
Approximating the Best–Fit
Tree Under Lp Norms

Boulos Harb, Sampath Kannan and Andrew McGregor, UPenn

The Problem(s)

• Input: Distance Matrix D[i,j] on n items

• Output: Tree Metri c T[i,j]

• Goal: Minimize the Lp cost-of-fit

Lp(D, T) =





∑

i,j

|D[i, j] − T [i, j]|p





1/p

Tree Metric

Lp

fh,ε(x, y) = εEx,y

∫ tε

0
Lx,yε(εu)ϕ(x) du

= h

∫
Lx,zϕ(x)ρx(dz)

+ h

[
1
tε

(
Ey

∫ tε

0
Lx,yx(s)ϕ(x) ds − tε

∫
Lx,zϕ(x)ρx(dz)

)

+
1
tε

(
Ey

∫ tε

0
Lx,yx(s)ϕ(x) ds − Ex,y

∫ tε

0
Lx,yε(εs)ϕ(x) ds

)]

= hL̂xϕ(x) + hθε(x, y)
(64)

The Problem(s)

• Input: Distance Matrix D[i,j] on n items

• Output: Tree Metri c T[i,j]

• Goal: Minimize the Lp cost-of-fit

Lp(D, T) =





∑

i,j

|D[i, j] − T [i, j]|p





1/p

Ultrametric

Lp

fh,ε(x, y) = εEx,y

∫ tε

0
Lx,yε(εu)ϕ(x) du

= h

∫
Lx,zϕ(x)ρx(dz)

+ h

[
1
tε

(
Ey

∫ tε

0
Lx,yx(s)ϕ(x) ds − tε

∫
Lx,zϕ(x)ρx(dz)

)

+
1
tε

(
Ey

∫ tε

0
Lx,yx(s)ϕ(x) ds − Ex,y

∫ tε

0
Lx,yε(εs)ϕ(x) ds

)]

= hL̂xϕ(x) + hθε(x, y)
(64)

The Problem(s)

• Input: Distance Matrix D[i,j] on n items

• Output: Tree Metri c T[i,j]

• Goal: Minimize the Lp cost-of-fit

Ultrametric

Lrel

fh,ε(x, y) = εEx,y

∫ tε

0
Lx,yε(εu)ϕ(x) du

= h

∫
Lx,zϕ(x)ρx(dz)

+ h

[
1
tε

(
Ey

∫ tε

0
Lx,yx(s)ϕ(x) ds − tε

∫
Lx,zϕ(x)ρx(dz)

)

+
1
tε

(
Ey

∫ tε

0
Lx,yx(s)ϕ(x) ds − Ex,y

∫ tε

0
Lx,yε(εs)ϕ(x) ds

)]

= hL̂xϕ(x) + hθε(x, y)
(64)

Lrel(D, T) =
∑

i,j

max

{

D[i, j]

T [i, j]
,
T [i, j]

D[i, j]

}

Tree Metric & Ultrametrics

• Tree Metric: Distances between the leaves of a weighted tree.

• Ultrametric: Distance between the leaves of a rooted
weighted tree in which all leaves are equidistance from root.

∀x, y, z ∈ [n] T [x, y] ≤ max{T [x, z], T [z, y]}

∀w, x, y, z ∈ [n] T [w, x] + T [y, z] ≤ max{T [w, y] + T [x, z], T [w, z] + T [x, y]}

Tree Metric & Ultrametrics

• Tree Metric: Distances between the leaves of a weighted tree.

• Ultrametric: Distance between the leaves of a rooted
weighted tree in which all leaves are equidistance from root.

22 1 1
1 2 2 3 3

1

4 3
3

32

∀x, y, z ∈ [n] T [x, y] ≤ max{T [x, z], T [z, y]}

∀w, x, y, z ∈ [n] T [w, x] + T [y, z] ≤ max{T [w, y] + T [x, z], T [w, z] + T [x, y]}

Biological Motivation

• View ultrametric as an evolutionary tree

• D[i,j] is estimate of time since species i and j diverged

• Goal: Reconcile contradictory estimates

Biological Motivation

• View ultrametric as an evolutionary tree

• D[i,j] is estimate of time since species i and j diverged

• Goal: Reconcile contradictory estimates

Theorist Computational GeometerShell Fish ChimpOrangutanBeeFish WaspSpider

Previous Work

Previous Work

• Farach, Kannan & Warnow ’95:

Exact construction of best-fit ultrametric under L∞

Previous Work

• Farach, Kannan & Warnow ’95:

Exact construction of best-fit ultrametric under L∞

• Agarwala, Bafna, Farach, Paterson & Thorup ’99:

3 approximation of best-fit tree under L∞

Previous Work

• Farach, Kannan & Warnow ’95:

Exact construction of best-fit ultrametric under L∞

• Agarwala, Bafna, Farach, Paterson & Thorup ’99:

3 approximation of best-fit tree under L∞

• Ma, Wang & Zhang ’99:

n1/p approximation of best-fit non-contracting ultrametric under Lp

Previous Work

• Farach, Kannan & Warnow ’95:

Exact construction of best-fit ultrametric under L∞

• Agarwala, Bafna, Farach, Paterson & Thorup ’99:

3 approximation of best-fit tree under L∞

• Ma, Wang & Zhang ’99:

n1/p approximation of best-fit non-contracting ultrametric under Lp

• Dhamdhere ’04:

O(log1/p n) approximation of best-fit line metric under Lp

Our Results

• Algorithm #1:

Lp: O(k log n)1/p approximation to best-fit tree
where k is the number of distinct distances in D

Lrel: O(log2 n) approximation to best-fit ultrametric

• Algorithm #2:

Lp: n1/p approximation to best-fit tree

Algorithm #1

Restricting Splitting Distances

Restricting Splitting Distances

• Original distances are d1<d2< ... < dk

Restricting Splitting Distances

• Original distances are d1<d2< ... < dk

• Lemma:

Restricting Splitting Distances

• Original distances are d1<d2< ... < dk

• Lemma:
a) There exists a best-fit (under L1) ultrametric
whose distances are a subset of {d1,d2,... , dk}

Restricting Splitting Distances

• Original distances are d1<d2< ... < dk

• Lemma:
a) There exists a best-fit (under L1) ultrametric
whose distances are a subset of {d1,d2,... , dk}
b) There exists an ultrametric whose distances are a
subset of {d1,d2,... , dk} whose cost-of-fit is at most
twice optimal (under Lp).

Restricting Splitting Distances

• Original distances are d1<d2< ... < dk

• Lemma:
a) There exists a best-fit (under L1) ultrametric
whose distances are a subset of {d1,d2,... , dk}
b) There exists an ultrametric whose distances are a
subset of {d1,d2,... , dk} whose cost-of-fit is at most
twice optimal (under Lp).
c)There exists an ultrametric with O(log n)
distances whose cost-of-fit is at most twice optimal
(under Lrel). [Assuming dk/d1 is polynomial in n.]

d1

d2

d3

d4

d1

d2

d3

d4

d1

d2

d3

d4

“Splitting Distance” of internal node v =
Distance between leaves of subtree rooted a v

d1

d2

d3

d4

“Splitting Distance” of internal node v =
Distance between leaves of subtree rooted a v

d1

d2

d3

d4

“Splitting Distance” of internal node v =
Distance between leaves of subtree rooted a v

• Construct top partition G → G1, G2, G3, ...

Set length of inter-cluster edges to dk

All other lengths will be set to ≤ dk-1

• Construct trees for G1, G2, G3, ...

Algorithm Outline

G1 G2 G3

G1 G2 G3
T[i,j]=dk

G1 G2 G3

T[i,j]≤dk-1

G1 G2 G3

G1 G2 G3

• Input: Weighted (positive and negative) graph

• Output: A partitioning of nodes

• Goal: Minimize,

• O(log n) approximation [Charikar, Guruswami and Wirth ’03]

Correlation Clustering

∑

e:we>0

(|we| if e is split) +
∑

e:we<0

(|we| if e is not split)

• Input: Weighted (positive and negative) graph

• Output: A partitioning of nodes

• Goal: Minimize,

• O(log n) approximation [Charikar, Guruswami and Wirth ’03]

Correlation Clustering

∑

e:we>0

(|we| if e is split) +
∑

e:we<0

(|we| if e is not split)

-5
+2

+1
+3

+1

-1

-7

-5

+2

• Input: Weighted (positive and negative) graph

• Output: A partitioning of nodes

• Goal: Minimize,

• O(log n) approximation [Charikar, Guruswami and Wirth ’03]

Correlation Clustering

∑

e:we>0

(|we| if e is split) +
∑

e:we<0

(|we| if e is not split)

-5
+2

+1
+3

+1

-1

-7

-5

+2

Best-Fit Ultrametric Instance:

Using Correlation Clustering

20

11

1417

20

18 20
20 18

20

Best-Fit Ultrametric Instance:

Using Correlation Clustering

20

11

1417

20

18 20
20 18

20

Possible Splitting Distances: 20, 18, 17, 14, 11

Best-Fit Ultrametric Instance:

Using Correlation Clustering

20

11

1417

20

18 20
20 18

20

Possible Splitting Distances: 20, 18, 17, 14, 11

Top level clustering:
Increase some lengths to 20 and decrease some length 20 edges to 18

Best-Fit Ultrametric Instance:

Using Correlation Clustering

20

11

1417

20

18 20
20 18

20

-2

+9

+6+3

-2

+2 -2
-2 +2

-2

Correlation Clustering Instance:

Best-Fit Ultrametric Instance:

Using Correlation Clustering

20

11

1417

20

18 20
20 18

20

-2

+9

+6+3

-2

+2 -2
-2 +2

-2

Correlation Clustering Instance:

Best-Fit Ultrametric Instance:

Using Correlation Clustering

20

11

1417

20

18 20
20 18

20

-2

+9

+6+3

-2

+2 -2
-2 +2

-2

Correlation Clustering Instance:

Best-Fit Ultrametric Instance:

Using Correlation Clustering

20

11

1417

20

20
20 18

20

-2

+9

+6+3

-2

+2 -2
-2 +2

-2

Correlation Clustering Instance:

20

Best-Fit Ultrametric Instance:

Using Correlation Clustering

20

11

1417

20

20
20 18

20

-2

+9

+6+3

-2

+2 -2
-2 +2

-2

Correlation Clustering Instance:

20

Cost of length changes = Cost of disagreements during clustering

Best-Fit Ultrametric Instance:

Using Correlation Clustering

20

11

1417

20

20
20 18

20

-2

+9

+6+3

-2

+2 -2
-2 +2

-2

Correlation Clustering Instance:

20

Cost of length changes = Cost of disagreements during clustering

17

11

14

Recurse:

18

Best-Fit Ultrametric Instance:

Using Correlation Clustering

20

11

1417

20

20
20 18

20

-2

+9

+6+3

-2

+2 -2
-2 +2

-2

Correlation Clustering Instance:

20

Cost of length changes = Cost of disagreements during clustering

17

11

14

Recurse:

14

Analysis (Outline)

Analysis (Outline)

• Let OPT be cost of fit of best-fit tree (under L1)

Analysis (Outline)

• Let OPT be cost of fit of best-fit tree (under L1)

• In each of k steps:
Cost of optimal clustering is ≤ OPT
Cost of our clustering is ≤ O(log n) OPT

Analysis (Outline)

• Let OPT be cost of fit of best-fit tree (under L1)

• In each of k steps:
Cost of optimal clustering is ≤ OPT
Cost of our clustering is ≤ O(log n) OPT

• Total cost of clusterings = L1(T, D) ≤ O(k log n) OPT

Analysis (Outline)

• Let OPT be cost of fit of best-fit tree (under L1)

• In each of k steps:
Cost of optimal clustering is ≤ OPT
Cost of our clustering is ≤ O(log n) OPT

• Total cost of clusterings = L1(T, D) ≤ O(k log n) OPT

Analysis (Outline)

• Let OPT be cost of fit of best-fit tree (under L1)

• In each of k steps:
Cost of optimal clustering is ≤ OPT
Cost of our clustering is ≤ O(log n) OPT

• Total cost of clusterings = L1(T, D) ≤ O(k log n) OPT

• For Lp : seek to minimize Lpp (T, D)

Analysis (Outline)

• Let OPT be cost of fit of best-fit tree (under L1)

• In each of k steps:
Cost of optimal clustering is ≤ OPT
Cost of our clustering is ≤ O(log n) OPT

• Total cost of clusterings = L1(T, D) ≤ O(k log n) OPT

• For Lp : seek to minimize Lpp (T, D)

• Similar analysis yields an O(log2 n) approx under Lrel

Algorithm #2

Algorithm

• For d = dk to d1:
Consider reducing maximum length to d and forcing a partition
“Push-down-cost(d)” - cost of reducing each length ≥ d to d
“Cutting-cost(d)” - cost of increasing cut edge’s length to d

• Split at d such that Push-down-cost(d)+ Cutting-cost(d)

• Recurse on each side of the cut

Best-Fit Ultrametric Instance:

Using Minimum Cuts

19

11

1417

20

18 19
19 18

19

1

9

63

0

2 1
1 2

1

Minimum Cut Instance:

Split at 20:
Push-down cost = 0, Cut-cost = 3

Best-Fit Ultrametric Instance:

Using Minimum Cuts

19

11

1417

20

18 19
19 18

19

1

9

63

0

2 1
1 2

1

Minimum Cut Instance:

Split at 20:
Push-down cost = 0, Cut-cost = 3

Best-Fit Ultrametric Instance:

Using Minimum Cuts

19

11

1417

20

18 19
19 18

19

1

9

63

0

2 1
1 2

1

Minimum Cut Instance:

Split at 20:
Push-down cost = 0, Cut-cost = 3

Best-Fit Ultrametric Instance:

Using Minimum Cuts

19

11

1417

20

18 19
19 18

19

0

8

52

0

1 0
0 1

0

Minimum Cut Instance:

Split at 20:
Push-down cost = 0, Cut-cost = 3

Split at 19:
Push-down cost = 1, Cut-cost =1

Best-Fit Ultrametric Instance:

Using Minimum Cuts

19

11

1417

20

18 19
19 18

19

0

8

52

0

1 0
0 1

0

Minimum Cut Instance:

Split at 20:
Push-down cost = 0, Cut-cost = 3

Split at 19:
Push-down cost = 1, Cut-cost =1

Best-Fit Ultrametric Instance:

Using Minimum Cuts

19

11

1417

20

18 19
19 18

19

0

8

52

0

1 0
0 1

0

Minimum Cut Instance:

Split at 20:
Push-down cost = 0, Cut-cost = 3

Split at 19:
Push-down cost = 1, Cut-cost =1

Best-Fit Ultrametric Instance:

Using Minimum Cuts

19

11

1417

20

18 19
19 18

19

0

7

41

0

1 0
0 0

0

Minimum Cut Instance:

Split at 20:
Push-down cost = 0, Cut-cost = 3

Split at 19:
Push-down cost = 1, Cut-cost =1

Split at 18:
Push-down cost = 5, Cut-cost = 0

Best-Fit Ultrametric Instance:

Using Minimum Cuts

19

11

1417

20

18 19
19 18

19

0

7

41

0

1 0
0 0

0

Minimum Cut Instance:

Split at 20:
Push-down cost = 0, Cut-cost = 3

Split at 19:
Push-down cost = 1, Cut-cost =1

Split at 18:
Push-down cost = 5, Cut-cost = 0

Best-Fit Ultrametric Instance:

Using Minimum Cuts

19

11

1417

20

18 19
19 18

19

0

7

41

0

1 0
0 0

0

Minimum Cut Instance:

Split at 20:
Push-down cost = 0, Cut-cost = 3

Split at 19:
Push-down cost = 1, Cut-cost =1

Split at 18:
Push-down cost = 5, Cut-cost = 0

d1

dk-2

dk-1

dk

:
:

d1

dk-2

dk-1

dk

:
:

d1

dk-2

dk-1

dk

:
:

d1

dk-2

dk-1

dk

:
:

d1

dk-2

dk-1

dk

:
:

d1

dk-2

dk-1

dk

:
:

d1

dk-2

dk-1

dk

:
:

d1

dk-2

dk-1

dk

:
:

d1

dk-2

dk-1

dk

:
:

d1

dk-2

dk-1

dk

:
:

d1

dk-2

dk-1

dk

:
:

T[i,j]=dk-1

d1

dk-2

dk-1

dk

:
:

d1

dk-2

dk-1

dk

:
:

d1

dk-2

dk-1

dk

:
:

• There are at most n cuts to be found

• For each cut:

mind Push-down-cost(d) + Cutting-cost(d) ≤ OPT

• Total Cost = Lp(T,D)

Analysis (Outline)

Extending to Trees

Extending to Trees

• Theorem [Agarwala, Bafna, Farach, Paterson, Thorup ’99]:
An α-approx to the optimal “a-restricted ultrametric” (under
Lp) can be used to construct an 3α-approx to the optimal
tree metric under (under Lp).

Extending to Trees

• Theorem [Agarwala, Bafna, Farach, Paterson, Thorup ’99]:
An α-approx to the optimal “a-restricted ultrametric” (under
Lp) can be used to construct an 3α-approx to the optimal
tree metric under (under Lp).

• Definition: An a-restricted ultrametric satisfies:

For all i, T[a,i] = 2μ
For all i,j, 2μ ≥ T[i,j] ≥2 (μ-min (D[a,i], D[a,j]))
where μ=maxi D[a,i]

Conclusions

• Best-fit Tree or Ultrametric:

Lp: O(min(n, k log n))1/p approximation where k is the
number of distinct distances in D

Lrel: O(log2 n) approximation

• Best-fit Tree:

Lp: n1/p approximation

Conclusions

• Best-fit Tree or Ultrametric:

Lp: O(min(n, k log n))1/p approximation where k is the
number of distinct distances in D

Lrel: O(log2 n) approximation

• Best-fit Tree:

Lp: n1/p approximation

Late Breaking News: Upcoming FOCS paper byAilon
and Charikar has improved results!

Thanks.

