, Zhang '05]
- Exact solution if G is a path [Winkler, Zhang '03]
- Our results: Exact solution if G is a directed tree and 3.55 approx if demands are single-source.

- In each link e of G, a fiber that can carry a single signal of each wavelength $\{1, ..., \lambda\}$ can be installed with cost c_e .
- MinFiber: Minimize the cost of fibers installed such that every signal can be routed monochromatically.
- Approx: $O(\log n)$ and $\Omega(\log^{1/4-\epsilon} n)$ [Andrews, Zhang '05]
- Exact solution if G is a path [Winkler, Zhang '03]
- Our results: Exact solution if G is a directed tree and 3.55 approx if demands are single-source.

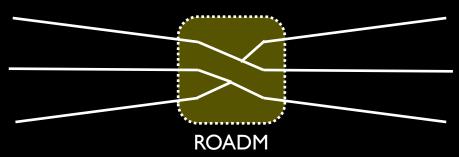


 At each node, can only switch signals optically within sets of c incident fibers.

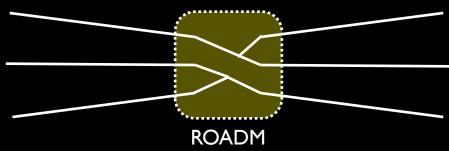
Any signal not switched optically requires an OEO conversion or "hop."



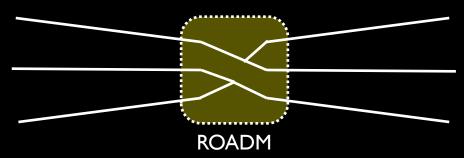
- Any signal not switched optically requires an OEO conversion or "hop."
- MinHop_c: Given a single infinite capacity fiber in each link, route demands simply and set Roadms to minimize average number of hops.



- Any signal not switched optically requires an OEO conversion or "hop."
- MinHop_c: Given a single infinite capacity fiber in each link, route demands simply and set Roadms to minimize average number of hops.



- Any signal not switched optically requires an OEO conversion or "hop."
- MinHop_c: Given a single infinite capacity fiber in each link, route demands simply and set Roadms to minimize average number of hops.
- Approx: $O(\log n)$ and >2 for c=2 [Anshelevich, Zhang '05]



- Any signal not switched optically requires an OEO conversion or "hop."
- MinHop_c: Given a single infinite capacity fiber in each link, route demands simply and set Roadms to minimize average number of hops.
- Approx: $O(\log n)$ and >2 for c=2 [Anshelevich, Zhang '05]
- Our Results: $\Omega(\log^{1-\epsilon} n)$ for c=2...

Min-Hop
 Min-Fiber
 Min-Both?

MinHopc

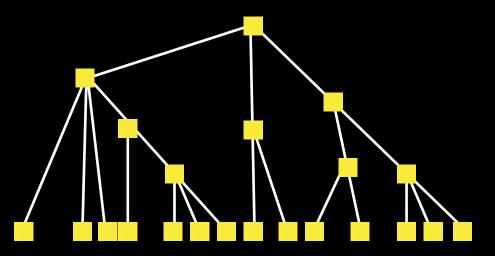
- Input: Supply network G=(V,E) and demands H.
- Solution:
 - a) Decomposition of E into "transparent islands"
 - b) Simple routing path P_h for each demand h
- Goal: Minimize average number of times each P_h needs to hop between transparent islands.

• Choose any spanning tree T of G rooted at r

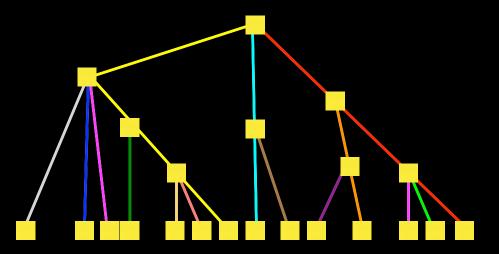
- Choose any spanning tree T of G rooted at r
- \bullet Route signals along the spanning via r

- Choose any spanning tree T of G rooted at r
- Route signals along the spanning via r
- Setting Roadms optimally ensures each signal requires at most 2 log n hops. [Anshelevich, Zhang '05]

- Choose any spanning tree T of G rooted at r
- Route signals along the spanning via r
- Setting Roadms optimally ensures each signal requires at most 2 log n hops. [Anshelevich, Zhang '05]



- Choose any spanning tree T of G rooted at r
- Route signals along the spanning via r
- Setting Roadms optimally ensures each signal requires at most 2 log n hops. [Anshelevich, Zhang '05]



Reduction from LongPath:

Given a 3-regular Hamiltonian graph find a long path

Constant approximation is hard [Bazgan, Santha, Tuza '99]

Reduction from LongPath:

Given a 3-regular Hamiltonian graph find a long path

Constant approximation is hard [Bazgan, Santha, Tuza '99]

Let L be an instance of LongPath on t nodes:

Replace each node u with $K_{2,3} = \{u_1, u_2, v_1, v_2, v_3\}$ and match v_1, v_2, v_3 to neighbours of u.

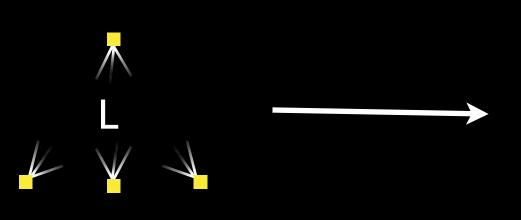
Reduction from LongPath:

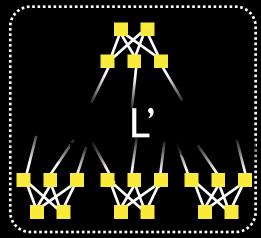
Given a 3-regular Hamiltonian graph find a long path

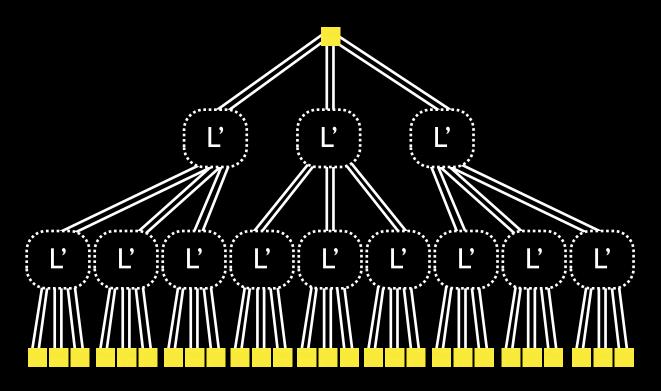
Constant approximation is hard [Bazgan, Santha, Tuza '99]

Let L be an instance of LongPath on t nodes:

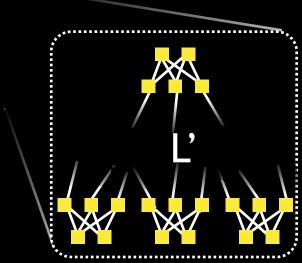
Replace each node u with $K_{2,3} = \{u_1, u_2, v_1, v_2, v_3\}$ and match v_1, v_2, v_3 to neighbours of u.

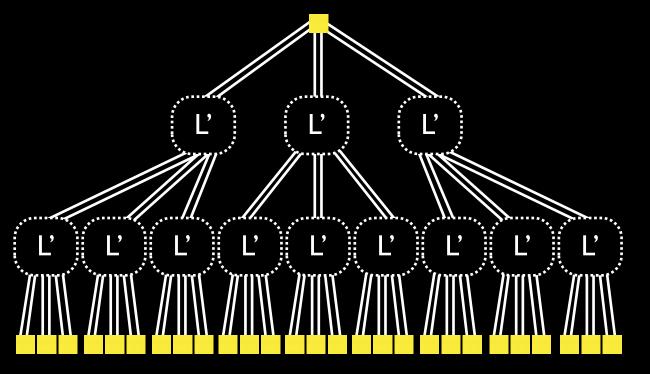






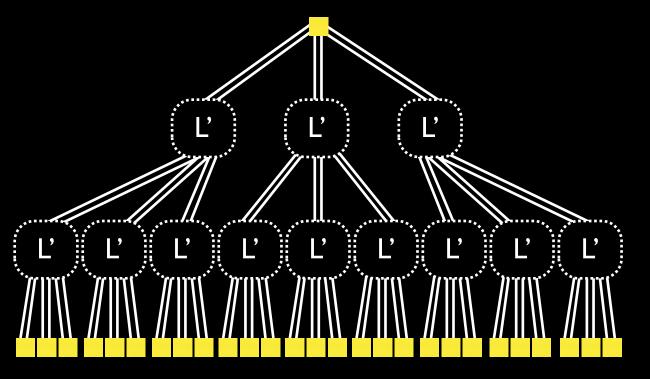
Insert multiple copies of L' into (t-1)-ary tree in which each edge is duplicated.





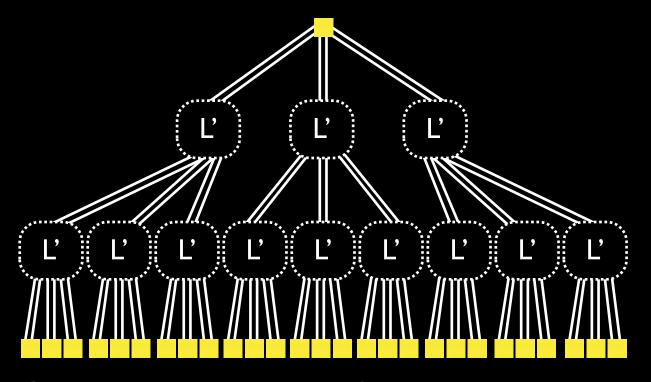
Insert multiple copies of L' into (t-1)-ary tree in which each edge is duplicated.

Consider demands from leaves to root



Insert multiple copies of L' into (t-1)-ary tree in which each edge is duplicated.

Consider demands from leaves to root L is Hamiltonian so MinHop₂(G)=I

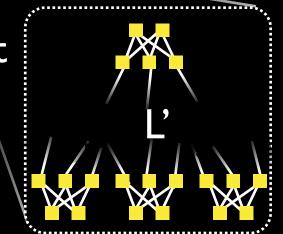


Insert multiple copies of L' into (t-1)-ary tree in which each edge is duplicated.

Consider demands from leaves to root

L is Hamiltonian so $MinHop_2(G)=1$

Finding a solution of cost $o(\log^{1-\epsilon} n)$ requires finding length $\Omega(t)$ path in L.



Reduction from 2DirPaths:

For directed graph L and s_1,t_1,s_2,t_2 , it is NP-hard to determine if there is edge disjoint paths between s_1 and t_1 ; and s_2 and t_2 .

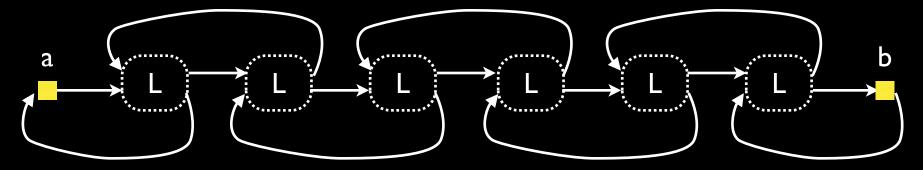
[Fortune, Hopcroft, Wyllie '80]

Reduction from 2DirPaths:

For directed graph L and s_1,t_1,s_2,t_2 , it is NP-hard to determine if there is edge disjoint paths between s_1 and t_1 ; and s_2 and t_2 .

[Fortune, Hopcroft, Wyllie '80]

• Form supply graph G with demands (a,b) and (b,a)

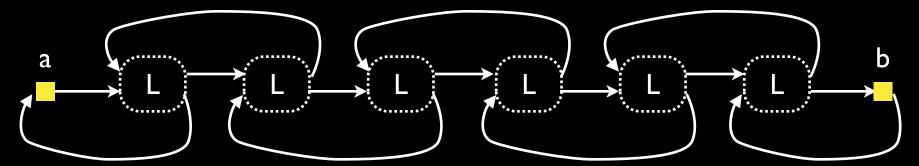


Reduction from 2DirPaths:

For directed graph L and s_1,t_1,s_2,t_2 , it is NP-hard to determine if there is edge disjoint paths between s_1 and t_1 ; and s_2 and t_2 .

[Fortune, Hopcroft, Wyllie '80]

• Form supply graph G with demands (a,b) and (b,a)



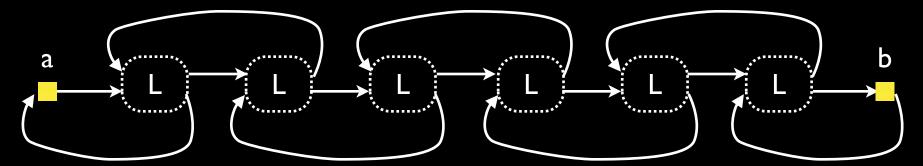
• If there exists edge disjoint paths then MinHop₂(G)=I and otherwise MinHop₂(G) = $\Omega(n^{1-\epsilon})$.

• Reduction from 2DirPaths:

For directed graph L and s_1,t_1,s_2,t_2 , it is NP-hard to determine if there is edge disjoint paths between s_1 and t_1 ; and s_2 and t_2 .

[Fortune, Hopcroft, Wyllie '80]

• Form supply graph G with demands (a,b) and (b,a)



- If there exists edge disjoint paths then MinHop₂(G)=1 and otherwise MinHop₂(G) = $\Omega(n^{1-\epsilon})$.
- Can assume G is strongly connected...

An O(n^{1/2}) Approx Directed Acyclic Graphs & 2 arm Roadms

An O(n^{1/2}) Approx Directed Acyclic Graphs & 2 arm Roadms

• Thm: An $O(n^{1/2})$ approximation for DAGS.

An $O(n^{1/2})$ Approx Directed Acyclic Graphs & 2 arm Roadms

- Thm: An $O(n^{1/2})$ approximation for DAGS.
- Lemma: Call a sequence $a_1, ..., a_n$ boosted if $a_i \neq a_{i+1}$ and if $a_i = a_k$, then $a_j \leq a_k$ for all i < j < k. Length of a boosted sequence with alphabet $\{1, 2, ..., k\}$ is at most 2k.

An $O(n^{1/2})$ Approx

Directed Acyclic Graphs & 2 arm Roadms

- Thm: An $O(n^{1/2})$ approximation for DAGS.
- Lemma: Call a sequence $a_1, ..., a_n$ boosted if $a_i \neq a_{i+1}$ and if $a_i = a_k$, then $a_j \leq a_k$ for all i < j < k. Length of a boosted sequence with alphabet $\{1, 2, ..., k\}$ is at most 2k.

Proof: Induction on k: k=1 trivial!

Let q be minimum repeated element and let sequence be of the form $S q I_1 q I_2 q ... I_j q P$.

Assume $l_1 l_2 \dots l_j$ has length r and so $l_1 q l_2 q \dots l_j q$ has length at most 2r.

Sequence $S \neq P$ is boosted and has alphabet size k-r hence length is 2(k-r) by induction.

An $O(n^{1/2})$ Approx

Directed Acyclic Graphs & 2 arm Roadms

• Thm: An $O(n^{1/2})$ approximation for DAGS.

Proof (Sketch):

Define "long" paths $P_1, P_2, ..., P_k$ that route some demands

 P_j : If shortest route in G augmented by edges of distance n^{-2} between all pairs of nodes in P_i for all i < j is length at least $n^{1/2}$ then let P_j be this route.

Define transparent islands as maximal sub-paths of $P_j \setminus (P_1, ..., P_{j-1})$ and all remaining individual edges.

G is a DAG implies that $k=O(n^{1/2})$

Boosting lemma implies every routing requires O(k) hops

• Thm: MinHop₃ has O(log n) approx for strongly connected graphs. (c.f. $\Omega(n^{1-\epsilon})$ MinHop₂)

- Thm: MinHop₃ has O(log n) approx for strongly connected graphs. (c.f. $\Omega(n^{1-\epsilon})$ MinHop₂)
- Thm: For G planar:

 $MinHop_2(G)=1$ if G is 4-node connected.

Graph is Hamiltonian [Tutte '56] and a degree-3 spanning tree can be found in polytime [Fürer, Raghavachari '56].

- Thm: MinHop₃ has O(log n) approx for strongly connected graphs. (c.f. $\Omega(n^{1-\epsilon})$ MinHop₂)
- Thm: For G planar:

 $MinHop_2(G)=1$ if G is 4-node connected.

Graph is Hamiltonian [Tutte '56] and a degree-3 spanning tree can be found in polytime [Fürer, Raghavachari '56].

MinHop₃(G)=1 if G is 3-node connected.

Graph has a degree-3 spanning tree and this can be found in polytime [Barnette '66].

- Thm: MinHop₃ has O(log n) approx for strongly connected graphs. (c.f. $\Omega(n^{1-\epsilon})$ MinHop₂)
- Thm: For G planar:

 $MinHop_2(G)=1$ if G is 4-node connected.

Graph is Hamiltonian [Tutte '56] and a degree-3 spanning tree can be found in polytime [Fürer, Raghavachari '56].

 $MinHop_3(G)=I$ if G is 3-node connected.

Graph has a degree-3 spanning tree and this can be found in polytime [Barnette '66].

MinHop₃(G)= Ω (log n) for some 2-node connected G.

- Thm: MinHop₃ has O(log n) approx for strongly connected graphs. (c.f. $\Omega(n^{1-\epsilon})$ MinHop₂)
- Thm: For G planar:

 $MinHop_2(G)=1$ if G is 4-node connected.

Graph is Hamiltonian [Tutte '56] and a degree-3 spanning tree can be found in polytime [Fürer, Raghavachari '56].

 $MinHop_3(G)=I$ if G is 3-node connected.

Graph has a degree-3 spanning tree and this can be found in polytime [Barnette '66].

MinHop₃(G)= Ω (log n) for some 2-node connected G.

Summary of MinHop

	2-arm Roadms		3-arm Roadms
	Algorithm	Hardness	Algorithm
Undirected	O(log n)	$\Omega(\log^{1-\epsilon} n)$	O(log n)
Strongly Connected	O(n)	$\Omega(n^{I-\epsilon})$	O(log n)
DAG	O(n ^{1/2})	$\Omega(\log n)$	O(n ^{1/2})

Summary of MinHop

	2-arm Roadms		3-arm Roadms
	Algorithm	Hardness	Algorithm
Undirected	O(log n)	$\Omega(\log^{1-\epsilon} n)$	O(log n)
Strongly Connected	O(n)	$\Omega(n^{I-\epsilon})$	O(log n)
DAG	O(n ^{1/2})	$\Omega(\log n)$	O(n ^{1/2})

 Open Question: Resolve the hardness of directed acyclic graphs 1. Min-Hop2. Min-Fiber3. Min-Both?

MinFiber

- Input: Supply network G=(V,E), demand graph H, costs c_e to install a fiber in link e, and fiber capacity λ .
- Solution:
 - a) Multiple le of fibers at link e
 - b) Simple routing path P_h for each demand
 - c) Assignment of one of λ colours to each P_h such that the number of paths of the same colour using any edge is at most l_e .
- Goal: Minimize $\sum c_e l_e$

Integer Decomposition Property

Integer Decomposition Property

• A polyhedron P has the integer decomposition property (IDP) if for any $x \in P$ and integer k such that kx is integral then we have

$$kx = \sum_{i \in [k]} x_i$$

where x_i is an integral vector in P.

Integer Decomposition Property

• A polyhedron P has the integer decomposition property (IDP) if for any $x \in P$ and integer k such that kx is integral then we have

$$kx = \sum_{i \in [k]} x_i$$

where x_i is an integral vector in P.

• Thm (Baum, Trotter): Matrix A is totally unimodular iff $\{x: Ax \leq b, x \geq 0\}$ has the IDP for every integer vector b.

WDM Flows on Directed Trees

- Thm: Exact solution MinFib on directed tree instances.
- Proof (Sketch):

Let B be the matrix with $B_{ah}=1$ if routing for demand h goes through arc a. B and $[B^TI]^T$ are totally unimodular.

Let I an allocation of fibers that satisfies capacity requirements.

Define $P_l = \{x : B \cdot x \le l, 0 \le x \le 1\}$ and note P_l is IDP.

By assumption $(I/\lambda, I/\lambda, ..., I/\lambda)$ is in P_I and hence there exists a decomposition of demands into λ classes such that each class can be assigned the same colour.

Min-Hop
 Min-Fiber
 Min-Both?

Open Question

Incompatible Assumptions:

MinHop assumes an existing infinite capacity fiber in each link.

MinFiber assumes full wavelength selective switching (i.e. infinite-arm Roadms)

• How can we unify both problems?

In MinHop, consider purchasing extra fibers in each link at some cost.

If we have to hop, can't we get a wavelength conversion for free?

Summary

MinFiber:

Exact Solution for Directed Trees
3.55 Approximation for Single-Source
via "Fractional implies Integral" results

MinHop:

	2-arm Roadms		3-arm Roadms
	Algorithm	Hardness	Algorithm
Undirected	O(log n)	$\Omega(log^{I-\epsilon}\;n)$	O(log n)
Strongly Connected	O(n)	$\Omega(n^{I-\epsilon})$	O(log n)
DAG	O(n ^{1/2})	$\Omega(\log n)$	O(n ^{1/2})