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Some Detfinitions

m Communicating over a binary symmetric
channel with cross-over probabillity p.

= We use a length n binary code C={x,, x,, ...
X|cif With rate 2 R ie.
|C|>27
= No matter what code we use there is the
possibility of making errors - for a given rate

of transmission there is some degree of error
20  thatis inherent to the channel itself.
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Making Decoding Errors

Maximum Likelihood Decoding: When we
receive a word y we’'ll guess that the sent
codeword Is the codeword that lies closest
to It.

For each codeword x we define the Voronoi
region:

Let P,(x) be the probability that, when
codeword x is transmitted, this decoding
procedure leads to an error. Therefore we
have
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Making Decoding Errors

Maximum Likelihood Decoding: When we
receive a word y we’'ll guess that the sent
codeword Is the codeword that lies closest
to It.

For each codeword x we define the Voronoi
region:

D(x)={y €{0,1}" :d(x,y) <d(x;,,y)Vx, € C\x}
Let P,(x) be the probability that, when
codeword x is transmitted, this decoding

procedure leads to an error. Therefore we
have

P.(x) = P.({0,1" \ D(x))



|

The Reliability Function

m [he average error probability of decoding is
m We're interested In

m We present a new lower bound for this
guantity, or equivalently, an upper bound on
the reliability function or error exponent of the
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The Reliability Function

m [he average error probability of decoding is
1
PC) = EP (x)
m We're interested In
P(R)= min P (C)

C:Rate(C >R

m We present a new lower bound for this
guantity, or equivalently, an upper bound on
the reliability function or error exponent of the

N channel:

E(R,p) = —limllog[ min Pe(C)]

l n—w 7 C:R(C)-R



Bounds on the Error Exponent:

E(R,p)
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Bounds on the Error Exponent:

E(R,p)

« Combination of Best Upper Bounds
prior to 1999: [Elias, ‘56], [Shannon
et al, ‘'67] & [McEliece et al, "77]

e Litsyn’s Bound: [Litsyn "99]
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Litsyn’s Distance Distribution Bound

m Define
B, (x)={x;:d(x ,x;)=w}]
m Litsyn’s Distance Distribution Bound:

For any code C of rate R there exists a
w such that

B, (x)= u(R,w)




Estimating P (x)

i P,(x) = P.({0,1}" \ D(x)) ‘



Estimating P,(x)

The Voronoi Region

5

o
d(yvx) I’l—d(y,X)
P,(x) = Y p!(1- p)
yEC:d(y,x;)=d(y.x) for some x; €C



Pe Epd(y,X)(l _ p)n—d(y,x)

yEC:d(y,x;)=d(y.x) for some x; €C

Estimating P,(x)
Use the distance distribution result...
0



Epd(y,?c)(l . p)n—d(y,x)

yEC:d(y,x;)=d(y.x) for some x ; €C where d(x,x ; )=w

Estimating P,(x)
Approximating the Voronoi Region...
]



P(x)=P( [JX)

j:d(x,xj )=w

Estimating P,(x)
Introducing the X;...
For each neighbour
x; define a set X;
such that
y E Xj =
, dy,x;)=d(y,x)
=



Estimating P,(x)

Pruning” the X;...

For each neighbour
x; assign a priority »;
at random. Let

Y, =X\ X,

king>n;




Estimating P,(x)

Applying the Reverse Union Bound...

The Reverse Union Bound:

Giving us our final shape of our bound:
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Estimating P,(x)

Applying the Reverse Union Bound...

P(Y)=P.(X,\ | JX)

king>n;

>P(X,)1- Y P(X,1X))

king>n;

P(x)= Y P(X)1- ¥ P(X,1X))

j:d(x,xj )=w k:nk>nj




= Now look across the entire code. LetX
and Y, be the sets for the nelghbourhood of
codeword X;.

m Therefore we have:

and

where, the amount of “pruning” is

= What we do now depends on the values of
the K
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= Now look across the entire code. Let X,
and Y, be the sets for the neighbourhood of
codeword x;.

m Therefore we have:

P(x)= Y P(Y,)

J:d(x; X )=W

P(Y,]) = P,(X,])(l_Kl])

and

where, the amount of “pruning” is

Kij - EPZ'(Xik lej)

k:ing >n;

= What we do now depends on the values of
the K....
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m Consider the set of codewords
S={x; : K; > 1/2 for some i}

m Either this is a “substantially” sized
subcode or it isn't.

m |le, either we had to do a lot of pruning
or we didn’t have to do a lot of pruning.




If § was not substantially sized...

= Just remove codewords in S from the code!
= Then in the remaining code we have for all ¥,
P/(Y,) = P(X;)/2
m Hence, modulo constant factors, the average
error probability satisfies

P (Cp) = Aw)uw)
= where A(w)= P/(X,;)




If § was substantially sized...

m Consider

where

m Consider a codeword X; such that Kl.j>1/2. Then there
exists an /’ such that

B,(x)> 1/(2nB(w,"))

= The upshot of S being substantial is that we discover a
nuisance level [, such that

P,(x) > A(w)/B(w,l,)

]
l and a substantial number of codewords have the

B, (x)> 1/B(w.l,)



If § was substantially sized...

m Consider

Kij = EPi(Xik lXij) = S[ EB(W,Z))

where king >n,, 1=0\ kiny >y od (x ) x )=

m Consider a codeword X; such that Kl.j>1/2. Then there
exists an /’ such that

B,(x)> 1/(2nB(w,"))

= The upshot of S being substantial is that we discover a
nuisance level [, such that

P,(x) > A(w)/B(w,l,)

]
l and a substantial number of codewords have the

B, (x)> 1/B(w.l,)
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If § was substantially sized...

m Consider [

K; = EPi(Xik 1 X,;) = E
where kg >y 1=0

B(w,l) = P(X; | X)) where d(x,,x ;) =d(x,,x,)=w, d(x ;,x,) =1

E B(w, l))

king >n;.d(x;.x;)=1

m Consider a codeword X; such that Kl.j>1/2. Then there
exists an /’ such that

B,,(xj)> 1/2nBw,[l’))
= The upshot of S being substantial is that we discover a
nuisance level [, such that
P,(x) = A(w)/B(w,1,)
and a substantial number of codewords have the
B, (x)> I/B(w,l})



m A priori we don’'t know whether we required a
lot or a little pruning. We therefore take the
weaker of the two bounds:

m But if there existed a nuisance level /, then
we know that for a substantial number
codewords such that

m Hence we can repeat the process with this
new bound on the distribution.
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m A priori we don’'t know whether we required a
lot or a little pruning. We therefore take the
weaker of the two bounds:

P (C,p)= mm[A(w)‘u(W), Bf(\v(vwlf ]

m But if there existed a nuisance level /, then
we know that for a substantial number
codewords such that

B, (x) = :

B(w,l))

m Hence we can repeat the process with this
new bound on the distribution.




Our Bound

m Continuing in this way we eventually get

P.(C,p)= min[A(w)M(W) A(D) ]

> B(w,l)

where 0 </<=w=<0,,n

®m Minimizing over / and w gives us our
final bound.




Random Linear Codes

m It can be shown that, with high probabillity, the
weight distribution of a random linear code
converges to

B, =exp[n(R+h(w)-1)]
m Using this instead of Litsyn’s expression u

leads us to believe that the expurgation
bound

E(R,p)>-06(p)/2 log 2p(1-p)
N is tight for a random linear code for very low

l rates.






