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The Streaming Model

Classic Problem: Median Finding [Munro & Paterson]
Parameters of the Model:

® How much memory!?

® How many passes!

® How much computation time between data elements?
Statistics, Norms and Histograms...

What about graph problems?




Graph Streaming

Instance of graph problem G = (V, E)
Edges arrive in arbitrary order:ej, e €3, ..., eém

Memory limit O(n polylog n) where n = |V|

Spanner Construction, Bipartite Matching, Lower Bounds
[Feigenbaum, Kannan, M., Suri, Zhang ’'04 &’05]

“Annotation” Stream Model [Aggarwal, Datar, Rajagopalan,
Ruhl 04, Demetrescu, Finocchi, Ribichini ’05]




Matching

® A matching - set of edges with no two edges sharing an end point.
® Problems:

Find the matching of maximum cardinality (MCM)

Find the matching of maximum weight (MVWM)
® (Non-streamable) Algorithms:

Exact polytime algorithm for both [Gabow ’90]

Linear-time | +€ approx for MCM [Kalantari & Shokoufandeh ’95]
Linear-time 3/2+¢ approx for MVWM [Drake & Hougardy '03]




Results

® Unweighted Matchings:

| +€ approximation in constant passes.
® Weighted Matchings:

34272 approximation in single pass.

2+€ approximation in constant passes.




Unweighted Matchings.




An Easy 2 Approximation

® Greedy Algorithm:
Store an edge if it is not adjacent to stored edge

® Construct a maximal matching - 2 Approximation
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Augmenting Paths

Consider augmenting paths defined by taking the
symmetric difference between current (maximal)
matching and optimum matching.

Let Pi be the number of length i augmenting paths

M|+ Y P, >OPT(1-1/k)

1<i<k




Algorithm Outline

. Find a maximal matching
. For | i<k
Find a set, §;, of length i augmenting paths
. Augment current matching with S; where j = argmax §;

. Repeat from 2 unless $§; is small
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Lemma: If there are P; length i augmenting paths in G
then we expect P; / 2(2i)' node disjoint paths in L(G).
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Lemma: If there are P; length i augmenting paths in G
then we expect P; / 2(2i)' node disjoint paths in L(G).

Lemma: A maximal set of node disjoint paths in L(G),

is an i+2 approximation to the maximum set of node
disjoint paths in L(G).

To find a constant fraction of length i augmenting
paths P;, create layered graph and greedily find node
disjoint paths.





















































































Limiting Backtracking
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Limiting Backtracking

® Solution: If number of paths being grown falls below threshold
on then delete and backtrack.

Good: Only backtrack a constant number of times
Bad: Don’t find a maximal set of node disjoint paths

® [n a constant number of passes, we find a constant fraction of
length i node disjoint paths/augmenting paths.




Weighted Matching.
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Single Pass 3+2V2 Approximation

® At all times we store some matching M

® For each edge e:
Compute total weight W of edges e/, e; in M incident to e
If w(e) > (I+y) Wthen M « M U {e} \ {e,e2}

® Wesayeis* ” and “ ” e; and ez
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Proof (Sketch)

We say an edge e is a if it is born and was never killed.

Let S = all survivors.

For survivor e we define the T(e) to be the
transitive closure of edges killed by e.

Claim |:w(T(e)) < w(e)ly

Claim 2: Can charge the weights of edges in OPT such that:

® At most (I+Y) w(T(e)) is charged to T(e)

® At most 2(1+ Y) w(e) is charged to e

Hence w(OPT) < (1+ Y) w(T(S)) + 2(1+ Y) w(S)< (3+2V2) w(S)
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Multi-pass 2+€ Approximation

First pass: find a constant approximate M,

Subsequent passes: create M; from M., by running the
previous algorithm with y(€)

Repeat if |Mi|/ |Mii|> 1+K(€)
Claim |: A constant number of passes suffices

Claim 2:When [Mi|/ |Mii| £ 1+K we have a 2+€ approx.




Conclusions

® Unweighted Matchings:
| +€ approximation in constant passes.

® Weighted Matchings:

34272 approximation in single pass.

2+€ approximation in constant passes.




Thanks




