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Farach, Kannan & Warnow ’95:
Exact construction of best-fit ultrametric under L
Agarwala, Bafna, Farach, Paterson & Thorup "99:
3 approximation of best-fit tree under L
Ma,Wang & Zhang '99:
n'’P approximation of best-fit non-contracting ultrametric under L

Dhamdhere ’04:

O(log'’? n) approximation of best-fit line metric under L,




Our Results

® Algorithm #1:

Lp: O(k log n)!’P approximation to best-fit tree
where k is the number of distinct distances in D

Lrei: O(log? n) approximation to best-fit ultrametric

® Algorithm #2;

Lp: n'P approximation to best-fit tree
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Restricting Splitting Distances

® Original distances are d;<d;< ... < dk
® | emma:

a) There exists a best-fit (under L) ultrametric
whose distances are a subset of {d|,d5,..., dk}

b) There exists an ultrametric whose distances are a
subset of {d/,d>,..., di} whose cost-of-fit is at most
twice optimal (under Lp).

c)There exists an ultrametric with O(log n)
distances whose cost-of-fit is at most twice optimal
(under Lie). [Assuming dik/d; is polynomial in n.]
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Algorithm Outline

® Construct top partition G = Gy, G2, G3, ...
Set length of inter-cluster edges to d
All other lengths will be set to < dk.|

® Construct trees for Gy, Gy, G;, ...






G | Gz G3




e

G/ Tlijl=dx G? G3




TTij]1<dk-1

N

G | Gz G3




G | Gz G3




G | Gz G3




Correlation Clustering

® |nput:Weighted (positive and negative) graph
e Output:A partitioning of nodes

® Goal: Minimize,

Z (Jwe] if e is split) + Z (|we| if e is not split)

e:we >0 e:we<0
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Best-Fit Ultrametric Instance:

20 . I

L] 20 |

|7 14
20I8 20

= 20 |

Possible Splitting Distances: 20, 18, 17, 14, | |

Top level clustering:
Increase some lengths to 20 and decrease some length 20 edges to 18
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Analysis (Outline)

Let OPT be cost of fit of best-fit tree (under L))
In each of k steps:
Cost of optimal clustering is < OPT
Cost of our clustering is < O(log n) OPT
Total cost of clusterings = L/(T, D) < O(k log n) OPT

For L, : seek to minimize Ly (T, D)
Similar analysis yields an O(log? n) approx under Ly
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Algorithm

® Ford=dktod::
Consider reducing maximum length to d and forcing a partition
“Push-down-cost(d)” - cost of reducing each length 2 d to d
“Cutting-cost(d)” - cost of increasing cut edge’s length to d

® Split at d such that Push-down-cost(d)+ Cutting-cost(d)

® Recurse on each side of the cut
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Analysis (Outline)

® There are at most n cuts to be found

® For each cut;

ming Push-down-cost(d) + Cutting-cost(d) < OPT
e Total Cost = Ly(T,D)
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® [heorem [Agarwala, Bafna, Farach, Paterson, Thorup "99]:

An a-approx to the optimal “a-restricted ultrametric” (under
Ly) can be used to construct an 3x-approx to the optimal
tree metric under (under Lp).

® Definition:An a-restricted ultrametric satisfies:
For all i, Ta,i] = 2|
For all ij, 2p 2 T[i,j] 22 (4-min (D[a,i], D[a,j]))
where p=max; DJa,i ]
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Late Breaking News: Upcoming FOCS paper byAilon
and Charikar has improved results!
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