Finding Graph Matchings in
Data Streams

Andrew McGregor,

The Streaming Model

The Streaming Model

® Classic Problem: Median Finding [Munro & Paterson]

The Streaming Model

® Classic Problem: Median Finding [Munro & Paterson]
® Parameters of the Model:
® How much memory!?

® How many passes!

® How much computation time between data elements?

The Streaming Model

® Classic Problem: Median Finding [Munro & Paterson]
® Parameters of the Model:
® How much memory!?

® How many passes!

® How much computation time between data elements?

® Statistics, Norms and Histograms...

The Streaming Model

Classic Problem: Median Finding [Munro & Paterson]
Parameters of the Model:

® How much memory!?

® How many passes!

® How much computation time between data elements?
Statistics, Norms and Histograms...

What about graph problems?

Graph Streaming

Instance of graph problem G = (V, E)
Edges arrive in arbitrary order:ej, e €3, ..., eém

Memory limit O(n polylog n) where n = |V|

Spanner Construction, Bipartite Matching, Lower Bounds
[Feigenbaum, Kannan, M., Suri, Zhang ’'04 &’05]

“Annotation” Stream Model [Aggarwal, Datar, Rajagopalan,
Ruhl 04, Demetrescu, Finocchi, Ribichini ’05]

Matching

® A matching - set of edges with no two edges sharing an end point.
® Problems:

Find the matching of maximum cardinality (MCM)

Find the matching of maximum weight (MVWM)
® (Non-streamable) Algorithms:

Exact polytime algorithm for both [Gabow ’90]

Linear-time | +€ approx for MCM [Kalantari & Shokoufandeh ’95]
Linear-time 3/2+¢ approx for MVWM [Drake & Hougardy '03]

Results

® Unweighted Matchings:

| +€ approximation in constant passes.
® Weighted Matchings:

34272 approximation in single pass.

2+€ approximation in constant passes.

Unweighted Matchings.

An Easy 2 Approximation

® Greedy Algorithm:
Store an edge if it is not adjacent to stored edge

® Construct a maximal matching - 2 Approximation

Augmenting Paths

Augmenting Paths

Augmenting Paths

\ Matching M

Augmenting Paths

® Augmenting Path: simple path starting and ending

at unmatched nodes such that edges alternate
between M and EWM.

Augmenting Paths

® Augmenting Path: simple path starting and ending

at unmatched nodes such that edges alternate
between M and EWM.

Augmenting Paths

® Augmenting Path: simple path starting and ending

at unmatched nodes such that edges alternate
between M and EWM.

Augmenting Paths

Consider augmenting paths defined by taking the
symmetric difference between current (maximal)
matching and optimum matching.

Let Pi be the number of length i augmenting paths

M|+ Y P, >OPT(1-1/k)

1<i<k

Algorithm Outline

. Find a maximal matching
. For | i<k
Find a set, §;, of length i augmenting paths
. Augment current matching with S; where j = argmax §;

. Repeat from 2 unless $§; is small

Projecting to Layered Graphs

Projecting to Layered Graphs

Projecting to Layered Graphs

Projecting to Layered Graphs

Projecting to Layered Graphs

Projecting to Layered Graphs

Projecting to Layered Graphs

Projecting to Layered Graphs

(Vg
i e
ol
(q°)
e
O
.,
0
G
4
S n\ =
=
O
)
o0
=
=
@
o
O
e
all

(Vg
i e
ol
(q°)
e
O
.,
0
G
4
S n\ =
=
O
)
o0
=
=
@
o
O
e
all

(Vg
i e
ol
(q°)
e
O
.,
0
G
4
S n\ =
=
O
)
o0
=
=
@
o
O
O
all

(Vg
&l
ol
Q]
e
O
o
0
Rk
<
(g
=
O
)
o0
=
)
O
S
O
G
ol

Lemma: If there are P; length i augmenting paths in G
then we expect P; / 2(2i)' node disjoint paths in L(G).

Lemma: If there are P; length i augmenting paths in G
then we expect P; / 2(2i)' node disjoint paths in L(G).

Lemma: A maximal set of node disjoint paths in L(G),
is an i+2 approximation to the maximum set of node
disjoint paths in L(G).

Lemma: If there are P; length i augmenting paths in G
then we expect P; / 2(2i)' node disjoint paths in L(G).

Lemma: A maximal set of node disjoint paths in L(G),

is an i+2 approximation to the maximum set of node
disjoint paths in L(G).

To find a constant fraction of length i augmenting
paths P;, create layered graph and greedily find node
disjoint paths.

Limiting Backtracking

Limiting Backtracking

W

Limiting Backtracking

W

Limiting Backtracking

Limiting Backtracking

Limiting Backtracking

® Solution: If number of paths being grown falls below threshold
on then delete and backtrack.

Good: Only backtrack a constant number of times
Bad: Don’t find a maximal set of node disjoint paths

® [n a constant number of passes, we find a constant fraction of
length i node disjoint paths/augmenting paths.

Weighted Matching.

Single Pass 3+2V2 Approximation

Single Pass 3+2V2 Approximation

® At all times we store some matching M

Single Pass 3+2V2 Approximation

® At all times we store some matching M

® For each edge e:
Compute total weight W of edges e/, e; in M incident to e
If w(e) > (I+y) Wthen M « M U {e} \ {e,e2}

Single Pass 3+2V2 Approximation

® At all times we store some matching M

® For each edge e:
Compute total weight W of edges e/, e; in M incident to e
If w(e) > (I+y) Wthen M « M U {e} \ {e,e2}

® Wesayeis* ” and “ ” e; and ez

Proof (Sketch)

Proof (Sketch)

® We say an edge e is a if it is born and was never killed.

Proof (Sketch)

® We say an edge e is a if it is born and was never killed.

® Let S = all survivors.

Proof (Sketch)

® We say an edge e is a if it is born and was never killed.

® Let S = all survivors.

® For survivor e we define the T(e) to be the
transitive closure of edges killed by e.

Proof (Sketch)

We say an edge e is a if it is born and was never killed.

Let S = all survivors.

For survivor e we define the T(e) to be the
transitive closure of edges killed by e.

Claim |:w(T(e)) < w(e)ly

Proof (Sketch)

We say an edge e is a if it is born and was never killed.
Let S = all survivors.

For survivor e we define the T(e) to be the
transitive closure of edges killed by e.

Claim |:w(T(e)) < w(e)ly

Claim 2: Can charge the weights of edges in OPT such that:
® At most (I+Y) w(T(e)) is charged to T(e)

® At most 2(1+ Y) w(e) is charged to e

Proof (Sketch)

We say an edge e is a if it is born and was never killed.

Let S = all survivors.

For survivor e we define the T(e) to be the
transitive closure of edges killed by e.

Claim |:w(T(e)) < w(e)ly

Claim 2: Can charge the weights of edges in OPT such that:

® At most (I+Y) w(T(e)) is charged to T(e)

® At most 2(1+ Y) w(e) is charged to e

Hence w(OPT) < (1+ Y) w(T(S)) + 2(1+ Y) w(S)< (3+2V2) w(S)

Multi-pass 2+€ Approximation

Multi-pass 2+€ Approximation

® First pass: find a constant approximate M,

Multi-pass 2+€ Approximation

® First pass: find a constant approximate M,

® Subsequent passes: create M; from M..; by running the
previous algorithm with y(€)

Multi-pass 2+€ Approximation

® First pass: find a constant approximate M,

® Subsequent passes: create M; from M..; by running the
previous algorithm with y(€)

® Repeat if [Mi|/ |Mi.i|> 1+K(€E)

Multi-pass 2+€ Approximation

First pass: find a constant approximate M,

Subsequent passes: create M; from M., by running the
previous algorithm with y(€)

Repeat if |Mi|/ |Mii|> 1+K(€)

Claim |: A constant number of passes suffices

Multi-pass 2+€ Approximation

First pass: find a constant approximate M,

Subsequent passes: create M; from M., by running the
previous algorithm with y(€)

Repeat if |Mi|/ |Mii|> 1+K(€)
Claim |: A constant number of passes suffices

Claim 2:When [Mi|/ |Mii| £ 1+K we have a 2+€ approx.

Conclusions

® Unweighted Matchings:
| +€ approximation in constant passes.

® Weighted Matchings:

34272 approximation in single pass.

2+€ approximation in constant passes.

Thanks

