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The Problem(s)

• Input: Distance Matrix D[i,j] on n items

• Output: Tree Metri c T[i,j]  

• Goal: Minimize the Lp  cost-of-fit

Lp(D, T ) =





∑

i,j

|D[i, j] − T [i, j]|p





1/p

Tree Metric

Lp

fh,ε(x, y) = εEx,y

∫ tε

0
Lx,yε(εu)ϕ(x) du

= h

∫
Lx,zϕ(x)ρx(dz)

+ h

[
1
tε

(
Ey

∫ tε

0
Lx,yx(s)ϕ(x) ds − tε

∫
Lx,zϕ(x)ρx(dz)

)

+
1
tε

(
Ey

∫ tε

0
Lx,yx(s)ϕ(x) ds − Ex,y

∫ tε

0
Lx,yε(εs)ϕ(x) ds

)]

= hL̂xϕ(x) + hθε(x, y)
(64)
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Lrel(D, T ) =
∑

i,j

max

{

D[i, j]

T [i, j]
,
T [i, j]

D[i, j]

}



Tree Metric & Ultrametrics

• Tree Metric: Distances between the leaves of a weighted tree.

• Ultrametric: Distance between the leaves of a rooted 
weighted tree in which all leaves are equidistance from root.

∀x, y, z ∈ [n] T [x, y] ≤ max{T [x, z], T [z, y]}

∀w, x, y, z ∈ [n] T [w, x] + T [y, z] ≤ max{T [w, y] + T [x, z], T [w, z] + T [x, y]}
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Biological Motivation

• View ultrametric as an evolutionary tree

• D[i,j] is estimate of time since species i and j diverged

• Goal: Reconcile contradictory estimates
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Exact construction of best-fit ultrametric under L∞

• Agarwala, Bafna, Farach, Paterson & Thorup ’99:

3 approximation of best-fit tree under L∞

• Ma, Wang & Zhang ’99:

n1/p approximation of best-fit non-contracting ultrametric under Lp 

• Dhamdhere ’04:

O(log1/p n) approximation of best-fit line metric under Lp



Our Results

• Algorithm #1: 

Lp: O(k log n)1/p approximation to best-fit tree 
where k is the number of distinct distances in D

Lrel: O(log2 n) approximation to best-fit ultrametric

• Algorithm #2: 

Lp: n1/p approximation to best-fit tree



Algorithm #1
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Restricting Splitting Distances

• Original distances are d1<d2< ... < dk

• Lemma: 
a) There exists a best-fit (under L1) ultrametric 
whose distances are a subset of {d1,d2,... , dk}
b) There exists an ultrametric whose distances are a 
subset of {d1,d2,... , dk} whose cost-of-fit is at most 
twice optimal (under Lp).
c)There exists an ultrametric with O(log n) 
distances whose cost-of-fit is at most twice optimal 
(under Lrel). [Assuming dk/d1 is polynomial in n.]
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• Construct top partition G → G1, G2, G3, ...

Set length of inter-cluster edges to dk

All other lengths will be set to ≤ dk-1

• Construct trees for G1, G2, G3, ...

Algorithm Outline
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T[i,j]=dk



G1 G2 G3

T[i,j]≤dk-1
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• Input: Weighted (positive and negative) graph 

• Output: A partitioning of nodes

• Goal: Minimize,

• O(log n) approximation [Charikar, Guruswami and Wirth ’03]

Correlation Clustering

∑
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∑
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(|we| if e is not split)



• Input: Weighted (positive and negative) graph 

• Output: A partitioning of nodes

• Goal: Minimize,

• O(log n) approximation [Charikar, Guruswami and Wirth ’03]

Correlation Clustering

∑

e:we>0

(|we| if e is split) +
∑

e:we<0

(|we| if e is not split)

-5
+2

+1
+3

+1

-1

-7

-5

+2



• Input: Weighted (positive and negative) graph 

• Output: A partitioning of nodes

• Goal: Minimize,

• O(log n) approximation [Charikar, Guruswami and Wirth ’03]

Correlation Clustering

∑

e:we>0

(|we| if e is split) +
∑

e:we<0

(|we| if e is not split)

-5
+2

+1
+3

+1

-1

-7

-5

+2



Best-Fit Ultrametric Instance:

Using Correlation Clustering

20

11

1417

20

18 20
20 18

20



Best-Fit Ultrametric Instance:

Using Correlation Clustering

20

11

1417

20

18 20
20 18

20

Possible Splitting Distances: 20, 18, 17, 14, 11



Best-Fit Ultrametric Instance:

Using Correlation Clustering

20

11

1417

20

18 20
20 18

20

Possible Splitting Distances: 20, 18, 17, 14, 11

Top level clustering: 
Increase some lengths to 20 and decrease some length 20 edges to 18
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Analysis (Outline)

• Let OPT be cost of fit of best-fit tree (under L1)

• In each of k steps:
Cost of optimal clustering is ≤ OPT
Cost of our clustering is ≤ O(log n) OPT

• Total cost of clusterings = L1(T, D) ≤ O(k log n) OPT

• For Lp : seek to minimize Lpp (T, D)  

• Similar analysis yields an O(log2 n) approx under Lrel
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Algorithm

• For d = dk to d1:
Consider reducing maximum length to d and forcing a partition
“Push-down-cost(d)” - cost of reducing each length ≥ d  to d
“Cutting-cost(d)” - cost of increasing cut edge’s length to d

• Split at d such that Push-down-cost(d)+ Cutting-cost(d)

• Recurse on each side of the cut
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• There are at most n cuts to be found 

• For each cut:

mind Push-down-cost(d) + Cutting-cost(d) ≤ OPT 

• Total Cost = Lp(T,D)

Analysis (Outline)
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Extending to Trees

• Theorem [Agarwala, Bafna, Farach, Paterson, Thorup ’99]: 
An α-approx to the optimal “a-restricted ultrametric” (under 
Lp) can be used to construct an 3α-approx to the optimal 
tree metric under (under Lp). 

• Definition: An a-restricted ultrametric satisfies:

For all i, T[a,i] = 2μ
For all i,j, 2μ ≥ T[i,j] ≥2 (μ-min (D[a,i], D[a,j]))
where μ=maxi D[a,i ]



Conclusions

• Best-fit Tree or Ultrametric: 

Lp: O(min(n, k log n))1/p approximation where k is the 
number of distinct distances in D

Lrel: O(log2 n) approximation 

• Best-fit Tree: 

Lp: n1/p approximation 



Conclusions

• Best-fit Tree or Ultrametric: 

Lp: O(min(n, k log n))1/p approximation where k is the 
number of distinct distances in D

Lrel: O(log2 n) approximation 

• Best-fit Tree: 

Lp: n1/p approximation 

Late Breaking News: Upcoming FOCS paper byAilon 
and Charikar has improved results!



Thanks.


